Skip to main content

Finfish Microbiota and Direct-Fed Microbial Applications in Aquaculture

  • Chapter
  • First Online:
Direct-Fed Microbials and Prebiotics for Animals

Abstract

Globally, the production of food fish has continued to grow at a pace unrivaled by other animal livestock production sectors, with over half of the world’s seafood now coming from aquaculture. As aquaculture continues to grow, managing finfish health and nutrition in an economically and environmentally sustainable manner is imperative but has become more difficult because of multifaceted pressures facing the industry. Mounting research evidence on the interplay between finfish and the microbes that inhabit their nares, skin, and gills and especially their gut suggests that microbiota play important roles in the physiological processes of fish. Here, we review the current status of microbiota research in finfish and the application of direct-fed microbial (DFM) strategies to improve finfish production performance in aquaculture. While many DFMs, including probiotic and synbiotic supplements, have been tested in aquaculture with varied, though often positive, outcomes, current implementation remains largely relegated to the research setting. However, we expect that the continued and increasing pressure to eliminate antibiotic use and increase reliance on alternative diet formulations will make DFMs an integral part of sustainable large-scale aquaculture moving forward, though successful implementation will hinge on some key factors and considerations, as will be further addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass DA, Obirikorang KA, Campion BB, Edziyie RE, Skov PV (2018) Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquac Int 26(3):843–855. https://doi.org/10.1007/s10499-018-0255-1

    Article  CAS  Google Scholar 

  • Adel M, Lazado CC, Safari R, Yeganeh S, Zorriehzahra MJ (2017) Aqualase (R), a yeast-based in-feed probiotic, modulates intestinal microbiota, immunity and growth of rainbow trout Oncorhynchus mykiss. Aquacult Res 48(4):1815–1826. https://doi.org/10.1111/are.13019

    Article  CAS  Google Scholar 

  • Akhter N, Wu B, Memon AM, Mohsin M (2015) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol 45(2):733–741. https://doi.org/10.1016/j.fsi.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  • Amin M, Adams M, Bolch CJS, Burke CM (2017) In vitro screening of lactic acid bacteria isolated from gastrointestinal tract of Atlantic Salmon (Salmo salar) as probiont candidates. Aquac Int 25(1):485–498. https://doi.org/10.1007/s10499-016-0045-6

    Article  CAS  Google Scholar 

  • Araujo C, Munoz-Atienza E, Nahuelquin Y, Poeta P, Igrejas G, Hernandez PE, Herranz C, Cintas LM (2015a) Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Anaerobe 32:7–14. https://doi.org/10.1016/j.anaerobe.2014.11.001

    Article  PubMed  Google Scholar 

  • Araujo C, Munoz-Atienza E, Perez-Sanchez T, Poeta P, Igrejas G, Hernandez PE, Herranz C, Ruiz-Zarzuela I, Cintas LM (2015b) Nisin Z production by Lactococcus lactis subsp cremoris WA2-67 of aquatic origin as a defense mechanism to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against Lactococcus garvieae. Marine Biotechnol 17(6):820–830. https://doi.org/10.1007/s10126-015-9660-x

    Article  CAS  Google Scholar 

  • Araujo C, Munoz-Atienza E, Poeta P, Igrejas G, Hernandez PE, Herranz C, Cintas LM (2016) Characterization of Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss) feed and larvae: safety, DNA fingerprinting, and bacteriocinogenicity. Dis Aquat Organ 119(2):129–143. https://doi.org/10.3354/dao02992

    Article  CAS  PubMed  Google Scholar 

  • Asaduzzaman M, Sofia E, Shakil A, Hague NF, Khan MNA, Ikeda D, Kinoshita S, Abol-Munafi AB (2018) Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides. Aquac Rep 9:37–45. https://doi.org/10.1016/j.aqrep.2017.12.001

    Article  Google Scholar 

  • Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945

    Article  CAS  Google Scholar 

  • Austin B, Stuckey L, Robertson P, Effendi I, Griffith D (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis 18(1):93–96

    Article  Google Scholar 

  • Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH (2016) The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immunol 54:516–522

    Article  PubMed  Google Scholar 

  • Bahi A, Guardiola FA, Messina C, Mandhi A, Cerezuela R, Santulli A, Bakhrouf A, Esteban MA (2017) Effects of dietary administration of fenugreek seeds, alone or in combination with probiotics, on growth performance parameters, humoral immune response and gene expression of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 60:50–58. https://doi.org/10.1016/j.fsi.2016.11.039

    Article  CAS  PubMed  Google Scholar 

  • Bajagai YS, Klieve AV, Dart PJ, Bryden WL (2016) Probiotics in animal nutrition: production, impact and regulation. FAO, Rome

    Google Scholar 

  • Bakke I, Skjermo J, Vo TA, Vadstein O (2013) Live feed is not a major determinant of the microbiota associated with cod larvae (Gadus morhua). Environ Microbiol Rep 5(4):537–548

    Article  PubMed  Google Scholar 

  • Bakke I, Coward E, Andersen T, Vadstein O (2015) Selection in the host structures the microbiota associated with developing cod larvae (G adus morhua). Environ Microbiol 17(10):3914–3924

    Article  PubMed  Google Scholar 

  • Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3–4):173–186. https://doi.org/10.1016/j.vetmic.2006.01.009

    Article  PubMed  Google Scholar 

  • Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77. https://doi.org/10.1016/j.rvsc.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42(3):517–525

    Article  CAS  PubMed  Google Scholar 

  • Beck BR, Song JH, Park BS, Kim D, Kwak JH, Do HK, Kim AR, Kim WJ, Song SK (2016) Distinct immune tones are established by Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 in the gut of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 55:434–443. https://doi.org/10.1016/j.fsi.2016.06.022

    Article  CAS  PubMed  Google Scholar 

  • Blancheton J, Attramadal K, Michaud L, d’Orbcastel ER, Vadstein O (2013) Insight into bacterial population in aquaculture systems and its implication. Aquacult Eng 53:30–39

    Article  Google Scholar 

  • Bledsoe JW, Peterson BC, Swanson KS, Small BC (2016) Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PloS One 11(11):e0166379

    Article  PubMed  PubMed Central  Google Scholar 

  • Bledsoe JW, Waldbieser GC, Swanson KS, Peterson BC, Small BC (2018) Comparison of channel catfish and blue catfish gut microbiota assemblages shows minimal effects of host genetics on microbial structure and inferred function. Front Microbiol 9:1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutin S, Bernatchez L, Audet C, Derome N (2012) Antagonistic effect of indigenous skin bacteria of brook charr (Salvelinus fontinalis) against Flavobacterium columnare and F. psychrophilum. Vet Microbiol 155(2–4):355–361. https://doi.org/10.1016/j.vetmic.2011.09.002

    Article  PubMed  Google Scholar 

  • Boutin S, Sauvage C, Bernatchez L, Audet C, Derome N (2014) Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? PloS One 9(7):e102649

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden TJ, Thompson KD, Morgan AL, Gratacap RM, Nikoskelainen S (2007) Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol 22(6):695–706

    Article  PubMed  Google Scholar 

  • Brown LL, Cox WT, Levine RP (1997) Evidence that the causal agent of bacterial cold-water disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Dis Aquat Organ 29(3):213–218

    Article  Google Scholar 

  • Brown RM, Wiens GD, Salinas I (2019) Analysis of the gut and gill microbiome of resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 86:497–506

    Article  CAS  PubMed  Google Scholar 

  • Bruno DW, Munro AL (1986) Observations on Renibacterium salmoninarum and the salmonid egg. Dis Aquat Organ 1(2):83–87

    Google Scholar 

  • Burbank DR, Shah DH, LaPatra SE, Fornshell G, Cain KD (2011) Enhanced resistance to coldwater disease following feeding of probiotic bacterial strains to rainbow trout (Oncorhynchus mykiss). Aquaculture 321(3–4):185–190. https://doi.org/10.1016/j.aquaculture.2011.09.004

    Article  Google Scholar 

  • Burgos FA, Ray CL, Arias CR (2018) Bacterial diversity and community structure of the intestinal microbiome of Channel Catfish (Ictalurus punctatus) during ontogenesis. Syst Appl Microbiol 41(5):494–505

    Article  PubMed  Google Scholar 

  • Cabello FC, Godfrey HP, Buschmann AH, Dolz HJ (2016) Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis 16(7):E127–E133. https://doi.org/10.1016/s1473-3099(16)00100-6

    Article  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N (2011) Moving pictures of the human microbiome. Genome Biol 12(5):R50

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone D, Faggio C (2016) Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol 54:172–178. https://doi.org/10.1016/j.fsi.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  • Carnevali O, Maradonna F, Gioacchini G (2017) Integrated control of fish metabolism, wellbeing and reproduction: the role of probiotic. Aquaculture 472:144–155. https://doi.org/10.1016/j.aquaculture.2016.03.037

    Article  CAS  Google Scholar 

  • Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77(2):99–113

    Article  Google Scholar 

  • Chen Y, Li J, Xiao P, Zhu W, Mo Z (2016) The ability of marine Bacillus spp. isolated from fish gastrointestinal tract and culture pond sediment to inhibit growth of aquatic pathogenic bacteria. Iran J Fish Sci 15(2):701–714

    Google Scholar 

  • Chen SW, Liu CH, Hu SY (2019) Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 84:695–703. https://doi.org/10.1016/j.fsi.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  • Cordero H, Guardiola FA, Tapia-Paniagua ST, Cuesta A, Meseguer J, Balebona MC, Morinigo MA, Esteban MA (2015) Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 45(2):608–618. https://doi.org/10.1016/j.fsi.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Xiao M, Liu M, Wang Z, Liu F, Guo L, Meng H, Zhang H, Yang J, Deng D, Huang S, Ma Y, Liu C (2017) Coupling metagenomics with cultivation to select host-specific probiotic micro-organisms for subtropical aquaculture. J Appl Microbiol 123(5):1274–1285. https://doi.org/10.1111/jam.13555

    Article  CAS  PubMed  Google Scholar 

  • Dawood MAO, Koshio S (2016) Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture 454:243–251. https://doi.org/10.1016/j.aquaculture.2015.12.033

    Article  CAS  Google Scholar 

  • Dawood MA, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossou S, Moss AS (2016) Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol 49:275–285. https://doi.org/10.1016/j.fsi.2015.12.047

  • Dawood MAO, Koshio S, Esteban MA (2018) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev Aquac 10(4):950–974. https://doi.org/10.1111/raq.12209

    Article  Google Scholar 

  • de Bruijn I, Liu YY, Wiegertjes GF, Raaijmakers JM (2018) Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol 94(1):12. https://doi.org/10.1093/femsec/fix161

    Article  CAS  Google Scholar 

  • De Schryver P, Vadstein O (2014) Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J 8(12):2360

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehler CE, Secombes CJ, Martin SA (2017) Seawater transfer alters the intestinal microbiota profiles of Atlantic salmon (Salmo salar L.). Sci Rep 7(1):13877

    Article  PubMed  PubMed Central  Google Scholar 

  • Derome N, Gauthier J, Boutin S, Llewellyn M (2016) Bacterial opportunistic pathogens of fish. In: Rasputin effect: when commensals and symbionts become parasitic, vol 3. Springer Int Publishing Ag, Cham. https://doi.org/10.1007/978-3-319-28170-4_4

    Chapter  Google Scholar 

  • Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y (2010) Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 8(4):1153–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desriac F, Le Chevalier P, Brillet B, Leguerinel I, Thuillier B, Paillard C, Fleury Y (2014) Exploring the hologenome concept in marine bivalvia: haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol Lett 350(1):107–116. https://doi.org/10.1111/1574-6968.12308

    Article  CAS  PubMed  Google Scholar 

  • Dias JAR, Abe HA, Sousa NC et al. (2019) Enterococcus faecium as potential probiotic for ornamental neotropical cichlid fish, Pterophyllum scalare (Schultze, 1823). Aquacult Int 27:463–474. https://doi.org/10.1007/s10499-019-00339-9

  • Dong Y, Yang Y, Liu J, Awan F, Lu C, Liu Y (2018) Inhibition of Aeromonas hydrophila-induced intestinal inflammation and mucosal barrier function damage in crucian carp by oral administration of Lactococcus lactis. Fish Shellfish Immunol 83:359–367

    Article  CAS  PubMed  Google Scholar 

  • Egerton S, Culloty S, Whooley J, Stanton C, Ross RP (2018) The gut microbiota of marine fish. Front Microbiol 9:17. https://doi.org/10.3389/fmicb.2018.00873

    Article  Google Scholar 

  • Endersen L, O’Mahony J, Hill C, Ross RP, McAuliffe O, Coffey A (2014) Phage therapy in the food industry. Annu Rev Food Sci Technol 5(1):327–349. https://doi.org/10.1146/annurev-food-030713-092415

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture, 2018, vol 3. FAO, Rome

    Google Scholar 

  • Farzanfar A (2006) The use of probiotics in shrimp aquaculture. FEMS Immunol Med Microbiol 48(2):149–158. https://doi.org/10.1111/j.1574-695X.2006.00116.x

    Article  CAS  PubMed  Google Scholar 

  • Fjellheim AJ, Playfoot KJ, Skjermo J, Vadstein O (2012) Inter-individual variation in the dominant intestinal microbiota of reared Atlantic cod (Gadus morhua L.) larvae. Aquacult Res 43(10):1499–1508

    Article  Google Scholar 

  • Forberg T, Arukwe A, Vadstein O (2011) A protocol and cultivation system for gnotobiotic Atlantic cod larvae (Gadus morhua L.) as a tool to study host microbe interactions. Aquaculture 315(3–4):222–227

    Article  Google Scholar 

  • Fuchs VI, Schmidt J, Slater MJ, Zentek J, Buck BH, Steinhagen D (2015) The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture 437:243–251. https://doi.org/10.1016/j.aquaculture.2014.12.007

    Article  CAS  Google Scholar 

  • Fuglem B, Jirillo E, Bjerkås I, Kiyono H, Nochi T, Yuki Y, Raida M, Fischer U, Koppang EO (2010) Antigen-sampling cells in the salmonid intestinal epithelium. Dev Comp Immunol 34(7):768–774

    Article  CAS  PubMed  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66(5):365–378

    Article  CAS  PubMed  Google Scholar 

  • Gajardo K, Rodiles A, Kortner TM, Krogdahl Å, Bakke AM, Merrifield DL, Sørum H (2016) A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Sci Rep 6:30893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajardo K, Jaramillo-Torres A, Kortner TM, Merrifield DL, Tinsley J, Bakke AM, Krogdahl A (2017) Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic Salmon (Salmo salar). Appl Environ Microbiol 83(5). https://doi.org/10.1128/aem.02615-16

  • Gatesoupe F-J (1994) Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic Vibrio. Aquat Living Resour 7(4):277–282

    Article  Google Scholar 

  • Gatesoupe F (1999) The use of probiotics in aquaculture. Aquaculture 180(1–2):147–165

    Article  Google Scholar 

  • Gatesoupe F-J (2008) Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14(1–3):107–114

    CAS  PubMed  Google Scholar 

  • Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38(6):551–579

    Article  CAS  Google Scholar 

  • Giatsis C, Sipkema D, Smidt H, Verreth J, Verdegem M (2014) The colonization dynamics of the gut microbiota in tilapia larvae. PloS One 9(7):e103641

    Article  PubMed  PubMed Central  Google Scholar 

  • Giatsis C, Sipkema D, Smidt H, Heilig H, Benvenuti G, Verreth J, Verdegem M (2015) The impact of rearing environment on the development of gut microbiota in tilapia larvae. Sci Rep 5:18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giatsis C, Sipkema D, Ramiro-Garcia J, Bacanu GM, Abernathy J, Verreth J, Smidt H, Verdegem M (2016) Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci Rep 6:33965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gioacchini G, Giorgini E, Vaccari L, Carnevali O (2014) Can probiotics affect reproductive processes of aquatic animals? In: Aquaculture nutrition: gut health, probiotics and prebiotics. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  • Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191(1–3):259–270

    Article  Google Scholar 

  • Gon Choudhury T, Tharabenahalli Nagaraju V, Gita S, Paria A, Parhi J (2017) Advances in bacteriophage research for bacterial disease control in aquaculture. Rev Fish Sci Aquac 25(2):113–125

    Article  Google Scholar 

  • Gonzalez-Palacios C, Fregeneda-Grandes JM, Aller-Gancedo JM (2019) Biocontrol of saprolegniosis in rainbow trout (Oncorhynchus mykiss Walbaum) using two bacterial isolates (LE89 and LE141) of Pseudomonas fluorescens. J Fish Dis 42(2):269–275. https://doi.org/10.1111/jfd.12928

    Article  CAS  PubMed  Google Scholar 

  • Grandiosa R, Mérien F, Young T, Van Nguyen T, Gutierrez N, Kitundu E, Alfaro AC (2018) Multi-strain probiotics enhance immune responsiveness and alters metabolic profiles in the New Zealand black-footed abalone (Haliotis iris). Fish Shellfish Immunol 82:330–338

    Article  CAS  PubMed  Google Scholar 

  • Guardiola FA, Porcino C, Cerezuela R, Cuesta A, Faggio C, Esteban MA (2016) Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol 52:298–308. https://doi.org/10.1016/j.fsi.2016.03.152

    Article  CAS  PubMed  Google Scholar 

  • Guivier E, Martin J-F, Pech N, Ungaro A, Chappaz R, Gilles A (2018) Microbiota diversity within and between the tissues of two wild interbreeding species. Microb Ecol 75(3):799–810

    Article  PubMed  Google Scholar 

  • Guo X, Chen DD, Peng KS, Cui ZW, Zhang XJ, Li S, Zhang YA (2016) Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish Shellfish Immunol 52:74–84. https://doi.org/10.1016/j.fsi.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  • Hai N (2015a) The use of probiotics in aquaculture. J Appl Microbiol 119(4):917–935

    Article  CAS  PubMed  Google Scholar 

  • Hai NV (2015b) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45(2):592–597. https://doi.org/10.1016/j.fsi.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Olafsen JA (1989) Bacterial colonization of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossus) eggs in marine aquaculture. Appl Environ Microbiol 55(6):1435–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MR (2017) Feeding global aquaculture growth. FAO Aquac Newsl 56:II

    Google Scholar 

  • Haugarvoll E, Bjerkås I, Nowak BF, Hordvik I, Koppang EO (2008) Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J Anat 213(2):202–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Haygood AM, Jha R (2018) Strategies to modulate the intestinal microbiota of Tilapia (Oreochromis sp.) in aquaculture: a review. Rev Aquac 10(2):320–333. https://doi.org/10.1111/raq.12162

    Article  Google Scholar 

  • He S, Zhang Y, Xu L, Yang Y, Marubashi T, Zhou Z, Yao B (2013) Effects of dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus♀× Oreochromis aureus♂. Aquaculture 412:125–130

    Article  Google Scholar 

  • Hernandez L, Barrera T, Mejia J, Mejia G, Del Carmen M, Dosta M, De Lara Andrade R, Sotres J (2010) Effects of the commercial probiotic Lactobacillus casei on the growth, protein content of skin mucus and stress resistance of juveniles of the Porthole livebearer Poecilopsis gracilis (Poecilidae). Aquacult Nutr 16(4):407–411

    Article  CAS  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506

    Article  PubMed  Google Scholar 

  • Hill JH, Franzosa EA, Huttenhower C, Guillemin K (2016) A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. Elife 5:e20145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hindu SV, Chandrasekaran N, Mukherjee A, Thomas J (2019) A review on the impact of seaweed polysaccharide on the growth of probiotic bacteria and its application in aquaculture. Aquac Int 27(1):227–238. https://doi.org/10.1007/s10499-018-0318-3

    Article  Google Scholar 

  • Hoseinifar SH, Khalili M, Rufchaei R, Raeisi M, Attar M, Cordero H, Esteban MA (2015a) Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry. Fish Shellfish Immunol 47(2):706–711. https://doi.org/10.1016/j.fsi.2015.09.046

    Article  CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Sharifian M, Esteban MÁ (2015b) Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol 45(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Dadar M, Ringo E (2017a) Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario. Aquacult Res 48(8):3987–4000. https://doi.org/10.1111/are.13368

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Merrifield DL, Ringo E (2017b) In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquacult Nutr 23(1):111–118. https://doi.org/10.1111/anu.12373

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Sun YZ, Wang AR, Zhou ZG (2018) Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9:18. https://doi.org/10.3389/fmicb.2018.02429

    Article  Google Scholar 

  • Hossain MI, Sadekuzzaman M, Ha SD (2017) Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review. Food Res Int 100:63–73. https://doi.org/10.1016/j.foodres.2017.07.077

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Nitin N (2019) Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture 502:18–25

    Article  CAS  Google Scholar 

  • Huddy RJ, Coyne VE (2014) Detection and localisation of the abalone probiotic Vibrio midae SY9 and its extracellular protease, VmproA, within the digestive tract of the South African abalone, Haliotis midae. PloS One 9(1):9. https://doi.org/10.1371/journal.pone.0086623

    Article  CAS  Google Scholar 

  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207

    Article  CAS  Google Scholar 

  • Huyben D, Nyman A, Vidaković A, Passoth V, Moccia R, Kiessling A, Dicksved J, Lundh T (2017) Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture 473:528–537

    Article  CAS  Google Scholar 

  • Huyben D, Sun L, Moccia R, Kiessling A, Dicksved J, Lundh T (2018) Dietary live yeast and increased water temperature influence the gut microbiota of rainbow trout. J Appl Microbiol 124(6):1377–1392

    Article  CAS  PubMed  Google Scholar 

  • Huynh TG, Shiu YL, Nguyen TP, Truong QP, Chen JC, Liu CH (2017) Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol 64:367–382. https://doi.org/10.1016/j.fsi.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  • Ingerslev H-C, Strube ML, von Gersdorff Jørgensen L, Dalsgaard I, Boye M, Madsen L (2014a) Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 40(2):624–633

    Article  CAS  PubMed  Google Scholar 

  • Ingerslev H-C, von Gersdorff Jørgensen L, Strube ML, Larsen N, Dalsgaard I, Boye M, Madsen L (2014b) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 424:24–34

    Article  Google Scholar 

  • Irianto A, Austin B (2002a) Probiotics in aquaculture. J Fish Dis 25(11):633–642

    Article  Google Scholar 

  • Irianto A, Austin B (2002b) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342

    Article  CAS  Google Scholar 

  • Jahangiri L, Esteban M (2018) Administration of probiotics in the water in finfish aquaculture systems: a review. Fishes 3(3):33

    Article  Google Scholar 

  • Jiang H-F, Liu X-L, Chang Y-Q, Liu M-T, Wang G-X (2013) Effects of dietary supplementation of probiotic Shewanella colwelliana WA64, Shewanella olleyana WA65 on the innate immunity and disease resistance of abalone, Haliotis discus hannai Ino. Fish Shellfish Immunol 35(1):86–91

    Article  PubMed  Google Scholar 

  • Jobling M (2016) Fish nutrition research: past, present and future. Aquac Int 24(3):767–786. https://doi.org/10.1007/s10499-014-9875-2

    Article  CAS  Google Scholar 

  • Kandasamy S, Vlasova AN, Fischer DD, Chattha KS, Shao L, Kumar A, Langel SN, Rauf A, Huang H-C, Rajashekara G, Saif LJ (2017) Unraveling the differences between gram-positive and gram-negative probiotics in modulating protective immunity to enteric infections. Front Immunol 8(334). https://doi.org/10.3389/fimmu.2017.00334

  • Kelly C, Salinas I (2017) Under pressure: interactions between commensal microbiota and the teleost immune system. Front Immunol 8:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly C, Takizawa F, Sunyer JO, Salinas I (2017) Rainbow trout (Oncorhynchus mykiss) secretory component binds to commensal bacteria and pathogens. Sci Rep 7:41753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274(1):1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  • Kim D, Kim Y-G, Seo S-U, Kim D-J, Kamada N, Prescott D, Chamaillard M, Philpott DJ, Rosenstiel P, Inohara N (2016) Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat Med 22(5):524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kononova SV, Zinchenko DV, Muranova TA, Belova NA, Miroshnikov AI (2019) Intestinal microbiota of salmonids and its changes upon introduction of soy proteins to fish feed. Aquac Int 27(2):475–496. https://doi.org/10.1007/s10499-019-00341-1

    Article  CAS  Google Scholar 

  • Krogdahl Å, Bakke AM (2015) Antinutrients. In: Dietary nutrients, additives, and fish health. Wiley-Blackwell, Hoboken, pp 211–235

    Chapter  Google Scholar 

  • Kumar V, Roy S, Meena DK, Sarkar UK (2016) Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Rev Fish Sci Aquac 24(4):342–368. https://doi.org/10.1080/23308249.2016.1193841

    Article  Google Scholar 

  • Laanto E, Bamford JK, Laakso J, Sundberg L-R (2012) Phage-driven loss of virulence in a fish pathogenic bacterium. PloS One 7(12):e53157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaPatra SE, Fehringer TR, Cain KD (2014) A probiotic Enterobacter sp. provides significant protection against Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) after injection by two different routes. Aquaculture 433:361–366

    Article  Google Scholar 

  • Layeghifard M, Hwang DM, Guttman DS (2017) Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 25(3):217–228. https://doi.org/10.1016/j.tim.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  • Lazado CC, Caipang CMA, Estante EG (2015) Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45(1):2–12. https://doi.org/10.1016/j.fsi.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330(6012):1768–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JM, Jang WJ, Hasan MT, Lee B-J, Kim KW, Lim SG, Han H-S, Kong I-S (2019) Characterization of a Bacillus sp. isolated from fermented food and its synbiotic effect with barley β-glucan as a biocontrol agent in the aquaculture industry. Appl Microbiol Biotechnol 103(3):1429–1439. https://doi.org/10.1007/s00253-018-9480-9

    Article  CAS  PubMed  Google Scholar 

  • Legrand TP, Catalano SR, Wos-Oxley ML, Stephens F, Landos M, Bansemer MS, Stone DA, Qin JG, Oxley A (2018) The inner workings of the outer surface: skin and gill microbiota as indicators of changing gut health in yellowtail kingfish. Front Microbiol 8:2664

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yu Y, Feng W, Yan Q, Gong Y (2012) Host species as a strong determinant of the intestinal microbiota of fish larvae. J Microbiol 50(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ni J, Wang C, Li X, Wu S, Zhang T, Yu Y, Yan Q (2014) Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol 117(6):1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Limborg MT, Alberdi A, Kodama M, Roggenbuck M, Kristiansen K, Gilbert MTP (2018) Applied hologenomics: feasibility and potential in aquaculture. Trends Biotechnol 36(3):252–264

    Article  CAS  PubMed  Google Scholar 

  • Lin YS, Saputra F, Chen YC, Hu SY (2019) Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immunol 86:410–419. https://doi.org/10.1016/j.fsi.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Gong Y-X, Zhu B, Liu G-L, Wang G-X, Ling F (2015) Effect of a new recombinant Aeromonas hydrophila vaccine on the grass carp intestinal microbiota and correlations with immunological responses. Fish Shellfish Immunol 45(1):175–183

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li W, Tan H, Liu J, Yang C, Ren L, Liu Q, Wang S, Hu F, Xiao J (2018) Genetic effects on the gut microbiota assemblages of hybrid fish from parents with different feeding habits. Front Microbiol 9:2972

    Article  PubMed  PubMed Central  Google Scholar 

  • Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol 5:17. https://doi.org/10.3389/fmicb.2014.00207

    Article  Google Scholar 

  • Lokesh J, Kiron V (2016) Transition from freshwater to seawater reshapes the skin-associated microbiota of Atlantic salmon. Sci Rep 6:19707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Løvmo Martinsen L, Salma W, Myklebust R, Mayhew TM, Ringø E (2011) Carnobacterium maltaromaticum vs. Vibrio (Listonella) anguillarum in the midgut of Atlantic cod (Gadus morhua L.): an ex vivo study. Aquacult Res 42(12):1830–1839

    Article  Google Scholar 

  • Lowrey L, Woodhams DC, Tacchi L, Salinas I (2015) Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol 81(19):6915–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104(27):11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons PP, Turnbull JF, Dawson KA, Crumlish M (2017) Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings. J Appl Microbiol 122(2):347–363

    Article  CAS  PubMed  Google Scholar 

  • Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20(2):137–151

    Article  PubMed  Google Scholar 

  • Magnadottir B (2010) Immunological control of fish diseases. Marine Biotechnol 12(4):361–379. https://doi.org/10.1007/s10126-010-9279-x

    Article  CAS  Google Scholar 

  • Marden CL, McDonald R, Schreier HJ, Watts JE (2017) Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiol 3(4):749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis L (1953) The effect of fasting on the bacterial flora of the intestine of fish. J Fish Res Board Can 10(2):62–63

    Article  Google Scholar 

  • Mehrim AI, Khalil FF, Hassan ME (2015) Hydroyeast Aquaculture® as a reproductive enhancer agent for the adult Nile tilapia (Oreochromis niloticus Linnaeus, 1758). Fish Physiol Biochem 41(2):371–381. https://doi.org/10.1007/s10695-014-9989-5

    Article  CAS  PubMed  Google Scholar 

  • Melancon E, Canny SGDLT, Sichel S, Kelly M, Wiles T, Rawls J, Eisen J, Guillemin K (2017) Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol 138:61–100. Elsevier

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrifield DL, Carnevali O (2014) Probiotic modulation of the gut microbiota of fish. In: Aquaculture nutrition: gut health, probiotics and prebiotics. John Wiley & Sons Ltd., Chichester

    Chapter  Google Scholar 

  • Merrifield DL, Rodiles A (2015) The fish microbiome and its interactions with mucosal tissues. In: Mucosal health in aquaculture. Elsevier, Amsterdam, pp 273–295

    Chapter  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bogwald J, Castex M, Ringo E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302(1–2):1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007

    Article  Google Scholar 

  • Merrifield DL, Balcázar JL, Daniels C, Zhou Z, Carnevali O, Sun YZ, Hoseinifar SH, Ringø E (2014) Indigenous lactic acid bacteria in fish and crustaceans. In: Aquaculture nutrition: gut health, probiotics and prebiotics, vol 1. John Wiley & Sons Ltd., Chichester, p 416

    Chapter  Google Scholar 

  • Modanloo M, Soltanian S, Akhlaghi M, Hoseinifar SH (2017) The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol 70:391–397

    Article  CAS  PubMed  Google Scholar 

  • Mohammed HH, Arias CR (2015) Potassium permanganate elicits a shift of the external fish microbiome and increases host susceptibility to columnaris disease. Vet Res 46(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta K (2013) Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr 97(3):405–430

    Article  CAS  Google Scholar 

  • Nandi A, Banerjee G, Dan SK, Ghosh K, Ray AK (2018) Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by Pathogenic Strain of Aeromonas hydrophila MTCC 1739. Probiotics Antimicrob Proteins 10(2):391–398. https://doi.org/10.1007/s12602-017-9310-x

  • Navarrete P, Tovar-Ramírez D (2014) Use of yeasts as probiotics in fish aquaculture. In: Sustainable aquaculture techniques. IntechOpen, London

    Google Scholar 

  • Nawaz A, Javaid AB, Irshad S, Hoseinifar SH, Xiong HG (2018) The functionality of prebiotics as immunostimulant: evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol 76:272–278. https://doi.org/10.1016/j.fsi.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010a) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010b) Role of gastrointestinal microbiota in fish. Aquacult Res 41(11):1553–1573

    Article  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106(36):15103–15110. https://doi.org/10.1073/pnas.0905235106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman C, Hatje E, Zarkasi KZ, Smullen R, Bowman JP, Katouli M (2016) The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic Salmon (Salmo salar L.). Aquacult Res 47(2):660–672

    Article  CAS  Google Scholar 

  • Newaj-Fyzul A, Austin B (2015) Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. J Fish Dis 38(11):937–955. https://doi.org/10.1111/jfd.12313

    Article  CAS  PubMed  Google Scholar 

  • Newaj-Fyzul A, Al-Harbi A, Austin B (2014) Developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1–11

    Article  Google Scholar 

  • Ni J, Yan Q, Yu Y, Zhang T (2014) Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol 87(3):704–714

    Article  CAS  PubMed  Google Scholar 

  • Niederwerder MC (2018) Fecal microbiota transplantation as a tool to treat and reduce susceptibility to disease in animals. Vet Immunol Immunopathol 206:65–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Obst MM (1919) A bacteriologic study of sardines. J Infect Dis 24:158–169

    Article  Google Scholar 

  • Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, Hakimpour P, Gill KP, Nakaya HI, Yarovinsky F (2014) TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41(3):478–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oidtmann B, Thrush M, Denham K, Peeler E (2011) International and national biosecurity strategies in aquatic animal health. Aquaculture 320(1–2):22–33

    Article  Google Scholar 

  • Parra D, Reyes-Lopez FE, Tort L (2015) Mucosal immunity and B cells in teleosts: effect of vaccination and stress. Front Immunol 6:354

    Article  PubMed  PubMed Central  Google Scholar 

  • Parshukov A, Kashinskaya E, Simonov E, Hlunov O, Izvekova G, Andree K, Solovyev M (2019) Variations of the intestinal gut microbiota of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), depending on the infection status of the fish. J Appl Microbiol 127(2):379–398

    Article  CAS  PubMed  Google Scholar 

  • Pérez T, Balcázar J, Ruiz-Zarzuela I, Halaihel N, Vendrell D, De Blas I, Múzquiz J (2010) Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol 3(4):355

    Article  PubMed  Google Scholar 

  • Pérez-Sánchez T, Mora-Sánchez B, Balcázar JL (2018) Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trends Microbiol 26(11):896–903

    Article  PubMed  Google Scholar 

  • Piazzon MC, Calduch-Giner JA, Fouz B, Estensoro I, Simó-Mirabet P, Puyalto M, Karalazos V, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J (2017) Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome 5(1):164

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieters N, Brunt J, Austin B, Lyndon AR (2008) Efficacy of in-feed probiotics against Aeromonas bestiarum and Ichthyophthirius multifiliis skin infections in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 105(3):723–732. https://doi.org/10.1111/j.1365-2672.2008.03817.x

    Article  CAS  PubMed  Google Scholar 

  • Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo H-S, Villaruz AE, Glose KA, Fisher EL, Hunt RL, Li B (2018) Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562(7728):532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado S, Romalde JL, Barja JL (2010) Review of probiotics for use in bivalve hatcheries. Vet Microbiol 145(3–4):187–197

    Article  PubMed  Google Scholar 

  • Quiroz-Guzmán E, Peña-Rodriguez A, Vázquez-Juárez R, Barajas-Sandoval DR, Balcázar JL, Martínez-Díaz SF (2018) Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture 492:273–279

    Article  Google Scholar 

  • Ran C, Hu J, Liu W, Liu Z, He S, Dan BCT, Diem NN, Ooi EL, Zhou Z (2016) Thymol and carvacrol affect hybrid tilapia through the combination of direct stimulation and an intestinal microbiota-mediated effect: insights from a germ-free zebrafish model. J Nutr 146(5):1132–1140

    Article  CAS  PubMed  Google Scholar 

  • Rather IA, Galope R, Bajpai VK, Lim J, Paek WK, Park YH (2017) Diversity of marine bacteria and their bacteriocins: applications in aquaculture. Rev Fish Sci Aquac 25(4):257–269. https://doi.org/10.1080/23308249.2017.1282417

    Article  Google Scholar 

  • Rauta PR, Samanta M, Dash HR, Nayak B, Das S (2014) Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses. Immunol Lett 158(1–2):14–24

    Article  CAS  PubMed  Google Scholar 

  • Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci U S A 101(13):4596–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127(2):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquacult Nutr 18(5):465–492

    Article  CAS  Google Scholar 

  • Razak SA, Griffin M, Mischke C, Bosworth B, Waldbieser G, Wise D, Marsh T, Scribner K (2019) Biotic and abiotic factors influencing channel catfish egg and gut microbiome dynamics during early life stages. Aquaculture 498:556–567

    Article  Google Scholar 

  • Ringø E, Gatesoupe F-J (1998) Lactic acid bacteria in fish: a review. Aquaculture 160(3–4):177–203

    Article  Google Scholar 

  • Ringø E, Olsen RE, Jensen I, Romero J, Lauzon HL (2014) Application of vaccines and dietary supplements in aquaculture: possibilities and challenges. Rev Fish Biol Fish 24(4):1005–1032. https://doi.org/10.1007/s11160-014-9361-y

    Article  Google Scholar 

  • Ringø E, Zhou Z, Vecino JG, Wadsworth S, Romero J, Krogdahl Å, Olsen R, Dimitroglou A, Foey A, Davies S (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquacult Nutr 22(2):219–282

    Article  Google Scholar 

  • Ringø E, Hoseinifar SH, Ghosh K, Van Doan H, Becks BR, Song SK (2018) Lactic acid bacteria in finfish-an update. Front Microbiol 9:37. https://doi.org/10.3389/fmicb.2018.01818

    Article  Google Scholar 

  • Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2009) Effects of single and combined supplementation of Enterococcus faecalis, mannan oligosaccharide and polyhydroxybutyrate acid on growth performance and immune response of rainbow trout Oncorhynchus mykiss. Aquac Sci 57(4):609–617

    CAS  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolig AS, Sweeney EG, Kaye LE, DeSantis MD, Perkins A, Banse AV, Hamilton MK, Guillemin K (2018) A bacterial immunomodulatory protein with lipocalin-like domains facilitates host–bacteria mutualism in larval zebrafish. Elife 7:e37172

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero J, Ringø E, Merrifield DL (2014) The gut microbiota of fish. In: Aquaculture nutrition: gut health, probiotics and prebiotics. John Wiley & Sons Ltd., Chichester, pp 75–100

    Chapter  Google Scholar 

  • Rosado D, Pérez-Losada M, Severino R, Cable J, Xavier R (2019) Characterization of the skin and gill microbiomes of the farmed seabass (Dicentrarchus labrax) and seabream (Sparus aurata). Aquaculture 500:57–64

    Article  CAS  Google Scholar 

  • Rosas-Ledesma P, Leon-Rubio JM, Alarcon FJ, Morinigo MA, Balebona MC (2012) Calcium alginate capsules for oral administration of fish probiotic bacteria: assessment of optimal conditions for encapsulation. Aquacult Res 43(1):106–116. https://doi.org/10.1111/j.1365-2109.2011.02809.x

    Article  CAS  Google Scholar 

  • Rudi K, Angell IL, Pope PB, Vik JO, Sandve SR, Snipen L-G (2018) Stable core gut microbiota across the freshwater-to-saltwater transition for farmed Atlantic salmon. Appl Environ Microbiol 84(2):e01974–e01917

    Article  PubMed  PubMed Central  Google Scholar 

  • Safari R, Adel M, Lazado CC, Caipang CMA, Dadar M (2016) Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol 52:198–205. https://doi.org/10.1016/j.fsi.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  • Salinas I (2015) The mucosal immune system of teleost fish. Biology 4(3):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salinas I, Diaz-Rosales P, Cuesta A, Meseguer J, Chabrillon M, Morinigo MA, Esteban MA (2006) Effect of heat-inactivated fish and non-fish derived probiotics on the innate immune parameters of a teleost fish (Sparus aurata L.). Vet Immunol Immunopathol 111(3–4):279–286. https://doi.org/10.1016/j.vetimm.2006.01.020

    Article  CAS  PubMed  Google Scholar 

  • Saputra F, Shiu YL, Chen YC, Puspitasari AW, Danata RH, Liu CH, Hu SY (2016) Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 58:397–405. https://doi.org/10.1016/j.fsi.2016.09.046

    Article  CAS  PubMed  Google Scholar 

  • Schaeck M, De Swaef E, Van Den Broeck W, Van Nevel S, Boon N, De Geyter N, Morent R, Demeestere K, Duchateau L, Coulombet C (2016) Germ-free sea bass Dicentrarchus labrax larval model: a valuable tool in the study of host-microbe interactions. Dis Aquat Organ 117(3):177–185

    Article  CAS  PubMed  Google Scholar 

  • Schaeck M, Reyes-López FE, Vallejos-Vidal E, Van Cleemput J, Duchateau L, Van den Broeck W, Tort L, Decostere A (2017) Cellular and transcriptomic response to treatment with the probiotic candidate Vibrio lentus in gnotobiotic sea bass (Dicentrarchus labrax) larvae. Fish Shellfish Immunol 63:147–156

    Article  CAS  PubMed  Google Scholar 

  • Schmidt V, Gomez-Chiarri M, Roy C, Smith K, Amaral-Zettler L (2017) Subtle microbiome manipulation using probiotics reduces antibiotic-associated mortality in fish. mSystems 2(6):13. https://doi.org/10.1128/mSystems.00133-17

    Article  Google Scholar 

  • Schroeter JC, Peterson BC, Bledsoe J, Li M, Small BC (2018) Targeted gene expression panels and microbiota analysis provide insight into the effects of alternative production diet formulations on channel catfish nutritional physiology. Aquaculture 489:46–55

    Article  CAS  Google Scholar 

  • Schubiger CB, Orfe LH, Sudheesh PS, Cain KD, Shah DH, Call DR (2015) Entericidin is required for a probiotic treatment (Enterobacter sp. strain C6-6) to protect trout from cold-water disease challenge. Appl Environ Microbiol 81(2):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Selim KM, Reda RM (2015) Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish Shellfish Immunol 44(2):496–503. https://doi.org/10.1016/j.fsi.2015.03.004

  • Selim KM, El-Sayed HM, El-Hady M, Reda RM (2019) In vitro evaluation of the probiotic candidates isolated from the gut of Clarias gariepinus with special reference to the in vivo assessment of live and heat-inactivated Leuconostoc mesenteroides and Edwardsiella sp. Aquac Int 27(1):33–51

    Article  CAS  Google Scholar 

  • Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288

    Article  CAS  PubMed  Google Scholar 

  • Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R (2018) Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. Microb Pathog 114:50–56

    Article  CAS  PubMed  Google Scholar 

  • Sharifuzzaman SM, Al-Harbi AH, Austin B (2014) Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2. Aquaculture 418:55–61. https://doi.org/10.1016/j.aquaculture.2013.10.006

    Article  CAS  Google Scholar 

  • Sharifuzzaman SM, Rahman H, Austin DA, Austin B (2018) Properties of Probiotics Kocuria SM1 and Rhodococcus SM2 Isolated from Fish Guts. Probiotics Antimicrob Proteins 10(3):534–542. https://doi.org/10.1007/s12602-017-9290-x

  • Sheng Y, Ren H, Limbu SM, Sun Y, Qiao F, Zhai W, Du Z-Y, Zhang M (2018) The presence or absence of intestinal microbiota affects lipid deposition and related genes expression in zebrafish (Danio rerio). Front Microbiol 9(1124). https://doi.org/10.3389/fmicb.2018.01124

  • Skjermo J, Bakke I, Dahle SW, Vadstein O (2015) Probiotic strains introduced through live feed and rearing water have low colonizing success in developing Atlantic cod larvae. Aquaculture 438:17–23. https://doi.org/10.1016/j.aquaculture.2014.12.027

    Article  Google Scholar 

  • Smith CC, Snowberg LK, Caporaso JG, Knight R, Bolnick DI (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 9(11):2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solbakken MH, Tørresen OK, Nederbragt AJ, Seppola M, Gregers TF, Jakobsen KS, Jentoft S (2016) Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions. Sci Rep 6:25211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standen BT, Rodiles A, Peggs DL, Davies SJ, Santos GA, Merrifield DL (2015) Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl Microbiol Biotechnol 99(20):8403–8417. https://doi.org/10.1007/s00253-015-6702-2

  • Standen B, Peggs D, Rawling M, Foey A, Davies S, Santos G, Merrifield D (2016) Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish Shellfish Immunol 49:427–435

    Article  CAS  PubMed  Google Scholar 

  • Star B, Jentoft S (2012) Why does the immune system of Atlantic cod lack MHC II? Bioessays 34(8):648–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477(7363):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita H, Miyajima C, Deguchi Y (1991) The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture 92:267–276

    Article  CAS  Google Scholar 

  • Sugita H, Kawasaki J, Kumazawa J, Deguchi Y (1996) Production of amylase by the intestinal bacteria of Japanese coastal animals. Lett Appl Microbiol 23(3):174–178

    Article  CAS  Google Scholar 

  • Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21(13):3363–3378

    Article  PubMed  Google Scholar 

  • Svircev A, Roach D, Castle A (2018) Framing the future with bacteriophages in agriculture. Viruses 10(5):218

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan LTH, Chan KG, Lee LH, Goh BH (2016) Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol 7:8. https://doi.org/10.3389/fmicb.2016.00079

    Article  Google Scholar 

  • Tapia-Paniagua ST, Vidal S, Lobo C, de la Banda IG, Esteban MA, Balebona MDC, Moriñigo MA (2015) Dietary administration of the probiotic SpPdp11: effects on the intestinal microbiota and immune-related gene expression of farmed Solea senegalensis treated with oxytetracycline. Fish Shellfish Immunol 46(2):449–458. https://doi.org/10.1016/j.fsi.2015.07.007

  • Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 123(1):2–17

    Article  CAS  PubMed  Google Scholar 

  • Tarnecki AM, Wafapoor M, Phillips RN, Rhody NR (2019) Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Sci Rep 9(1):4892

    Article  PubMed  PubMed Central  Google Scholar 

  • Teletchea F, Fontaine P (2014) Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish 15(2):181–195

    Article  Google Scholar 

  • Thurlow CM, Williams MA, Carrias A, Ran C, Newman M, Tweedie J, Allison E, Jescovitch LN, Wilson AE, Terhune JS (2019) Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture 503:347–356

    Article  Google Scholar 

  • Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480

    Article  CAS  PubMed  Google Scholar 

  • Tyagi A, Singh B, Thammegowda NKB, Singh NK (2019) Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Arch Microbiol 201(3):295–303. https://doi.org/10.1007/s00203-018-1615-y

    Article  CAS  PubMed  Google Scholar 

  • Valdez Y, Brown EM, Finlay BB (2014) Influence of the microbiota on vaccine effectiveness. Trends Immunol 35(11):526–537

    Article  CAS  PubMed  Google Scholar 

  • Vanderzwalmen M, Eaton L, Mullen C, Henriquez F, Carey P, Snellgrove D, Sloman KA (2019) The use of feed and water additives for live fish transport. Rev Aquac 11(1):263–278. https://doi.org/10.1111/raq.12239

    Article  Google Scholar 

  • Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, Van Sinderen D, O’Toole PW (2009) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7(1):61

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Turroni F, van Sinderen D (2012) Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioengineered 3(2):73–79

    Article  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villasante A, Ramirez C, Catalán N, Romero J (2018) First report of swim bladder-associated microbiota in rainbow trout (Oncorhynchus mykiss). Microbes Environ 33(4):459–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkoff H, Butt RL (2019) Gut microbiota and energy homeostasis in fish. Front Endocrinol 10:9

    Article  Google Scholar 

  • Wang W, Sun J, Liu CJ, Xue Z (2017) Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquacult Res 48(1):1–23. https://doi.org/10.1111/are.13161

    Article  Google Scholar 

  • Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen RE, Ringø E, Bindelle J, Zhou Z (2018a) Use of probiotics in aquaculture of China—a review of the past decade. Fish Shellfish Immunol 86:734–755

    Article  PubMed  Google Scholar 

  • Wang AR, Ran C, Ringø E, Zhou ZG (2018b) Progress in fish gastrointestinal microbiota research. Rev Aquac 10(3):626–640

    Article  Google Scholar 

  • Wang C, Liu Y, Sun G, Li X, Liu Z (2019) Growth, immune response, antioxidant capability, and disease resistance of juvenile Atlantic salmon (Salmo salar L.) fed Bacillus velezensis V4 and Rhodotorula mucilaginosa compound. Aquaculture 500:65–74

    Article  CAS  Google Scholar 

  • Wei S, Morrison M, Yu Z (2013) Bacterial census of poultry intestinal microbiome. Poult Sci 92(3):671–683

    Article  CAS  PubMed  Google Scholar 

  • Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol Med 22(12):1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microbiol 79(16):4974–4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia JH, Lin G, Fu GH, Wan ZY, Lee M, Wang L, Liu XJ, Yue GH (2014) The intestinal microbiome of fish under starvation. BMC Genomics 15(1):266

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Parra D, Gómez D, Salinas I, Zhang Y-A, von Gersdorff Jørgensen L, Heinecke RD, Buchmann K, LaPatra S, Sunyer JO (2013) Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci U S A 110(32):13097–13102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Jian SQ, Cao H, Wen C, Hu B, Peng M, Peng L, Yuan J, Liang L (2019) Changes in microbiota along the intestine of grass carp (Ctenopharyngodon idella): community, interspecific interactions, and functions. Aquaculture 498:151–161

    Article  CAS  Google Scholar 

  • Yazawa K (1996) Production of eicosapentaenoic acid from marine bacteria. Lipids 31(1 Part 2):S297–S300

    CAS  PubMed  Google Scholar 

  • Yoshimizu M, Kimura T (1976) Study on the intestinal microflora of salmonids. Fish Pathol 10(2):243–259

    Article  Google Scholar 

  • Zaneveld JR, McMinds R, Thurber RV (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2(9):17121

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Tian X, Wang L (2017) Genetic adaptation of microbial populations present in high-intensity catfish production systems with therapeutic oxytetracycline treatment. Sci Rep 7(1):17491

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YH, Liu JW, Tang KH, Yu M, Coenye T, Zhang XH (2015) Genome analysis of Flaviramulus ichthyoenteri Th78(T) in the family Flavobacteriaceae: insights into its quorum quenching property and potential roles in fish intestine. BMC Genomics 16:10. https://doi.org/10.1186/s12864-015-1275-0

    Article  Google Scholar 

  • Zhang M, Sun Y, Liu Y, Qiao F, Chen L, Liu W-T, Du Z, Li E (2016) Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture 454:72–80

    Article  CAS  Google Scholar 

  • Zhang F, Cui B, He X, Nie Y, Wu K, Fan D, Feng B, Chen D, Ren J, Deng M, Li N, Zheng P, Cao Q, Yang S, Liu Y, Zhou Y, Nie Y, Ji G, Li P, Group F-sS (2018) Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 9(5):462–473. https://doi.org/10.1007/s13238-018-0541-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X (2017) An overview of recently published global aquaculture statistics. FAO Aquac Newsl 56:6

    Google Scholar 

  • Zhou SX, Zhang A, Yin HP, Chu WH (2016) Bacillus sp QSI-1 modulate quorum sensing signals reduce Aeromonas hydrophila level and alter gut microbial community structure in fish. Front Cell Infect Microbiol 6:8. https://doi.org/10.3389/fcimb.2016.00184

    Article  CAS  Google Scholar 

  • Zhou Z, Ringo E, Olsen RE, Song SK (2018) Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: a review. Aquacult Nutr 24(1):644–665. https://doi.org/10.1111/anu.12532

    Article  CAS  Google Scholar 

  • Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K, Lazado CC (2016) Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 36(4):228–241. https://doi.org/10.1080/01652176.2016.1172132

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ken Overturf and Dr. Brian Peterson for their kind review and comments, which improved this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Small .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bledsoe, J.W., Small, B.C. (2023). Finfish Microbiota and Direct-Fed Microbial Applications in Aquaculture. In: Callaway, T.R., Ricke, S.C. (eds) Direct-Fed Microbials and Prebiotics for Animals. Springer, Cham. https://doi.org/10.1007/978-3-031-40512-9_10

Download citation

Publish with us

Policies and ethics