Skip to main content

Laser Use in Dental Caries Management

  • Chapter
  • First Online:
Lasers in Dentistry—Current Concepts

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

  • 255 Accesses

Abstract

This chapter explores the range of benefits that relate to laser-assisted oral hard tissue management and details aspects of each wavelength in delivering adjunctive therapy. Of the currently available wavelengths of dental lasers, at the moment, only three can be used for hard tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Moor RJ, Delmé KI. Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: part 1. Laser-assisted cavity preparation. J Adhes Dent. 2009;11:427–38.

    PubMed  Google Scholar 

  2. Parker S. Lasers in restorative dentistry. In: Convissar R, editor. Principles and practice of laser dentistry, vol. 12. St. Louis: Mosby Elsevier; 2011. p. 181–202.

    Chapter  Google Scholar 

  3. Teutle-Coyotecatl B, Contreras-Bulnes R, Scougall-Vilchis RJ, Almaguer-Flores A, Rodríguez-Vilchis LE, Velazquez-Enriquez U, Alatorre JÁA. Effect of Er:YAG laser irradiation on deciduous enamel roughness and bacterial adhesion: an in vitro study. Microsc Res Tech. 2019;82(11):1869–77.

    PubMed  Google Scholar 

  4. Saberi S, Seyed Jabbari Doshanlo S, Bagheri H, Mir Mohammad Rezaei S, Shahabi S. Evaluation of tooth surface irradiated with erbium: yttrium aluminum garnet and carbon dioxide lasers by atomic force microscopy. J Lasers Med Sci. 2018;9(3):188–93.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Convissar RA. Principles and practice of laser dentistry. Mosby; 2011.

    Google Scholar 

  6. Chen P, Toroian D, McKittrick J. Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int. 2011;88(5):351–61.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Majaron B, Sustersic B, Lukac M, Skaleric U, Funduk N. Heat diffusion and debris screening. Er:YAG laser ablation of hard biological tissues. Appl Phys B Lasers Opt. 1998;66:1–9.

    Article  Google Scholar 

  8. Ivanov B, Hakimian AM, Peavy GM, Haglund RF. Mid-infrared laser ablation of hard biocomposite material: mechanistic studies of pulse duration and interface effects. Appl Surf Sci. 2003;208-9:77–84.

    Article  Google Scholar 

  9. Perhavec T, Diaci J. Comparison of Er:YAG and Er,Cr:YSGG dental lasers. J Oral Laser Appl. 2008;8:87–94.

    Google Scholar 

  10. Apel C, Meister J, Ioana RS, Franzen R, Hering P, Gutknecht N. The ablation threshold of Er:YAG and Er,Cr:YSGG laser radiation in dental enamel. Lasers Med Sci. 2002;17:246–52.

    Article  Google Scholar 

  11. Apel C, Franzen R, Meister J, Sarrafzadegan H, Thelen S, Gutknecht N. Influence of the pulse duration of an Er:YAG laser system on the ablation threshold of dental enamel. Lasers Med Sci. 2002;17:253–7.

    Article  PubMed  Google Scholar 

  12. Shinkai K, Takada M, Kawashima S, Suzuki M, Suzuki S. Effects of the percentage of air/water in spray on the efficiency of tooth ablation with erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation. Lasers Med Sci. 2019 Feb;34(1):99–105.

    Article  PubMed  Google Scholar 

  13. Gökçe B. Chap. 10: Effects of Er:YAG laser irradiation on dental hard tissues and all-ceramic materials: SEM evaluation. In: Kazmiruk V, editor. Scanning electron microscopy. IntechOpen; 2012.

    Google Scholar 

  14. Selting W. Fundamental erbium laser concepts: part I. J Lasers Dent. 2009;17:87–93.

    Google Scholar 

  15. Bašaran G, Hamamcı N, Akkurt A. Shear bond strength of bonding to enamel with different laser irradiation distances. Lasers Med Sci. 2011;26:149–56.

    Article  Google Scholar 

  16. Geraldo-Martins VR, Lepri CP, Palma-Dibb RG. Influence of Er,Cr:YSGG laser irradiation on enamel caries prevention. Lasers Med Sci. 2013;28:1056–9.

    Article  Google Scholar 

  17. de Freitas PM, Rapozo-Hilo M, de Paula Eduardo C, Featherstone JD. In vitro evaluation of erbium, chromium:yttrium-scandium-gallium-garnet laser-treated enamel demineralization. Lasers Med Sci. 2010;25(2):165–70.

    Article  Google Scholar 

  18. Ana PA, Zezell DM, Blay CC, Blay A, Eduardo CP, Miyazawa W. Thermal analysis of dental enamel following Er,Cr:YSGG laser irradiation at low fluencies. Lasers Surg Med. 2004;34(16):53–8.

    Google Scholar 

  19. Perhavec T, Diaci J. Comparison of heat deposition of Er:YAG and Er,Cr:YSGG lasers in hard dental tissues. J Laser Health Acad. 2009;2:1–6.

    Google Scholar 

  20. Featherstone JDB, Fried D. Fundamental interactions of lasers with dental hard tissues. Med Laser Appl. 2001;16:181–94.

    Article  Google Scholar 

  21. Ying D, Chuah GK, Hsu CS. Effect of Er:YAG laser and organic matrix on porosity changes in human enamel. J Dent. 2004;32:41–6.

    Article  PubMed  Google Scholar 

  22. Ceballos-Jiménez AY, Rodríguez-Vilchis LE, Contreras-Bulnes R, Alatorre JÁA, Velazquez-Enriquez U, García-Fabila MM. Acid resistance of dental enamel treated with remineralizing agents, Er:YAG laser and combined treatments. Dent Med Probl. 2018;55(3):255–9.

    Article  Google Scholar 

  23. Mollabashi V, Rezaei-Soufi L, Farhadian M, Noorani AR. Effect of erbium, chromium-doped: yttrium, scandium, gallium, and garnet and erbium: yttrium-aluminum-garnet laser etching on enamel demineralization and shear bond strength of orthodontic brackets. Contemp Clin Dent. 2019;10(2):263–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moslemi M, Fekrazad R, Tadayon N, Ghorbani M, Torabzadeh H, Shadkar MM. Effects of Er,Cr:YSGG laser irradiation and fluoride treatment on acid resistance of the enamel. Pediatr Dent. 2009;31:409–13.

    Google Scholar 

  25. Apel C, Schafer C, Gutknecht N. Demineralization of Er:YAG and Er,Cr:YSGG laser prepared enamel cavities in vitro. Caries Res. 2003;37:34–7.

    Article  Google Scholar 

  26. Ana PA, Tabchoury CP, Cury JA, Zezell DM. Effect of Er,Cr:YSGG laser and professional fluoride application on enamel demineralization and on fluoride retention. Caries Res. 2012;46:441–51.

    Article  Google Scholar 

  27. Fowler BO, Kuroda S. Changes in heated and in laser irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int. 1986;38:198–208.

    Article  Google Scholar 

  28. Keller U, Hibst R. Ultrastructural changes of enamel and dentin following Er:YAG laser radiation on teeth. Proc SPIE. 1990;1200:408–12.

    Article  Google Scholar 

  29. Colucci V, de Souza Gabriel AE, Scatolin RS, et al. Effect of Er:YAG laser on enamel demineralization around restorations. Lasers Med Sci. 2015;30:1175–8.

    Article  Google Scholar 

  30. Simsek H, Gurbuz T, Buyuk SK, Ozdemir Y. Evaluation of mineral content and photon interaction parameters of dental enamel after phosphoric acid and Er:YAG laser treatment. Photomed Laser Surg. 2017;35(5):270–7.

    Article  PubMed  Google Scholar 

  31. Moosavi H, Ghorbanzadeh S, Ahrari F. Structural and morphological changes in human and dentin after ablative and sub ablative Er:YAG laser irradiation. J Lasers Med Sci. 2016;7(2):86–91.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ulusoy NB, Akbay Oba A, Cehreli ZC. Effect of Er,Cr:YSGG laser on the prevention of primary and permanent teeth enamel demineralization: SEM and EDS evaluation. Photobiomodul Photomed Laser Surg. 2020;38(5):308–15.

    PubMed  Google Scholar 

  33. Pagano S, Lombardo G, Orso M, Abraha I, Capobianco B, Cianetti S. Lasers to prevent dental caries: a systematic review. BMJ Open. 2020;10(10):e038638.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abbasi M, Nakhostin A, Namdar F, Chiniforush N, Hasani TM. The rate of demineralization in the teeth prepared by bur and Er:YAG laser. J Lasers Med Sci. 2018;9(2):82–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Takeda FH, Harashima T, Kimura Y, Matsumoto K. Efficacy of Er: YAG laser irradiation in removing debris and smear layer on root canal walls. J Endod. 1998;24(8):548–51.

    Article  PubMed  Google Scholar 

  36. Gutknecht N, Apel C, Schäfer C, Lampert F. Microleakage of composite fillings in Er, Cr: YSGG laser-prepared class II cavities. Lasers Surg Med. 2001;28(4):371–4.

    Article  PubMed  Google Scholar 

  37. Zamataro CB, Ana PA, Benetti C, Zezell DM. Influence of Er,Cr:YSGG laser on CaF2-like products formation because of professional acidulated fluoride or to domestic dentifrice application. Microsc Res Tech. 2013;76:704–13.

    Article  PubMed  Google Scholar 

  38. de Oliveira RM, de Souza VM, Esteves CM, de Oliveira Lima-Arsati YB, Cassoni A, Rodrigues JA, Brugnera JA. Er,Cr:YSGG laser energy delivery: pulse and power effects on enamel surface and erosive resistance. Photomed Laser Surg. 2017;35(11):639–46.

    Article  PubMed  Google Scholar 

  39. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187–97.

    Article  PubMed  Google Scholar 

  40. Zezell DM, Boari HG, Ana PA, de Paula EC, Powell GL. Nd:YAG laser in caries prevention: a clinical trial. Lasers Surg Med. 2009;41:31–5.

    Article  Google Scholar 

  41. Delbem AC, Cury JA, Nakassima CK, Gouveia VG, Theodoro LH. Effect of Er:YAG laser on CaF2 formation and its anti-cariogenic action on human enamel: an in vitro study. J Clin Laser Med Surg. 2003;21:197–201.

    Article  PubMed  Google Scholar 

  42. Subramaniam P, Pandey A. Effect of erbium, chromium: yttrium, scandium, gallium, garnet laser and casein phosphopeptide—amorphous calcium phosphate on surface micro-hardness of primary tooth enamel. Eur J Dent. 2014;8(3):402–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ghelejkhani A, Nadalizadeh S, Rajabi M. Effect of casein-phosphopeptide amorphous calcium phosphate and fluoride with/without erbium, chromium-doped yttrium, scandium, gallium, and garnet laser irradiation on enamel microhardness of permanent teeth. Dent Res J (Isfahan). 2021;18:20.

    Article  PubMed  Google Scholar 

  44. Yassaei S, Aghili H, Shahraki N, Shahraki N, Safari I. Efficacy of erbium-doped yttrium aluminium garnet laser with casein phosphopeptide amorphous calcium phosphate with and without fluoride for remineralization of white spot lesions around orthodontic brackets. Eur J Dent. 2018;12(2):210–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yilmaz N, Balaci E, Baygin O, Tüzüner T, Özkaya S, Canakci A. Effect of the usage of Er,Cr:YSGG laser with and without different remineralization agents on the enamel erosion of primary teeth. Lasers Med Sci. 2020;35(7):1607–20.

    Article  PubMed  Google Scholar 

  46. Ramalho KM, Hsu CY, de Freitas PM, Aranha AC, Esteves-Oliveira M, Rocha RG, de Paula Eduardo C. Erbium lasers for the prevention of enamel and dentin demineralization: a literature review. Photomed Laser Surg. 2015;33(6):301–19.

    Article  PubMed  Google Scholar 

  47. Valizadeh S, Rahimi Khub M, Chiniforush N, Kharazifard MJ, Hashemikamangar SS. Effect of laser irradiance and fluoride varnish on demineralization around dental composite restorations. J Lasers Med Sci. 2020;11(4):450–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen W. The clinical applications for the Er,Cr:YSGG laser system. Chen Laser Institute; 2011.

    Google Scholar 

  49. Niu W, Eto JN, Kimura Y, Takeda FH, Matsumoto K. A study on microleakage after resin filling of Class V cavities prepared by Er:YAG laser. J Clin Laser Med Surg. 1998;16(4):227–31.

    Article  PubMed  Google Scholar 

  50. Corona SA, Borsatto M, Dibb RG, Ramos RP, Brugnera A, Pécora JD. Microleakage of class V resin composite restorations after bur, air-abrasion or Er:YAG laser preparation. Oper Dent. 2001;26(5):491–7.

    PubMed  Google Scholar 

  51. Kohara EK, Hossain M, Kimura Y, Matsumoto K, Inoue M, Sasa R. Morphological and microleakage studies of the cavities prepared by Er:YAG laser irradiation in primary teeth. J Clin Laser Med Surg. 2002;20(3):141–7.

    Article  Google Scholar 

  52. Corona SA, Borsatto MC, Pecora JD, De SA Rocha RAS, Ramos TS, Palma-Dibb RG. Assessing microleakage of different class V restorations after Er:YAG laser and bur preparation. J Oral Rehabil. 2003;30(10):1008–14.

    Article  Google Scholar 

  53. Bertrand MF, Semez G, Leforestier E, Muller-Bolla M, Nammour S, Rocca JP. Er:YAG laser cavity preparation and composite resin bonding with a single-component adhesive system: relationship between shear bond strength and microleakage. Lasers Surg Med. 2006;38:615–23.

    Article  Google Scholar 

  54. Brulat N, Rocca JP, Leforestier E, Fiorucci G, Nammour S, Bertrand MF. Shear bond strength on self-etching adhesive systems to Er:YAG-laser-prepared dentin. Lasers Med Sci. 2009;24:53–7.

    Article  PubMed  Google Scholar 

  55. Delmé K, Meire M, De Bruyne M, Nammour S, De Moor R. Cavity preparation using an Er:YAG laser in the adult dentition. Rev Belg Med Dent. 2009;64:71–80.

    Google Scholar 

  56. Dilip S, Srinivas S, Mohammed Noufal MN, Ravi K, Krishnaraj R, Charles A. Comparison of surface roughness of enamel and shear bond strength, between conventional acid etching and erbium, chromium-doped: Yttrium scandium-gallium-garnet laser etching—an in vitro study. Dent Res J (Isfahan). 2018;15(4):248–55.

    Article  Google Scholar 

  57. Hoshing UA, Patil S, Medha A, Bandekar SD. Comparison of shear bond strength of composite resin to enamel surface with laser etching versus acid etching: an in vitro evaluation. J Conserv Dent. 2014;17(4):320–4.

    Article  PubMed Central  Google Scholar 

  58. Jaberi Ansari Z, Fekrazad R, Felzi S, Younessian F, Kalhori KA, Gutknecht N. The effect of an Er,Cr:YSGG laser on the micro-shear bond strength of composite to the enamel and dentin of human permanent teeth. Lasers Med Sci. 2012;27:761–5.

    Article  PubMed  Google Scholar 

  59. Usumez S, Orhan M, Usumez A. Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system. Am J Orthod Dentofac Orthop. 2002;122:649–56.

    Article  Google Scholar 

  60. Ceballos L, Toledano M, Osorio R, Tay FR, Marshall GW. Bonding to Er:YAG-laser-treated dentin. J Dent Res. 2002;81:119–22.

    Article  Google Scholar 

  61. Dunn WJ, Davis JT, Bush AC. Shear bond strength and SEM evaluation of composite bonded to Er:YAG laser prepared dentin and enamel. Dent Mater. 2005;21:616–24.

    Article  PubMed  Google Scholar 

  62. De Moor RJG, Delmè KIM. Erbium laser adhesion to tooth structure. J Oral Laser Appl. 2006;6:7–21.

    Google Scholar 

  63. Monghini EM, Wanderley RL, Pécora JD, Palma Dibb RG, Corona SA, Borsatto MC. Bond strength to dentin on primary teeth irradiated with varying Er:YAG laser energies and SEM examination of the surface morphology. Lasers Surg Med. 2004;34:254–9.

    Article  PubMed  Google Scholar 

  64. Sung EC, Lin CN, Harada V. Composite bond strength to primary dentin prepared with Er,Cr:YSGG laser. In: IADR 84th general session, Brisbane, Australia, June 28–July 1. J Dent Res. 2006;85(Special issue B).

    Google Scholar 

  65. Arbabzadeh Zavareh F, Samimi P, Birang R, Eskini M, Bouraima SA. Assessment of microleakage of class V composite resin restoration following erbium-doped yttrium aluminium garnet (Er:YAG) laser conditioning and acid etching with two different bonding systems. Lasers Med Sci. 2013 Winter;4(1):39–47.

    Google Scholar 

  66. Kidd EAM. Microleakage: a review. J Dent. 1976;4:199–205.

    Article  PubMed  Google Scholar 

  67. Araujo RM, Eduardo CP, Duarte JSL, Araujo MA, Loffredo LC. Microleakage and nanoleakage: influence of laser in cavity preparation and dentin pretreatment. J Clin Laser Med Surg. 2001;19(6):325–32.

    Article  PubMed  Google Scholar 

  68. Sano H, Shono T, Takatsu T, Hosoda H. Microporous dentin zone beneath resin-impregnated layer. Oper Dent. 1994;19(2):59–64.

    PubMed  Google Scholar 

  69. Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage: leakage within the hybrid layer. Oper Dent. 1995;20(1):18–25.

    Google Scholar 

  70. Sano H, Yoshiyama M, Ebisu S, Burrow MF, Takatsu T, Ciucchi B, Carvalho R, Pashley DH. Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper Dent. 1995;20(4):160–7.

    PubMed  Google Scholar 

  71. Asmussen E. Composite restorative resins. Composition versus wall-to-wall polymerization contraction. Acta Odontol Scand. 1975;33:337–44.

    Article  Google Scholar 

  72. Sun J, Fang R, Lin N, Eidelman N, Lin-Gibson S. Non-destructive quantification of leakage at the tooth-composite interface and its correlation with material performance parameters. Biomaterials. 2009;30:4457–62.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Anusavice KJ. Phillips’ science of dental materials. 11th ed. St. Louis: Elsevier Science; 2003. p. 394.

    Google Scholar 

  74. Öznurhan F, Olmec A. Nanoleakage in primary teeth prepared by laser irradiation or bur. Lasers Med Sci. 2013;28:1099–105.

    Article  PubMed  Google Scholar 

  75. Li H, Burrow MF, Tyas MJ. Nanoleakage patterns of four dentin bonding systems. Dent Mater. 2000;16(1):48–56.

    Article  PubMed  Google Scholar 

  76. Dorfer CE, Staehle HJ, Wurst MW, Duschner H, Ploch T. The nanoleakage phenomenon: influence of different dentin bonding agents, thermocycling and etching time. Eur J Oral Sci. 2000;108(4):346–51.

    Article  PubMed  Google Scholar 

  77. Ilie N, Hickel R. Silorane-based dental composite: behavior and abilities. Dent Mater. 2006;25:445–54.

    Article  Google Scholar 

  78. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962–70.

    Article  Google Scholar 

  79. Gorucu J, Gurgan S, Cakir FY, Bicer CO, Gorucu H. The effect of different preparation and etching procedures on the microleakage of direct composite veneer restorations. Photomed Laser Surg. 2011;29(3):205–11.

    Article  PubMed  Google Scholar 

  80. Carvalho RM, Pereira JC, Yoshiyama M, Ashley DH. A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent. 1996;21:17–24.

    PubMed  Google Scholar 

  81. Chandrasekhar V, Rudrapati L, Badami V, Tummala M. Incremental techniques in direct composite restoration. J Conserv Dent. 2017;20(6):386–91.

    Article  PubMed Central  Google Scholar 

  82. Eick JD, Gwinnett AJ, Pashley DH, Robinson SJ. Current concepts on adhesion to dentin. Crit Rev Oral Biol Med. 1997;8(3):306–35.

    Article  PubMed  Google Scholar 

  83. Labib LM, Nabih SM, Baroudi K. Nanoleakage evaluation of posterior teeth restored with low shrinkable resin composite—an invitro study. J Clin Diagn Res. 2016;10(7):ZC102–4.

    PubMed Central  Google Scholar 

  84. Marshall GW Jr, Marshall SJ, Kinney JH, Balooch M. The dentin substrate: structure and properties related to bonding. J Dent. 1997;25:441–58.

    Article  PubMed  Google Scholar 

  85. Krmek SJ, Bogdan I, Simeon P, Mehicić GP, Katanec D, Anić I. A three-dimensional evaluation of microleakage of class V cavities prepared by the very short pulse mode of the erbium:yttrium-aluminium-garnet laser. Lasers Med Sci. 2010;25:823–8.

    Article  PubMed  Google Scholar 

  86. Pashley DH. Clinical correlations of dentin structure and function. J Prosthet Dent. 1991;66:777–81.

    Article  PubMed  Google Scholar 

  87. Perdigão J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26(2):e24–37.

    Article  Google Scholar 

  88. Wendt SL, Mcinnes PM, Dickinson GL. The effect of thermocycling in microleakage analysis. Dent Mater. 1992;8:181–94.

    Article  PubMed  Google Scholar 

  89. Van Meerbeek B, De Munck J, Mattar D, Van Landuyt K, Lambrechts P. Microtensile bond strengths of an etch & rinse and self-etch adhesive to enamel and dentin as a function of surface treatment. Oper Dent. 2003;28:647–60.

    PubMed  Google Scholar 

  90. Hilton TJ. Can modern restorative procedures and materials reliably seal cavities? In vitro investigations. Part 2. Am J Dent. 2002;15:279–89.

    PubMed  Google Scholar 

  91. Silverstone LM, Saxton CA, Dogon IL, Fejerskov O. Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy. Caries Res. 1975;9:373–87.

    Article  PubMed  Google Scholar 

  92. Barkmeier WW, Erickson RL, Kimmes NS, Latta MA, Wilwerding TM. Effect of enamel etching time on roughness and bond strength. Oper Dent. 2009;34(2):217–22.

    Article  PubMed  Google Scholar 

  93. Daher R, Krejci I, Mekki M, Marin C, Di Bella E, Ardu S. Effect of multiple enamel surface treatments on micro-shear bond strength. Polymers (Basel). 2021;13(20):3589.

    Article  PubMed  Google Scholar 

  94. Zhang QF, Yao H, Li ZY, Jin L, Wang HM. Optimal enamel conditioning strategy for rebonding orthodontic brackets: a laboratory study. Int J Clin Exp Med. 2014;7(9):2705–11.

    PubMed Central  Google Scholar 

  95. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substances. J Biomed Mater Res. 1982;16:265–73.

    Article  Google Scholar 

  96. Perdigao J, Swift EJ Jr, Denehy GE, Wefel JS, Donly KJ. In vitro bonds strengths and SEM evaluation of dentin bonding systems to different dentin substrates. J Dent Res. 1994;73(1):44–55.

    Article  Google Scholar 

  97. Van Meerbeek B, Vargas M, Inoue S, Yoshida Y, Peumans M, Lambrechts P, Vanherle G. Adhesives and cements to promote preservation dentistry. Oper Dent. 2001;Suppl 6:119–44.

    Google Scholar 

  98. Rechmann P, Glodin DS, Henniing T. Changes in surface morphology of enamel after Er:YAG radiation. Lasers Dent. 1998;IV (3248):62–8.

    Google Scholar 

  99. Ceballos L, Osorio R, Toledano M, Marshall GW. Microleakage of composite restorations after acid or Er:YAG laser cavity treatments. Dent Mater. 2001;17:340–6.

    Article  PubMed  Google Scholar 

  100. Carvalho AO, Reis AF, de Oliveira MT, de Freitas PC, Aranha AC, Eduardo Cde P, Giannini M. Bond strength of adhesive systems to Er,Cr:YSGG laser-irradiated dentin. Photomed Laser Surg. 2011;29(11):747–52.

    Article  Google Scholar 

  101. Arslan S, Yazici AR, Görücü J, Pala K, Antonson DE, Antonson SA, Silici S. Comparison of the effect of Er,Cr:YSGG laser and different cavity disinfection agents on microleakage of current adhesives. Lasers Med Sci. 2012;27:805–11.

    Article  PubMed  Google Scholar 

  102. Lee BS, Lin PY, Chen MH, Hsieh TT, Lin CP, Lai JY, Lan WH. Tensile bond strength of Er,Cr:YSGG laser-irradiated human dentin and analysis of dentin-resin interface. Dent Mater. 2007;23:570–8.

    Article  PubMed  Google Scholar 

  103. Hoke JA, Burkes EJ Jr, Gomes ED, Wolbarsht ML. Erbium:YAG (2.94 μm) laser effects on dental tissues. J Laser Appl. 1990;2:61.

    Article  PubMed  Google Scholar 

  104. Shirani F, Birang R, Malekipur MR, Zeilabi A, Shahmoradi M, Kazemi S, Khazaei S. Adhesion to Er:YAG laser and bur prepared root and crown dentine. Aust Dent J. 2012;57(2):138–43.

    Article  Google Scholar 

  105. Lima DM, Tonetto MR, de Mendonça AA, Elossais AA, Saad JR, de Andrade MF, Pinto SC, Bandéca MC. Human dental enamel and dentin structural effects after Er:YAG laser irradiation. J Contemp Dent Pract. 2014;15(3):283–7.

    Article  PubMed  Google Scholar 

  106. Sennou HE, Lobule AA, Grégoire GL. X-ray photoelectron spectroscopy of the dentin-glass ionomer cement interface. Dent Mater. 1999;15(4):229–37.

    Article  PubMed  Google Scholar 

  107. Moretto SG, Azambuja N Jr, Arana-Chavez VE, Reis AF, Giannini M, Eduardo Cde P, De Freitas PM. Effects of ultramorphological changes on adhesion to lased dentin—scanning electron microscopy and transmission electron microscopy analysis. Microsc Res Tech. 2011;74:720–6.

    Article  PubMed  Google Scholar 

  108. Bertrand MF, Hessleyer D, Muller-Bolla M, Nammour S, Rocca JP. Scanning electron microscopic evaluation of resin–dentin interface after Er:YAG laser preparation. Lasers Surg Med. 2004;35:51–7.

    Article  PubMed  Google Scholar 

  109. Corona SA, de Souza AE, Chinelatti MA, Borsatto MC, Pecora JD, Palma-Dibb RG. Effect of energy density and pulse repetition rate of Er:YAG laser on dentin ablation ability and morphological analysis of the laser-irradiated surface. Photomed Laser Surg. 2007;25(1):26–33.

    Article  PubMed  Google Scholar 

  110. Coluzzi DJ, Parker SPA. In: Coluzzi DJ, Parker SP, editors. Textbooks in contemporary dentistry lasers in dentistry—current concepts. Springer; 2017, 397 p.

    Chapter  Google Scholar 

  111. Oznurhan F. Morphological analysis of the resin-dentin interface in cavities prepared with Er,Cr:YSGG laser or bur in primary teeth. Photomed Laser Surg. 2013;31(8):386–91.

    Article  Google Scholar 

  112. Hibst R, Keller U, Stainer R. The effect of pulsed Er:YAG laser radiation on dental hard tissues. Laser Med Surg. 1988;4:163–5.

    Google Scholar 

  113. Lin S, Caputo AA, Eversole LR, Rizoiu I. Topofraphical characteristics and shear bond strength of tooth surface cut with a laser-powered hydrokinetic system. J Prosthet Dent. 1999;82(4):451–5.

    Article  PubMed  Google Scholar 

  114. Olivi G, Olivi M. In: Olivi G, Olivi M, editors. Lasers in restorative dentistry—a practical guide. Springer; 2015. p. 95, Chapter 5.

    Chapter  Google Scholar 

  115. Esteves-Oliveira M, Carvalho WL, de Eduardo C, Zezell DM. Influence of additional Er: YAG laser conditioning step on the microleakage of class V restorations. J Biomed Mater Res B Appl Biomater. 2008;87(2):538–43.

    Article  PubMed  Google Scholar 

  116. Koliniotou-Koumpia E, Kouros P, Zafiriadis L, Koumpia E, Dionysopoulos P, Karagiannis V. Bonding of adhesives to Er: YAG laser-treated dentin. Eur J Dent. 2012;6:16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gurgan S, Kiremitci A, Cakir FY, Yazici E, Gorucu J, Gutknecht N. Shear bond strength of composite bonded to erbium: yttrium-aluminium-garnet laser-prepared dentin. Laser Med Sci. 2009;24:117–22.

    Article  Google Scholar 

  118. Roebuck EM, Sauders WP, Whitters CJ. Influence of erbium:YAG laser energies on the microleakage of class V resin-based composite restorations. Am J Dent. 2000;13:280–4.

    PubMed  Google Scholar 

  119. Cardoso MV, Coutinho E, Ermis RB, Poitevin A, Van Landuyt K, De Munck J, Carvalho RC, Van Meerbeek B. Influence of dentin cavity surface finishing on micro-tensile bond strength of adhesives. Dent Mater. 2008;24:492–501.

    Article  PubMed  Google Scholar 

  120. Lopes RM, Trevelin LT, da Cunha SR, de Oliveira RF, de Andrade Salgado DM, de Freitas PM, de Paula EC, Aranha AC. Dental adhesion to erbium-lased tooth structure: a review of the literature. Photomed Laser Surg. 2015;33(8):393–403.

    Article  PubMed  Google Scholar 

  121. Shinoki T, Kato J, Otsuki M, Tatami J. Effect of cavity preparation with Er:YAG laser on marginal integrity of resin composite restorations. Asian Pac J Dent. 2011;11:19–25.

    Google Scholar 

  122. Ferreira LS, Apel C, Francci C, Simons A, Eduardo CP, Gutknecht N. Influence of etching time on bond strength in dentin irradiated with erbium lasers. Lasers Med Sci. 2010;25:849–54.

    Article  PubMed  Google Scholar 

  123. Maruyama H, Aoki A, Sasaki KM, Takasaki AA, Iwasaki K, Ichinose S, Oda S, Ishikawa I, Izumi Y. The effect of chemical and/or mechanical conditioning on the Er:YAG laser-treated root-cementum: analysis of surface morphology and periodontal ligament fibroblast attachment. Lasers Surg Med. 2008;40:211–22.

    Article  PubMed  Google Scholar 

  124. de Oliveira MT, Arrais CA, Aranha AC, de Paula EC, Miyake K, Rueggeberg FA, Giannini M. Micro-morphology of resin dentin interfaces using one-bottle etch & rinse and self-etching adhesive systems on laser-treated dentin surfaces: a confocal laser scanning microscope analysis. Lasers Surg Med. 2010;42:662–70.

    Article  PubMed  Google Scholar 

  125. Cardoso MV, Coutinho E, Ermis RB, Poitevin A, Van Landuyt K, De Munck J, Carvalho RC, Lambrechts P, Van Meerbeek B. Influence of Er,Cr:YSGG laser treatment on the microtensile bond strength of adhesives to dentin. J Adhes Dent. 2008;10:25–33.

    PubMed  Google Scholar 

  126. Adu-Arko AY, Sidhu SK, McCabe JF, Pashley DH. Effect of an Er,Cr:YSGG laser on water perfusion in human dentin. Eur J Oral Sci. 2010;118:483–8.

    Article  PubMed  Google Scholar 

  127. De Moor RJG, Delmé KIM. Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: part 2. Present-day adhesion to erbium-lased tooth structure in permanent teeth. J Adhes Dent. 2010;12:91–102.

    PubMed  Google Scholar 

  128. Van Meerbeek B, Yoshibar K. Clinical recipe for durable dental bonding: why and how? J Adhes Dent. 2014;16:94.

    PubMed  Google Scholar 

  129. Mithiborwala S, Chaugule V, Munshi AK, Patil V. A comparison of the resin tag penetration of the total etch and the self-etch dentin bonding systems in the primary teeth: an in vitro study. Contemp Clin Dent. 2012;3:158–63.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nor JE, Feigal RJ, Dennison JB, Edwards CA. Dentin bonding: SEM comparison of the resin-dentin interface in primary and permanent teeth. J Dent Res. 1996;75(6):1396–403.

    Article  PubMed  Google Scholar 

  131. Oztas N, Olmec A. Effects of one versus two-layer applications of a self-etching adhesive to dentin of primary teeth: a SEM study. J Contemp Dent Pract. 2005;6(1):18–25.

    Article  PubMed  Google Scholar 

  132. Nakornchai S, Harnirattisai C, Surarit R, Thiradilok S. Microtensile bond strength of a total-etching versus self-etching adhesive to caries-affected and intact dentin in primary teeth. JADA. 2005;136(4):477–8.

    PubMed  Google Scholar 

  133. Salim DA, Andia-Merlin RY, Arana V. Micromorphological analysis of the interaction between a one-bottle adhesive and mineralized primary dentin after superficial deproteination. Biomaterials. 2004;25(19):4521–7.

    Article  Google Scholar 

  134. Rontani RM, Ducatti CH, Garcia-Godoy F, De Goes MF. Effect of etching agent on dentinal adhesive interface in primary teeth. J Clin Pediatr Dent. 2000;24(3):205–9.

    PubMed  Google Scholar 

  135. Shafiei F, Jowkar Z, Fekrazad R, Khalafi-Nezhad A. Micromorphology analysis and bond strength of two adhesives to Er,Cr:YSGG laser-prepared vs. bur-prepared fluorosed enamel. Microsc Res Tech. 2014;77:779–84.

    Article  Google Scholar 

  136. Celik EU, Ergücü Z, Türkün LS, Türkün M. Shear bond strength of different adhesives to Er:YAG laser-prepared dentin. J Adhes Dent. 2006;8:319–25.

    Google Scholar 

  137. Moura SK, Pelizzaro A, Dal Bianco K, de Goes MF, Loguercio AD, Reis A, Grande RH. Does the acidity of self-etching primers affect bond strength and surface morphology of enamel? J Adhes Dent. 2006;8:75–83.

    Google Scholar 

  138. Koshiro K, Inoue S, Niimi K, Koase K, Sano H. Bond strength and SEM observations of CO2 laser irradiated dentin, bonded with simplified-step adhesives. Oper Dent. 2005;30:170–9.

    PubMed  Google Scholar 

  139. Oznurhan F, Olmez A. Morphological analysis of the resin-dentin interface in cavities prepared with Er,Cr:YSGG laser or bur in primary teeth. Photomed Laser Surg. 2013;31(8):386–91.

    Article  Google Scholar 

  140. Monteiro Ramos T, Ramos-Oliveira TM, de Freitas PM, Azambuja N Jr, Esteves-Oliveira M, Gutknecht N, de Paula Eduardo C. Effects of Er:YAG and Er,Cr:YSGG laser irradiation on the adhesion to eroded dentin. Lasers Med Sci. 2015;30:17–26.

    Article  Google Scholar 

  141. Olivi G, Margolis F, Genovese MD. Pediatric laser dentistry: a user’s guide. Chicago: Quintessence Pub; 2011.

    Google Scholar 

  142. Dua D, Dua A, Anagnostaki E, Poli R, Parker S. Effect of different types of adhesive systems on the bond strength and marginal integrity of composite restorations in cavities prepared with the erbium laser—a systematic review. Lasers Med Sci. 2022;37:19–45.

    Article  PubMed  Google Scholar 

  143. Sanhadji El Haddar Y, Cetik S, Bahrami B, Atash R. A comparative study of microleakage on dental surfaces bonded with three self-etch adhesive systems treated with the Er:YAG laser and bur. Biomed Res Int. 2016;2016:2509757.

    Article  PubMed Central  Google Scholar 

  144. da Silva MP, Barceleiro MO, Dias KR, Zanin F. Shear bond strength of two adhesive systems bonded to Er:YAG laser-prepared dentin. Gen Dent. 2011;59(3):e96–100.

    PubMed  Google Scholar 

  145. Burnett LH Jr, Conceicao EN, Pelinos JE, Eduardo CD. Comparative study of influence on tensile bond strength of a composite to dentin using Er:YAG laser, air-abrasion, or air turbine for preparation of cavities. J Clin Laser Med Surg. 2001;19:199–202.

    Article  PubMed  Google Scholar 

  146. Nishimoto Y, Otsuki M, Yamauti M, Eguchi T, Sato Y, Foxton RM, Tagami J. Effect of pulse duration of Er:YAG laser on dentin ablation. Dent Mater J. 2008;27:433–9.

    Article  PubMed  Google Scholar 

  147. Delme KI, Deman PJ, De Moor RJ. Microleakage of class V resin composite restorations after conventional and Er:YAG laser preparation. J Oral Rehabil. 2005;32(9):676–85.

    Article  PubMed  Google Scholar 

  148. Esteves-Oliveira M, Zezell DM, Apel C, Turbino ML, Aranha AC, Eduardo Cde P, Gutknecht N. Bond strength of self-etching primer to bur cut, Er, Cr:YSGG, and Er:YAG lased dental surfaces. Photomed Laser Surg. 2007;25:373–80.

    Article  PubMed  Google Scholar 

  149. Tachibana A, Marques MM, Soler JMP, Matos AB. Erbium, chromium:yttrium scandium gallium garnet laser for caries removal: influence on bonding of a self-etching adhesive system. Lasers Med Sci. 2008;23:435–41.

    Article  PubMed  Google Scholar 

  150. Kaptan A, Oznurhan F. Effects of Er:YAG and Er,Cr:YSGG laser irradiation and adhesive systems on microtensile bond strength of a self-adhering composite. Lasers Med Sci. 2023;38(1):41.

    Article  Google Scholar 

  151. Korkmaz Y, Ozel E, Attar N, Bicer CO, Firatli E. Microleakage and scanning electron microscopy evaluation of all-in-one self-etch adhesives and their respective nanocomposites prepared by erbium:yttrium-aluminum-garnet laser and bur. Lasers Med Sci. 2010;25(4):493–502.

    Article  PubMed  Google Scholar 

  152. Ozel E, Tuna EB, Firatli S, Firatli E. Comparison of total-etch, self-etch, and selective etching techniques on class V composite restorations prepared by Er:YAG laser and bur: a scanning electron microscopy study. Microsc Res Tech. 2016;79(10):998–1004.

    Article  PubMed  Google Scholar 

  153. Ramos RP, Chinelatti MA, Chimello DT, Borsatto MC, Pécora JD, Palma-Dibb RG. Bonding of self-etching and total-etch systems to Er:YAG laser-irradiated dentin. Tensile bond strength and scanning electron microscopy. Braz Dent J. 2004;15:I9–I20.

    Google Scholar 

  154. Tay FR, Sano H, Carvalho R, Pashley E, Pashley DH. Ultrastructural study of the influence of acidity of self-etching primers and smear layer thickness on bonding to intact dentin. J Adhes Dent. 2000;2:83–98.

    PubMed  Google Scholar 

  155. Aranha AC, Turbino ML, Powell GL, de Paula Eduardo C. Assessing microleakage of class V resin composite restorations after Er:YAG laser and bur preparation. Lasers Surg Med. 2005;37(2):172–7.

    Article  PubMed  Google Scholar 

  156. Yaman BC, Guray BE, Dorter C, Gomeç Y, Yazıcıoglu O, Erdilek D. Effect of the erbium:yttrium-aluminum-garnet laser or diamond bur cavity preparation on the marginal microleakage of class V cavities restored with different adhesives and composite systems. Lasers Med Sci. 2012;27(4):785–94.

    Article  PubMed  Google Scholar 

  157. Hashimoto M, Hirose N, Kitagawa H, Yamaguchi S, Imazato S. Improving the durability of resin-dentin bonds with an antibacterial monomer MDPB. Dent Mater J. 2018;37(4):620–7.

    Article  PubMed  Google Scholar 

  158. Phanombualert J, Chimtim P, Heebthamai T, Weera-Archakul W. Microleakage of self-etch adhesive system in class V cavities prepared by using Er:YAG laser with different pulse modes. Photomed Laser Surg. 2015;33(9):467–72.

    Article  PubMed  Google Scholar 

  159. Visuri SR, Walsh JT, Wigdor HA. Erbium laser ablation of dental hard tissue: effect of water cooling. Lasers Surg Med. 1996;18:294–300.

    Article  PubMed  Google Scholar 

  160. Obeidi A, McCracken MS, Liu PR, Litaker MS, Beck P, Rahemtulla F. Enhancement of bonding to enamel and dentin prepared by Er,Cr:YSGG laser. Lasers Surg Med. 2009;41(6):454–62.

    Article  PubMed  Google Scholar 

  161. Russel AD. Lethal effects of heat on bacterial physiology and structure. Sci Prog. 2003;86:115–37.

    Article  Google Scholar 

  162. Türkün M, Türkün LS, Celik EU, Ates M. Bactericidal effect of Er,Cr:YSGG laser on Streptococcus mutans. Dent Mater J. 2006;25:81–6.

    Article  PubMed  Google Scholar 

  163. Mawhara S, Mordon S. Monitoring of bactericidal action of laser by in vivo imaging of bioluminescent E. coli in a cutaneous wound infection. Lasers Med Sci. 2006;21:153–9.

    Article  Google Scholar 

  164. Moritz A. Oral laser application. Berlin: Quintessence; 2006. p. 258–77.

    Google Scholar 

  165. Hibst R, Stock K, Gall R, Keller U. Controlled tooth surface heating and sterilization by Er:YAG laser radiation. In: Altshuler GB, editor. Laser applications in medicine and dentistry, Proc SPIE, vol. 2922. SPIE; 1996. p. 119–61.

    Chapter  Google Scholar 

  166. Valenti C, Pagano S, Bozza S, Ciurnella E, Lomurno G, Capobianco B, Coniglio M, Cianetti S, Marinucci L. Use of the Er:YAG laser in conservative dentistry: evaluation of the microbial population in carious lesions. Materials (Basel). 2021;14(9):2387.

    Article  PubMed  Google Scholar 

  167. Rizoiu I, Kohanghadosh F, Kimmel AI, Eversole LR. Pulpal thermal responses to an erbium,chromium:YSGG pulsed laser hydrokinetic system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86(2):220–3.

    Article  PubMed  Google Scholar 

  168. Cavalcanti BN, Lage-Marques JL, Rode SM. Pulpal temperature increases with Er:YAG laser and high-speed handpieces. JPD. 2003;90(5):447–51.

    Google Scholar 

  169. Attrill DC. Thermal effects of the Er:YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray. JOD. 2004;32(1):35–40.

    Google Scholar 

  170. Amasyalı M, Sabuncuoğlu FA, Ersahan Ş, Oktay EA. Comparison of the effects of various methods used to remove adhesive from tooth surfaces on surface roughness and temperature changes in the pulp chamber. Turk J Orthod. 2019;32(3):132–8.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Poli R, Parker S. Achieving dental analgesia with the erbium chromium yttrium scandium gallium garnet laser (2780 nm): a protocol for painless conservative treatment. Photomed Laser Surg. 2015;33(7):364–71.

    Article  PubMed  Google Scholar 

  172. Ayer WA Jr, Domoto PK, Gale EN, Joy ED Jr, Melamed BG. Overcoming dental fear: strategies for its prevention and management. JADA. 1983;107:18–27.

    PubMed  Google Scholar 

  173. Bedi R, Sutcliffe P, Donnan PT, McConnachie J. The prevalence of dental anxiety in a group of 13- and 14-year-old Scottish children. Int J Paediatr Dent. 1992;2:17–24.

    Article  PubMed  Google Scholar 

  174. Caprioglio A, Mariani L, Tettamanti L. A pilot study about emotional experiences by using CFSS-DS in young patients. Eur J Paediatr Dent. 2009;10(3):121–4.

    Google Scholar 

  175. Genovese MD, Olivi G. Laser in paediatric dentistry: patient acceptance of hard and soft tissue therapy. Eur J Paediatr Dent. 2008;9(1):13–7.

    PubMed  Google Scholar 

  176. Leal SC, de Menezes M, Abreu D, Frencken JE. Dental anxiety and pain related to ART. J Appl Oral Sci. 2009;17(Sp. issue):84–8.

    Article  PubMed Central  Google Scholar 

  177. Houpt MI, Limb R, Livingstone RL. Clinical effects of nitrous oxide conscious sedation in children. Pediatr Dent. 2004;26(1):29–36.

    Google Scholar 

  178. Ryding HA, Murphy HJ. Use of nitrous oxide and oxygen for conscious sedation to manage pain and anxiety. J Can Dent Assoc. 2007;73(8):711.

    PubMed  Google Scholar 

  179. Zacny JP, Hurst RJ, Graham L, Janiszewski DJ. Preoperative dental anxiety and mood changes during nitrous oxide inhalation. JADA. 2002;133:82–8.

    PubMed  Google Scholar 

  180. Holroyd I. Conscious sedation in pediatric dentistry. A short review of the current UK guidelines and the technique of inhalation sedation with nitrous oxide. Pediatr Anesth. 2008;18:13–7.

    Article  Google Scholar 

  181. Chan A, Armati P, Moorthy AP. Pulsed Nd:YAG laser induces pulpal analgesia: a randomized clinical trial. J Dent Res. 2012;91(7 Suppl):79S–84S.

    Article  PubMed  Google Scholar 

  182. Matsumoto K, Nakamura Y, Mazeki K, Kimura Y. Clinical dental application of Er:YAG Laser for class V cavity preparation. J Clin Laser Med Surg. 1996;14(3):123–7.

    Article  PubMed  Google Scholar 

  183. Keller U, Hibst R. Effects of Er:YAG laser in caries treatment: a clinical pilot study. Lasers Surg Med. 1997;20(1):32–8.

    Article  PubMed  Google Scholar 

  184. Keller U, Hibst R, Geurtsen W, Schilke R, Heidemann D, Klaiber B, Raab WH. Erbium:YAG laser application in caries therapy. Evaluation of patient perception and acceptance. J Dent. 1998;26(8):649–56.

    Article  Google Scholar 

  185. Matsumoto K, Hossain M, Hossain MM, Kawano H, Kimura Y. Clinical assessment of Er,Cr:YSGG laser application for cavity preparation. J Clin Laser Med Surg. 2002;20(1):17–21.

    Article  PubMed  Google Scholar 

  186. Boj J, Galofre N, Espana A, Espasa E. Pain perception in pediatric patients undergoing laser treatments. J Oral Laser Appl. 2005;5(2):85–9.

    Google Scholar 

  187. Liu JF, Lai YL, Shu WY, Lee SY. Acceptance and efficiency of Er:YAG laser for cavity preparation in children. Photomed Laser Surg. 2006;24(4):489–93.

    Article  PubMed  Google Scholar 

  188. Matsumoto K, Wang X, Zhang C, Kinoshita J. Effect of a novel Er:YAG laser in caries removal and cavity preparation: a clinical observation. Photomed Laser Surg. 2007;25(1):8–13.

    Article  PubMed  Google Scholar 

  189. Jacobson B, Asgari A. Restorative dentistry for children using a hard tissue laser. Alpha Omegan. 2008;101(3):133–9.

    Article  Google Scholar 

  190. Olivi G, Genovese MD. Laser restorative dentistry in children and adolescents. Eur Arch Paediatr Dent. 2011;12(2):68–78.

    Article  Google Scholar 

  191. Fulop MA, Dhimmer S, Deluca JR, Johanson DD, Lenz RV, Patel KB, Douris PC, Enwemeka CS. A meta-analysis of the efficacy of laser phototherapy on pain relief. Clin J Pain. 2010;26(8):729–36.

    Article  Google Scholar 

  192. Whitters CJ, Hall A, Creanor SL, Moseley H, Gilmour WH, Strang R, Saunders WP, Orchardson R. A clinical study of pulsed Nd:YAG laser-induced pulpal analgesia. J Dent. 1995;23(3):145–50.

    Article  PubMed  Google Scholar 

  193. Hoke JA, Burkes EJ Jr, Gomnes ED, Wolbarsht ML. Erbium:YAG (2.94 μm) laser effects on dental tissues. J Laser Appl. 1990;2(3–4):61–5.

    Article  Google Scholar 

  194. Walsh LJ. Laser analgesia with pulsed infrared lasers: theory and practice. J Oral Laser Appl. 2008;8:7–16.

    Google Scholar 

  195. Cavalcanti BN, Lage-Marques JL, Rode SL. Pulpal temperature increases with Er:YAG laser and high-speed handpieces. J Prosthet Dent. 2003;90(5):447–51.

    Article  Google Scholar 

  196. Attrill DC, Davies RM, King TA, Dickinson MR, Blinkhorn AS. Thermal effects of the Er:YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray. J Dent. 2004;32(1):35–40.

    Article  Google Scholar 

  197. Doukas AG, FlotteTJ. Physical characteristics and biological effects of laser-induced stress waves. Ultrasound Med Biol. 1996;22:151–64.

    Article  PubMed  Google Scholar 

  198. Melzack R, Wall P. Pain mechanisms: a new theory. Science. 1965;150:171–9.

    Article  Google Scholar 

  199. Testani E, Le Pera D, Del Percio C, Miliucci R, Brancucci A, Pazzaglia C, De Armas L, Babiloni C, Rossini PM, Valeriani M. Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input. Eur J Neurosci. 2015;42:2407–14.

    Article  PubMed  Google Scholar 

  200. Orchardson R, Peacock JM, Whitters CJ. Effect of pulsed Nd:YAG laser radiation on action potential conduction in isolated mammalian spinal nerves. Lasers Surg Med. 1997;21:142–8.

    Article  Google Scholar 

  201. Orchardson R, Peacock JM, Whitters CJ. Effects of pulsed Nd:YAG laser radiation on action potential conduction in nerve fibres inside teeth in vitro. J Dent. 1998;26:421–6.

    Article  PubMed  Google Scholar 

  202. Orchardson R, Whitters CJ. Effect of HeNe and pulsed Nd:YAG laser irradiation on intradental nerve responses to mechanical stimulation of dentine. Lasers Surg Med. 2000;26:241–9.

    Article  PubMed  Google Scholar 

  203. Zeredo JL, Sasaki KM, Fujiyama R, Okada Y, Toda K. Effects of low power Er:YAG laser on the tooth pulp-evoked jaw-opening reflex. Lasers Surg Med. 2003;33:169–72.

    Article  PubMed  Google Scholar 

  204. Zeredo JL, Sasaki KM, Takeuchi Y, Toda K. Antinociceptive effect of Er:YAG laser irradiation in the orofacial formalin test. Brain Res. 2005;1032:149–53.

    Article  PubMed  Google Scholar 

  205. Zeredo JL, Sasaki KM, Yozgatian JH, Okada Y, Toda K. Comparison of jaw-opening reflexes evoked by Er:YAG laser versus scalpel incisions in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:31–5.

    Article  Google Scholar 

  206. Zeredo JL, Sasaki KM, Kumei Y, Toda K. Hindlimb withdrawal reflexes evoked by Er:YAG laser and scalpel incisions in rats. Photomed Laser Surg. 2006;24:595–600.

    Article  Google Scholar 

  207. Zeredo JL, Sasaki KM, Toda K. High-intensity laser for acupuncture-like stimulation. Lasers Med Sci. 2007;22:37–41.

    Article  PubMed  Google Scholar 

  208. Walsh LJ. Laser dentistry: membrane-based photoacoustic and biostimulatory applications in clinical practice. Australas Dent Pract. 2006;17:62–4.

    Google Scholar 

  209. Rice WJ, Young HS, Martin DW, Sachs JR, Stokes DL. Structure of Na+,K+-ATPase at 11-A resolution: comparison with Ca2+ATPase in E1 and E2 states. Biophys J. 2001;80:2187–97.

    Article  PubMed Central  Google Scholar 

  210. Pomfret AJ, Rice WJ, Stokes DL. Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases. J Struct Biol. 2007;157:106–16.

    Article  PubMed  Google Scholar 

  211. Snyder-Mackler L, Bork CE. Effect of helium-neon laser irradiation on peripheral sensory nerve latency. Phys Ther. 1988;68:223–5.

    Article  PubMed  Google Scholar 

  212. Maeda T. Morphological demonstration of low reactive-laser therapeutic pain attenuation effect of the gallium aluminium arsenide diode laser. Laser Ther. 1989;1:23–30.

    Article  Google Scholar 

  213. Wesselman U, Lin S, Rymer W. Effects of Q-switched Nd:YAG laser irradiation on neural impulse propagation: I. Spinal cord. Physiol Chem Phys Med NMR. 1991;23:67–80.

    Google Scholar 

  214. Wakabayashi H, Hamba M, Matsumoto K, Tachibana H. Effect of irradiation by semiconductor laser on responses evoked in trigeminal caudal neurons by tooth pulp stimulation. Lasers Surg Med. 1993;13:605–10.

    Article  Google Scholar 

  215. Kono T, Kasai S, Sakamoto T, Mito M. Cord dorm potentials suppressed by low power laser irradiation on a peripheral nerve in the cat. J Clin Laser Med Surg. 1993;11:115–8.

    Article  PubMed  Google Scholar 

  216. Sato T, Kawatani M, Takeshige C, Matsumoto I. Ga-Al-As laser irradiation neuronal activity associated with inflammation. Acup Electrother Res. 1994;19:141–51.

    Article  Google Scholar 

  217. Tsuchiya D, Kawatani M, Takeshige C. Laser irradiation abates neuronal responses to nociceptive stimulation of rat-paw skin. Brain Res Bull. 1994;34:369–74.

    Article  PubMed  Google Scholar 

  218. Chow RT, David MA, Armati PJ. 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. J Periph Nerv Syst. 2007;12(1):28–39.

    Article  Google Scholar 

  219. Chow RT, Armati PJ. Photobiomodulation: implications for anesthesia and pain relief. Photomed Laser Surg. 2016;34(12):599–609.

    Article  Google Scholar 

  220. Elbay ÜŞ, Tak Ö, Elbay M, Uğurluel C, Kaya C. Efficacy of low-level laser therapy in the management of postoperative pain in children after primary teeth extraction: a randomized clinical trial. Photomed Laser Surg. 2016;34(4):171–7.

    Article  PubMed  Google Scholar 

  221. Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA. Photoradiation in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg. 2006;24(2):158–68.

    Article  PubMed  Google Scholar 

  222. Angelieri F, Sousa MVDS, Kanashiro LK, Furquim Siqueira D, Ávila Maltagliati L. Effects of low intensity laser on pain sensitivity during orthodontic movement. Dent Press J Orthod. 2011;16(4):95–102.

    Article  Google Scholar 

  223. Deana NF, Zaror C, Sandoval P, Alves N. Effectiveness of low-level laser therapy in reducing orthodontic pain: a systematic review and meta-analysis. Pain Res Man. 2017;2017:1–18.

    Article  Google Scholar 

  224. Hamblin MR. The role of nitric oxide in low level light therapy. Proc SPIE. 2008;6846:1–14.

    Google Scholar 

  225. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5:58–62.

    PubMed Central  Google Scholar 

  226. Laasko E, Cramond T, Richardson C, Galligan J. Plasma ACTH and beta-endorphin levels in response to low-level laser therapy (LLLT) for myofascial trigger points. Laser Ther. 1994;6:33–42.

    Google Scholar 

  227. Hagiwara S, Iwasaka H, Hasegawa A, Noguchi T. Pre-irradiation of blood by gallium aluminium arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesth Analg. 2008;107:1058–63.

    Article  PubMed  Google Scholar 

  228. Laasko E, Cabot PJ. Nociceptive scores and endorphin-containing cells reduced by low-level laser therapy (LLLT) in inflamed paws of Wistar rat. Photomed Laser Surg. 2005;23:32–5.

    Article  Google Scholar 

  229. Bruehl S, Burns JW, Chung OY, Chont M. What do plasma beta-endorphin levels reveal about endogenous opioid analgesic function? Eur J Pain. 2012;16(3):370–80.

    Article  PubMed  Google Scholar 

  230. Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L. In vivo effects of low-level laser therapy on inducible nitric oxide synthase. Lasers Surg Med. 2009;41(3):227–331.

    Article  Google Scholar 

  231. Cidral-Filho FJ, Mazzardo-Martins L, Martins DF, Santos AR. Light-emitting diode therapy induces analgesia in a mouse model of postoperative pain through activation of peripheral opioid receptors and the L-arginine/nitric oxide pathway. Lasers Med Sci. 2014;29:695–702.

    Article  Google Scholar 

  232. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM. Low-level laser therapy indices dose-dependent reduction of TNFa levels in acute inflammation. Photomed Laser Surg. 2006;24:33–7.

    Article  Google Scholar 

  233. Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA, Oliveira JR. Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med. 2008;40:500–8.

    Article  PubMed  Google Scholar 

  234. Poli R, Parker S, Anagnostaki E, Mylona V, Lynch E, Grootveld M. Laser analgesia associated with restorative dental care: a systematic review of the rationale, techniques, and energy dose considerations. Dent J (Basel). 2020;8(4):128.

    Article  Google Scholar 

  235. Jacobsen T, Norlund A, Englund GS, Tranæus S. Application of laser technology for removal of caries: a systematic review of controlled clinical trials. Acta Odontol Scand. 2011;69:65–74.

    Article  Google Scholar 

  236. Tantbirojn D, Walinski CJ, Ross JA, Taylor CR, Versluis A. Composite removal by means of erbium, chromium:yttrium-scandium-gallium-garnet laser compared with rotary instruments. J Am Dent Assoc. 2019;150(12):1040–7.

    Article  PubMed  Google Scholar 

  237. Ferrari M, Vichi A, Mannocci F, Mason PN. Retrospective study of the clinical performance of fiber posts. Am J Dent. 2000;13(Spec No):9–13B.

    Google Scholar 

  238. Pegoretti A, Fambri L, Zappini G, Bianchetti M. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials. 2002;23(13):2667–82.

    Article  PubMed  Google Scholar 

  239. Kirmali O, Kustarci A, Kaplan A, Er K. Effects of dentin surface treatments including Er,Cr:YSGG laser irradiation with different intensities on the push-out bond strength of the glass fiber posts to root dentin. Acta Odontol Scand. 2015;73:380–6.

    Article  Google Scholar 

  240. Cekic-Nagas I, Sukuroglu E, Canay S. Does the surface treatment affect the bond strength of various fibre-post systems to resin-core materials? J Endod. 2011;39:171–9.

    Google Scholar 

  241. Valandro LF, Yoshiga S, de Melo RM, Galeano GA, Mallmann A, Marinho CP, Bottino MA. Microtensile bond strength between a quartz fiber post and a resin cement: effect of post surface conditioning. J Adhes Dent. 2006;8:105–11.

    PubMed  Google Scholar 

  242. de Souza Menezes M, Queiroz EC, Soares PV, Faria-e-Silva AL, Soares CJ, Martins LR. Fiber post etching with hydrogen peroxide: effect of concentration and application time. J Endod. 2011;37:398–402.

    Article  Google Scholar 

  243. Kurtulmus-Yilmaz S, Cengiz E, Ozan O, Ramoglu S, Yilmaz HG. The effect of Er,Cr:YSGG laser application on the micropush-out bond strength of fiber posts to resin core material. Photomed Laser Surg. 2014;32(10):574–81.

    Article  PubMed  Google Scholar 

  244. Elsaka SE. Influence of chemical surface treatments on adhesion of fiber posts to composite resin core materials. Dent Mater. 2013;29:550–8.

    Article  PubMed  Google Scholar 

  245. Staninec M, Darling CL, Goodis HE, Pierre D, Cox DP, Fan K, Larson M, Parisi R, Hsu D, Manesh SK, Ho C, Hosseini M, Fried D. Pulpal effects of enamel ablation with a microsecond pulsed μ=9.3-μm CO2 laser. Lasers Surg Med. 2009;41(4):256–63.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Assa S, Meyer S, Fried D. Ablation of dental hard tissues with a microsecond pulsed carbon dioxide laser operating at 9.3-μm with an integrated scanner. Proc SPIE Int Soc Opt Eng. 2008;6843:684308.

    PubMed  PubMed Central  Google Scholar 

  247. Fantarella D, Kotlow L. The 9.3-μm CO2 dental laser: technical development and early clinical experiences. J Lasers Dent. 2014;22(1):10–27.

    Google Scholar 

  248. Nguyen D, Chang K, Hedayatollahnajafi S, Staninec M, Chan K, Lee R, Fried D. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage. J Biomed Opt. 2011;16(7):071410-1–071410-419.

    Article  Google Scholar 

  249. Chung LC, Tom H, Chan KH, Simon JC, Fried D, Darling CL. Image-guided removal of occlusal caries lesions with a λ= 9.3-μm CO2 laser using near-IR transillumination. Proc SPIE Int Soc Opt Eng. 2015;9306:93060N.

    PubMed Central  Google Scholar 

  250. Fan K, Bell P, Fried D. Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at lambda=9.3 micro. J Biomed Opt. 2006;11(6):064008.

    Article  PubMed  Google Scholar 

  251. Maung LH, Lee C, Fried D. Near-IR imaging of thermal changes in enamel during laser ablation. Proc SPIE Int Soc Opt Eng. 2010;7546(1):754902.

    PubMed  PubMed Central  Google Scholar 

  252. Dela Rosa AA, Sarna AV, Le CQ, Jones RS, Fried D. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 μm, 2.79 μm, and 0.355 μm laser pulses. Lasers Surg Med. 2004;35:214–28.

    Article  Google Scholar 

  253. Badreddine AH, Couitt S, Donovan J, Cantor-Balan R, Kerbage C, Rechmann P. Demineralization inhibition by high-speed scanning of 9.3 μm CO2 single laser pulses over enamel. Lasers Surg Med. 2021;53:703–12.

    Article  PubMed  Google Scholar 

  254. Fried D, Featherstone JD, Le CQ, Fan K. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a λ=9.3μm TEA CO2 laser. Lasers Surg Med. 2006;38(9):837–45.

    Article  Google Scholar 

  255. Fan K, Fried D. A high repetition rate TEA CO2 laser operating at λ=9.3-mm for the rapid and conservative ablation and modification of dental hard tissue. Proc SPIE Int Soc Opt Eng. 2006;6137 https://doi.org/10.1117/12.661794.

  256. Can AM, Darling CL, Ho C, Fried D. Non-destructive assessment of inhibition of demineralization in dental enamel irradiated by a lambda=9.3-μm CO2 laser at ablative irradiation intensities with PS-OCT. Lasers Surg Med. 2008;40(5):342–9.

    Article  PubMed  Google Scholar 

  257. Chan KH, Hirasuna K, Fried D. Analysis of enamel surface damage after selective laser ablation of composite from tooth surfaces. Photon Lasers Med. 2014;3(1):37–45.

    Article  Google Scholar 

  258. Chan KH, Hirasuna K, Fried D. Rapid and selective removal of composite from tooth surfaces with a 9.3 μm CO2 laser using spectral feedback. Lasers Surg Med. 2011;43(8):824–32.

    Article  PubMed Central  Google Scholar 

  259. Rechmann P, Kubitz M, Chaffee BW, Rechmann BMT. Fissure caries inhibition with a CO2 9.3-μm short-pulsed laser-a randomized, single-blind, split-mouth controlled, 1-year clinical trial. Clin Oral Investig. 2021;25(4):2055–68.

    Article  PubMed  Google Scholar 

  260. Tom H, Chan KH, Darling CL, Fried D. Near-IR image-guided laser ablation of demineralization on tooth occlusal surfaces. Lasers Surg Med. 2016;48(1):52–61.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19:515–30.

    Article  PubMed  Google Scholar 

  262. Hallmo P, Naess O. Laryngeal papillomatosis with human papillomavirus DNA contracted by a laser surgeon. Eur Arch Otorhinolaryngol. 1991;248:425–7.

    Article  PubMed  Google Scholar 

  263. Freitag L, Chapman GA, Sielczak M, Ahmed A, Russin D. Laser smoke effect on the bronchial system. Lasers Surg Med. 1987;7:283–8.

    Article  PubMed  Google Scholar 

  264. McKinley IB Jr, Ludlow MO. Hazards of laser smoke during endodontic therapy. J Endod. 1994;20:558–9.

    Article  PubMed  Google Scholar 

  265. Badreddine A, Patter K, Kerbage C, Linden E. Decontamination of hard tissue using a scanning pulsed 9.3-μm CO laser. J Dent Sci. 2021;6(3):000304.

    Google Scholar 

  266. Karveli A, Tzoutzas IG, Raptis PI, Tzanakakis EC, Farmakis ETR, Helmis CG. Air quality in a dental clinic during Er:YAG laser usage for cavity preparation on human teeth-an ex-vivo study. Int J Environ Res Public Health. 2021;18(20):10920.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Poli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poli, R., Buoncristiani, F., Dua, D., Weintraub, J. (2023). Laser Use in Dental Caries Management. In: Coluzzi, D.J., Parker, S.P.A. (eds) Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-43338-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43338-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43337-5

  • Online ISBN: 978-3-031-43338-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics