Skip to main content

Dynamical Integrity and Its Background

  • Chapter
  • First Online:
Lectures on Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

  • 253 Accesses

Abstract

This chapter summarizes the main elements of dynamical integrity, the branch of the dynamical systems theory that is aimed at checking the robustness, or practical stability, of solutions of evolutionary systems governed by differential equations (continuous time) or maps (discrete time). Although developed in the field of engineering, the ideas and results apply to any dynamical systems, irrespective of the problem they are aimed to describe. First, the background is illustrated, and the main aspects of dynamical systems are summarized. The classical concept of stability is then recalled, to understand the starting point of dynamical integrity and how this is aimed at adding new and relevant information with respect to classical knowledge. The main elements of a robustness analysis, namely the safe basin, the integrity measure and the integrity profiles, are finally reviewed, and the regularity of the integrity profiles is studied for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geymonat L (1965) Galileo Galilei: A Biography and Inquiry into His Philosophy of Science. McGraw-Hill, New York

    Google Scholar 

  2. Galilei G (1638) Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti la meccanica e i movimenti locali. Elzeviri, Leida, in italian and latin. Second english version by Thomas e John Weston T, Weston J (1730), Academy of Greenwich, London

    Google Scholar 

  3. Rufus S (1939) Aristotle and the Scientific Method. The Scientific Monthly 49:468-472

    Google Scholar 

  4. Newton I (1687) Philosophiæ Naturalis Principia Mathematica, London, in latin. Translated in Bernard Cohen I, Whitman A (1999), University of California Press, Berkeley, California

    Google Scholar 

  5. Dirac P (1939) The Relation between Mathematics and Physics. Proceedings of the Royal Society of Edinburgh 59 Part II:122–129

    Google Scholar 

  6. Wigner E (1960) The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications on Pure and Applied Mathematics 13: 1–14, https://doi.org/10.1002/cpa.3160130102.

    Article  MATH  Google Scholar 

  7. Bochner S (1962) The role of mathematics in the rise of mechanics. American Scientist 50:294-311

    Google Scholar 

  8. Arnold VI (1999) Mathematics and physics: mother and daughter or sisters?. Physics-Uspekhi 42:1205–1217, https://doi.org/10.1070/pu1999v042n12abeh000673.

    Article  Google Scholar 

  9. Lyapunov AM (1892) The general problem of the stability of motion. Doctoral dissertation, University of Kharkov, Kharkov Mathematical Society, Kharkov, 251p., in russian. English translation in Fuller AT (1992) International Journal of Control 55:531-773

    Google Scholar 

  10. Poincaré H (1881) Mémoire sur les courbes définies par une équation différentielle. Journal de Mathématiques Pures et Appliquées 7:375-422

    MATH  Google Scholar 

  11. Stoker JJ (1955) On the stability of mechanical systems. Communications on Pure and Applied Mathematics VIII:133-142, https://doi.org/10.1002/cpa.3160080110

  12. Chetaev NG (1961) The Stability of Motion. Pergamon Press, New York-Oxford - London - Paris, in russian. English translation by Nadler M

    Google Scholar 

  13. Müller PC (1972) Stability of Mechanical Systems. In: Special Problems of Gyrodynamics. International Centre for Mechanical Sciences (Courses and Lectures), vol 63. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2882-4_2

  14. Herrmann G (1971) Dynamics and stability of mechanical systems with follower forces. NASA report CR-1782

    Google Scholar 

  15. Ariaratnam ST (1972) Stability of mechanical systems under stochastic parametric excitation. In: Stability of Stochastic Dynamical Systems. Lecture Notes in Mathematics, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0064949

  16. Leine RI, van de Wouw N (2008) Stability and convergence of mechanical systems with unilateral constraints. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Chow S-N, Hale JK (1982) Methods of Bifurcation Theory. Springer, New York

    Book  MATH  Google Scholar 

  18. Crawford JD (1991) Introduction to bifurcation theory. Review of Modern Physics 63:991, https://doi.org/10.1103/RevModPhys.63.991

    Article  MathSciNet  Google Scholar 

  19. Guckenheimer J, Holmes PJ (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag New York

    Book  MATH  Google Scholar 

  20. Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos, Second Edition. Springer, New York

    MATH  Google Scholar 

  21. Kuznetsov YA (2004) Elements of applied bifurcation theory, third edition. Springer, New York

    Book  MATH  Google Scholar 

  22. Euler L (1744) Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti, Addentamentum 1: de curvis elasticis, Laussanae et Genevae, Apud Marcum-Michaelem, Bousquet et Socios, 245-310, in latin

    Google Scholar 

  23. Southwell RV (1932) On the Analysis of Experimental Observations in Problems of Elastic Stability. Proceedings of the Royal Society of London 135A:601–615

    MATH  Google Scholar 

  24. Bridget FJ, Jerome CC, Vosseller AB (1934) Some New Experiments on Buckling of Thin Wall Construction. Transactions of the ASME, 56: 569-578

    Google Scholar 

  25. Lindberg HE (1965) Impact Buckling of a Thin Bar. J. Appl. Mech. 32:315-322, https://doi.org/10.1115/1.3625801

    Article  Google Scholar 

  26. Singer J, Arbocz J, Weller T (2002), Buckling experiments. John Wiley & Sons

    Google Scholar 

  27. Bushnell D (1981) Buckling of shells – pitfall for designers. AIAA Journal 19:1183–1226

    Article  Google Scholar 

  28. Koiter WT (1945), Over de stabiliteit van het elastisch evenwicht, PhD thesis, Delft University, Delft, The Netherlands, in dutch. English translation Koiter WT (1967) On the stability of elastic equilibrium, NASA technical translation F-10, 833, Clearinghouse, US Department of Commerce/National Bureau of Standards N67-25033

    Google Scholar 

  29. Budiansky B (1974) Theory of buckling and post-buckling behavior of elastic structures. Advances in Applied Mechanics, 14:1-65

    Article  Google Scholar 

  30. Tvergaard V (1976) Buckling Behavior of Plate and Shell Structures. In: Proceedings of the 14th International Congress of Theoretical and Applied Mechanics, edited by W. T. Koiter, North-Holland Publishing Co., New York, pp. 233-247

    Google Scholar 

  31. Peixoto M (1959a) On Structural Stability. Annals of Mathematics 69:199-222, https://doi.org/10.2307/1970100

    Article  MathSciNet  MATH  Google Scholar 

  32. Chilver L (2006) Michael Thompson: His Seminal Contributions to Nonlinear Dynamics – and Beyond. Nonlinear Dynamics 43:3-16

    Article  MathSciNet  MATH  Google Scholar 

  33. Thompson JMT, Bishop SR, Leung LM (1987) Fractal basins and chaotic bifurcations prior to escape from a potential well. Physics Letters A 121:116-120

    Article  MathSciNet  Google Scholar 

  34. Thompson JMT (1989) Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A 421:195-225

    MathSciNet  MATH  Google Scholar 

  35. McRobie FA, Thompson JMT (1991) Lobe dynamics and the escape from a potential well. Proceedings of the Royal Society of London A 435: 659-672

    MathSciNet  MATH  Google Scholar 

  36. Soliman MS, Thompson JMT (1991) Basin organization prior to a tangled saddle-node bifurcation. International Journal of Bifurcation and Chaos 1:107-118

    Article  MathSciNet  MATH  Google Scholar 

  37. Lansbury AN, Thompson JMT, Stewart HB (1992) Basin erosion in the twin-well Duffing oscillator: two distinct bifurcation scenarios. International Journal of Bifurcation and Chaos 2:505-532

    Article  MathSciNet  MATH  Google Scholar 

  38. Infeld E, Lenkowska T, Thompson JMT (1993) Erosion of the basin of stability of a floating body as caused by dam breaking. Physics of Fluids A: Fluid Dynamics 5:2315-2316

    Article  MATH  Google Scholar 

  39. Stewart HB, Thompson JMT, Ueda Y, Lansbury AN (1995) Optimal escape from potential wells-patterns of regular and chaotic bifurcation. Physica D: Nonlinear Phenomena 85:259-295

    Article  MathSciNet  MATH  Google Scholar 

  40. Soliman MS, Thompson JMT (1992) Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Physical Review A 45:3425

    Article  Google Scholar 

  41. Sun J-Q, Luo A (2012) Global Analysis of Nonlinear Dynamics. Springer-Verlag, New York

    Book  Google Scholar 

  42. Xiong F-R, Qin Z-C, Ding Q, Hernández, C, Fernandez, J, Schütze O, Sun, J-Q (2015) Parallel Cell Mapping Method for Global Analysis of High-Dimensional Nonlinear Dynamical Systems. Journal of Applied Mechanics 82:111001

    Article  Google Scholar 

  43. Lenci S, Rega G (2019) Global Nonlinear Dynamics for Engineering Design and System Safety. Springer, New York

    Book  Google Scholar 

  44. McDonald SW, Grebogi C, Ott E, Yorke JA (1985) Fractal basin boundaries. Physica D 17(2):125-153

    Article  MathSciNet  MATH  Google Scholar 

  45. Thompson JMT, Ueda Y (1989) Basin boundary metamorphoses in the canonical escape equation. Dynamics and stability of systems 4:285-294

    Article  MathSciNet  MATH  Google Scholar 

  46. Soliman MS, Thompson JMT (1992) The effect of damping on the steady state and basin bifurcation patterns of a nonlinear mechanical oscillator. International Journal of Bifurcation and Chaos 2:81-91

    Article  MathSciNet  MATH  Google Scholar 

  47. Nusse HE, Yorke JA, Kostelich EJ (1994) Basins of Attraction. In: Dynamics: Numerical Explorations. Applied Mathematical Sciences, vol 101. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0231-5_7

  48. Alexander J, Yorke JA, You Z, Kan I (1992) Riddled Basins. International Journal of Bifurcation and Chaos 2:795-813

    Article  MathSciNet  MATH  Google Scholar 

  49. Poon L, Campos J, Ott E, Grebogi C (1996) Wada basin boundaries in chaotic scattering. International Journal of Bifurcation and Chaos 6:251-265

    Article  MathSciNet  MATH  Google Scholar 

  50. Viana RL, Grebogi C (2001) Riddled basins and unstable dimension variability in chaotic systems with and without symmetry. International Journal of Bifurcation and Chaos 11:2689-2698

    Article  MathSciNet  MATH  Google Scholar 

  51. Wagemakers A, Daza A, Sanjuan MAF (2020) The saddle-straddle method to test for Wada basins. Communications in Nonlinear Science and Numerical Simulation 84:105167

    Article  MathSciNet  MATH  Google Scholar 

  52. Belardinelli P, Lenci S (2016) A first parallel programming approach in basins of attraction computation. International Journal of Non-linear Mechanics 80:76-81

    Article  Google Scholar 

  53. Belardinelli P, Lenci S (2016) An efficient parallel implementation of Cell mapping methods for MDOF systems. Nonlinear Dynamics 86: 2279-2290.

    Article  MathSciNet  MATH  Google Scholar 

  54. Andonovski N, Lenci S (2020) Six dimensional basins of attraction computation on small clusters with semi-parallelized SCM method. International Journal of Dynamics and Control 8:436-447

    Article  MathSciNet  Google Scholar 

  55. McRobie FA, Thompson JMT (1992) Global integrity in engineering dynamics-methods and applications. In: J.H. Kim, et al. (eds.) Applied Chaos, Wiley, New York, p. 31-49

    Google Scholar 

  56. Rega G, Lenci S (2008) Dynamical integrity and control of nonlinear mechanical oscillators, Journal of Vibration and Control 14:159-179

    Article  MATH  Google Scholar 

  57. Rega G, Lenci S (2015) A global dynamics perspective for system safety from macro to nano-mechanics: Analysis, control and design engineering. Applied Mechanics Review 67:050802-1-19

    Article  Google Scholar 

  58. Lenci S, Maracci D (2018) Dynamics and Stability: a long history from equilibrium to dynamical integrity. Istituto Lombardo - Accademia di Scienze e Lettere - Incontri di Studio. https://doi.org/10.4081/incontri.2018.391

    Article  Google Scholar 

  59. Rega G, Lenci S (2005) Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators. Nonlinear Analysis, Theory, Methods and Applications 63:902-914

    MathSciNet  MATH  Google Scholar 

  60. Brzeski P, Belardinelli P, Lenci S, Perlikowski P (2018) Revealing compactness of basins of attraction of multi-DoF dynamical systems. Mechanical Systems and Signal Processing 111:348-361

    Article  Google Scholar 

  61. Soliman MS, Thompson JMT (1989) Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration 135:453-475

    Article  MathSciNet  MATH  Google Scholar 

  62. Belardinelli P, Lenci S, Rega G (2018) Seamless variation of isometric and anisometric dynamical integrity measures in basins’s erosion. Communications in Nonlinear Science and Numerical Simulation 56:499-507

    Article  MathSciNet  MATH  Google Scholar 

  63. Lenci S, Rega G (2003) Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics 33:71–86

    Article  MathSciNet  MATH  Google Scholar 

  64. Yang S (2016) Parameter-induced Fractal Erosion of The Safe Basin in A Softening Duffing Oscillator. Journal of Vibroengineering 18:3329-3336

    Article  Google Scholar 

  65. Lenci S, Rega G (2003) Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control 9:281-315

    Article  MathSciNet  MATH  Google Scholar 

  66. Lenci S, Rega G (2008) Competing dynamic solutions in a parametrically excited pendulum: attractor robustness and basin integrity. ASME Journal of Computational and Nonlinear Dynamics 3:41010-1-9

    Google Scholar 

  67. Orlando D, Gonçalves PB, Rega G, Lenci S (2011) Influence of modal coupling on the nonlinear dynamics of Augusti’s model. ASME Journal of Computational and Nonlinear Dynamics 6:41014-1-11

    Google Scholar 

  68. Orlando D, Gonçalves PB, Rega G, Lenci S (2011) Non-linear dynamics and imperfection sensitivity of Augusti’s model. Journal of Mechanics of Materials and Structures 6:1065-1078

    Article  Google Scholar 

  69. Lenci S, Orlando D, Rega G, Gonçalves PB (2012) Controlling Practical Stability and Safety of Mechanical Systems by Exploiting Chaos Properties. Chaos 22:047502-1-15

    Article  MathSciNet  MATH  Google Scholar 

  70. Lenci S, Rega G (2006) Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering 16:390-401

    Article  Google Scholar 

  71. Rega G, Settimi V (2013) Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics 73:101-123

    Article  MathSciNet  Google Scholar 

  72. Ruzziconi L, Younis MI, Lenci S (2013) An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica 48:1761-1775

    Article  MathSciNet  MATH  Google Scholar 

  73. Ruzziconi L, Lenci S, Younis MI (2013) An Imperfect Microbeam Under Axial Load and Electric Excitation: Nonlinear Phenomena and Dynamical Integrity. International Journal of Bifurcation and Chaos 23:1350026-1-17

    Article  MathSciNet  MATH  Google Scholar 

  74. Ruzziconi L, Younis MI, Lenci S (2013) Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dynamics 74:533-549

    Article  MathSciNet  Google Scholar 

  75. Belardinelli P, Sajadi B, Lenci S, Alijani F (2019) Global dynamics and integrity of a micro-plate pressure sensor. Communications in Nonlinear Science and Numerical Simulation 69:432-444

    Article  MATH  Google Scholar 

  76. Gonçalves PB, Silva FMA, Del Prado ZJGN (2007) Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dynamics 50:121-145

    Article  MathSciNet  MATH  Google Scholar 

  77. Gonçalves PB, Silva FMA, Rega G, Lenci S (2011) Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics 63:61-82

    Article  MathSciNet  MATH  Google Scholar 

  78. Xu J, Li C, Li Y, Lim CW, Zhu Z (2018) Stochastic resonance and safe basin of single-walled carbon nanotubes with strongly nonlinear stiffness under random magnetic field. Nanomaterials 8:12-24

    Article  Google Scholar 

  79. Long Z, Lee S, Kim J (2010) Estimation of survival probability for a ship in beam seas using the safe basin. Ocean Engineering 37:418-424

    Article  Google Scholar 

  80. Ucer E (2011) Examination of the stability of trawlers in beam seas by using safe basins. Ocean Engineering 38:1908-1915

    Article  Google Scholar 

  81. Eason PR, Dick AJ, Nagarajaiah S (2014) Numerical investigation of coexisting high and low amplitude responses and safe basin erosion for a coupled linear oscillator and nonlinear absorber system. Journal of Sound and Vibration 333:3490-3504

    Article  Google Scholar 

  82. Wright JA (2016) Safe basins for a nonlinear oscillator with ramped forcing. Proceedings of the Royal Society A- Mathematical Physical and Engineering Sciences 472:20160190-1-13

    Article  MathSciNet  MATH  Google Scholar 

  83. Rong HW, Wang XD, Xu W (2008) Erosion of safe basins in a nonlinear oscillator under bounded noise excitation. Journal of Sound and Vibration 313:46-56

    Article  Google Scholar 

  84. Wei D, Zhang B, Qiu D (2010) Effect of noise on erosion of safe basin in power system. Nonlinear Dynamics 61:477-482

    Article  MATH  Google Scholar 

  85. Zhu ZW, Li XM, Xu J (2015) Stochastic nonlinear dynamic characteristics and safe basin of Lidoped graphene impacted by hydrogen atoms. International Journal of Hydrogen Energy 40:12889-12896

    Article  Google Scholar 

  86. Silva FMA, Gonçlves, PB (2015) The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dynamics 81:707-724

    Article  Google Scholar 

  87. Orlando D, Gonçalves PB, Rega G, Lenci S (2019) Influence of transient escape and added load noise on the dynamic integrity of multistable systems. International Journal of Non-Linear Mechanics 109:140-154

    Article  Google Scholar 

  88. Benedetti KCB, Gonçalves PB, Silva FMA (2020) Nonlinear oscillations and bifurcations of a multistable truss and dynamic integrity assessment via a Monte Carlo approach. Meccanica, https://doi.org/10.1007/s11012-020-01202-5

    Article  MathSciNet  Google Scholar 

  89. Shang H, Xu J (2009) Delayed feedbacks to control the fractal erosion of safe basins in a parametrically excited system. Chaos Solitions & Fractals 41:1880-1896

    Article  Google Scholar 

  90. Lenci S, Rega G, Ruzziconi L (2013) The dynamical integrity concept for interpreting/predicting experimental behaviour: from macro- to nano-mechanics. Philosophical Transaction of the Royal Society A 371:20120423

    Article  MATH  Google Scholar 

  91. Alsaleem FM, Younis MI, Ruzziconi L (2010) An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems 19:794-806

    Article  Google Scholar 

  92. Ruzziconi L, Ramini AH, Younis MI, Lenci S (2014) Nonlinear Dynamics of an Electrically Actuated MEMS Device: Experimental and Theoretical Investigation. Sensors 14:17089-17111

    Article  Google Scholar 

  93. Lenci S, Rega G (2011) Experimental vs theoretical robustness of rotating solutions in a parametrically excited pendulum: a dynamical integrity perspective. Physica D 240:814-824

    Article  MATH  Google Scholar 

  94. Thompson JMT, Soliman MS (1991) Fractal control boundaries of driven oscillators and their relevance to safe engineering design. Proceedings of the Royal Society of London A 428:1-13

    MATH  Google Scholar 

  95. Lenci S, Rega G, (2011) Load carrying capacity of systems within a global safety perspective. International Journal of Non-Linear Mechanics 46:1232-1251

    Article  Google Scholar 

  96. Rega G, Troger H (2005) Dimension Reduction of Dynamical Systems: Methods, Models, Applications. Nonlinear Dynamics 41:1–15

    Article  MathSciNet  MATH  Google Scholar 

  97. Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral contacts. Wiley, New York

    Book  MATH  Google Scholar 

  98. Brogliato B (1999) Nonsmooth Mechanics. Springer-Verlag London

    Book  MATH  Google Scholar 

  99. Pfeiffer F (2008) On non-smooth dynamics. Meccanica 43:533–554

    Article  MathSciNet  MATH  Google Scholar 

  100. Insperger T, Stepan G (2011) Semi-Discretization for Time-Delay Systems. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  101. Xu Q, Wang Z (2014) Exact stability test of neutral delay differential equations via a rough estimation of the testing integral. International Journal of Dynamics and Control 2:154–163

    Article  Google Scholar 

  102. Pfeiffer F (1991) Dynamical systems with time-varying or unsteady structure. Journal of Applied Mathematics and Mechanics (ZAMM) 71:T6-T22

    MathSciNet  Google Scholar 

  103. Wang Y (1993) Dynamic Modeling and Stability Analysis of Mechanical Systems with Time-Varying Topologies. ASME Journal of Mechanical Design, 115:808-816

    Article  Google Scholar 

  104. Poincaré H (1892) Les Methods nouvelles de la mécanique celeste. Gauthier-Villars, Paris

    MATH  Google Scholar 

  105. Belhaq M, Houssni M (1999) Quasi-periodic oscillations, chaos and suppression of chaos in a Nonlinear oscillator driven by parametric and external excitations. Nonlinear Dynamics 18:1–24

    Article  MathSciNet  MATH  Google Scholar 

  106. Lorenz EN (1963) Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20:130-141

    Article  MathSciNet  MATH  Google Scholar 

  107. Gleick J (1987) Chaos: Making a New Science. Viking Books

    Google Scholar 

  108. Rasband, SN (1990) Chaotic Dynamics of Nonlinear Systems. Wiley, New York

    MATH  Google Scholar 

  109. Abraham R, Ueda Y (2000) The Chaos Avant-garde: Memories of the Early Days of Chaos Theory. World Scientific, Singapore

    MATH  Google Scholar 

  110. Thompson JMT, HB Stewart (2002) Nonlinear Dynamics and Chaos, 2nd Edition. Wiley, London

    MATH  Google Scholar 

  111. Moon FC (2004) Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley,

    Google Scholar 

  112. Li TY, Yorke JA (1975) Period 3 implies chaos. The American Mathematical Monthly 82:985-992

    Article  MathSciNet  MATH  Google Scholar 

  113. Sharkovskii AN (1964) Co-existence of cycles of a continuous mapping of the line into itself. Ukrainian Mathematical Journal 16:61–71

    MathSciNet  MATH  Google Scholar 

  114. Armiyoon AR, Wu CQ (2015) A novel method to identify boundaries of basins of attraction in a dynamical system using Lyapunov exponents and Monte Carlo techniques. Nonlinear Dynamics 79:275–293

    Article  MathSciNet  Google Scholar 

  115. Lenci S, Rega G (2004) A dynamical systems analysis of the overturning of rigid blocks. In: CD-Rom Proceedings of the XXI International Conference of Theoretical and Applied Mechanics, IPPT PAN, ISBN 83-89687-01-1, Warsaw, Poland, August 15–21, 2004

    Google Scholar 

  116. Lenci S, Rega G (2004) Numerical aspects in the optimal control and anti-control of rigid block dynamics. In: Proceedings of the Sixth World Conference on Computational Mechanics, WCCM VI, Beijing, China, September 5–10, 2004

    Google Scholar 

  117. Lenci S, Rega G (2003) Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamic 33: 71–86

    Article  MathSciNet  MATH  Google Scholar 

  118. Grebogi C, Ott E, Yorke JA (1983) Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7:181-200

    Article  MathSciNet  MATH  Google Scholar 

  119. Sommerer JC, Grebogi C (1992) Determination of crisis parameter values by direct observation of manifold tangencies, International Journal of Bifurcation and Chaos 2:383-396

    Article  MathSciNet  MATH  Google Scholar 

  120. Thompson JMT (1982) Instabilities and Catastrophes in Science and Engineering. Wiley, New York

    Book  MATH  Google Scholar 

  121. Arnold VI (1992) Catastrophe Theory. Springer-Verlag, Berlin

    Book  Google Scholar 

  122. Poston T, Stewart I (1998) Catastrophe: Theory and Its Applications. Dover, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This paper summarizes the work I have done on dynamical integrity in the last decades together with Giuseppe Rega and other collaborators, among which my former PhD students Pierpaolo Belardinelli, Laura Ruzziconi and Nemanja Andonovski. I am extremely in debt to all of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lenci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lenci, S. (2024). Dynamical Integrity and Its Background. In: Castilho Piqueira, J.R., Nigro Mazzilli, C.E., Pesce, C.P., Franzini, G.R. (eds) Lectures on Nonlinear Dynamics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-45101-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45101-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45100-3

  • Online ISBN: 978-3-031-45101-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics