Skip to main content

Emerging Insights into the Interstitial Distribution of Neuraxial Therapeutics via the Cerebrospinal Fluid Compartment

  • Chapter
  • First Online:
Neuraxial Therapeutics

Abstract

Accessing the central nervous system (CNS) therapeutically has historically been a significant hurdle and unfortunately remains a challenge. Recent research has brought to light physiological and pathological processes that regulate the movement of fluids and solutes between the cerebrospinal fluid (CSF) compartment and the CNS interstitium and may have important implications for neuraxial therapeutic delivery. Here, we review recent findings, suggesting that CSF–interstitial exchange is anatomically organized, rapid, physiologically regulated, and impaired in the setting of CNS pathology. We then discuss the implications that these recent findings may have on the delivery of small molecules, biologics, viral-, and cell-based therapeutics to the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwalbe G. Der Arachnoidalraum, ein Lymphraum und sein Zusammenhang mit dem Perichoroidalraum, Centralblattfur die Medicinischen Wissenshaftern Berlin 7:465–467, 1869. In: Emanuel S, Tafel RL, editors. The brain, considered anatomically, physiologically and philosophically. London: Speirs; 1882. p. 615.

    Google Scholar 

  2. Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006;103(14):5567–72.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88(4):1277–340.

    Article  PubMed  Google Scholar 

  4. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.

    Article  PubMed  Google Scholar 

  5. Rosenberg GA, Kyner WT, Estrada E. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Phys. 1980;238(1):F42–9.

    Google Scholar 

  6. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78.

    Article  PubMed  Google Scholar 

  7. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018;135(3):311–36.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cure JK, Van Tassel P, Smith MT. Normal and variant anatomy of the dural venous sinuses. Semin Ultrasound CT MR. 1994;15(6):499–519.

    Article  PubMed  Google Scholar 

  10. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299–309.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11.

    Article  Google Scholar 

  12. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691–705.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990;170:111–23.

    PubMed  PubMed Central  Google Scholar 

  14. Bedussi B, Almasian M, de Vos J, VanBavel E, Bakker EN. Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow. J Cereb Blood Flow Metab. 2018;38(4):719–26.

    Article  PubMed  Google Scholar 

  15. Feurer D, Weller R. Barrier functions of the leptomeninges: a study of normal meninges and meningiomas in tissue culture. Neuropathol Appl Neurobiol. 1991;17(5):391–405.

    Article  PubMed  Google Scholar 

  16. He L, Vanlandewijck M, Mäe MA, Andrae J, Ando K, Del Gaudio F, et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci Data. 2018;5:180160.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron. 2017;94(3):581–94.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6(3):179–92.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers. 2016;4(1):e1138017.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA. Transporters of the blood–brain and blood–CSF interfaces in development and in the adult. Mol Asp Med. 2013;34(2–3):742–52.

    Article  Google Scholar 

  21. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–27.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7(11):1031–8.

    Article  PubMed  Google Scholar 

  24. Nikolakopoulou AM, Zhao Z, Montagne A, Zlokovic BV. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling. PLoS One. 2017;12(4):e0176225.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berthiaume A-A, Grant RI, McDowell KP, Underly RG, Hartmann DA, Levy M, et al. Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep. 2018;22(1):8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kisler K, Nikolakopoulou AM, Sweeney MD, Lazic D, Zhao Z, Zlokovic BV. Acute ablation of cortical pericytes leads to rapid neurovascular uncoupling. Front Cell Neurosci. 2020;14:27.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu L, Nirwane A, Yao Y. Basement membrane and blood–brain barrier. Stroke Vasc Neurol. 2019;4(2):78–82.

    Article  PubMed  Google Scholar 

  28. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005;85(3):979–1000.

    Article  PubMed  Google Scholar 

  29. Engelhardt B. β1-Integrin/matrix interactions support blood–brain barrier integrity. J Cereb Blood Flow Metab. 2011;31(10):1969–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Song J, Wu C, Korpos E, Zhang X, Agrawal SM, Wang Y, et al. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration. Cell Rep. 2015;10(7):1040–54.

    Article  PubMed  Google Scholar 

  31. Neuhaus J. Orthogonal arrays of particles in astroglial cells: quantitative analysis of their density, size, and correlation with intramembranous particles. Glia. 1990;3(4):241–51.

    Article  PubMed  Google Scholar 

  32. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41.

    Article  PubMed  Google Scholar 

  33. Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B, Górecki DC. Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem. 2012;287(49):41374–85.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood–brain barrier. J Neurosci. 2014;34(46):15260–80.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kılıç T, Akakın A. Anatomy of cerebral veins and sinuses. In: Handbook on cerebral venous thrombosis, vol. 23. Karger Publishers; 2008. p. 4–15.

    Chapter  Google Scholar 

  36. Egemen E, Solaroglu I. Anatomy of cerebral veins and dural sinuses. In: Primer on cerebrovascular diseases. Elsevier; 2017. p. 32–6.

    Chapter  Google Scholar 

  37. Doepp F, Schreiber SJ, von Münster T, Rademacher J, Klingebiel R, Valdueza JM. How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology. 2004;46(7):565–70.

    Article  PubMed  Google Scholar 

  38. Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol. 2020;38:597–620.

    Article  PubMed  Google Scholar 

  39. Hladky SB, Barrand MA. Fluid and ion transfer across the blood–brain and blood–cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS. 2016;13(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun. 2018;9(1):2167.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gregoriades JM, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na+-K+-2Cl cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol. 2018;316(4):C525–C44.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Orešković D, Klarica M. The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010;64(2):241–62.

    Article  PubMed  Google Scholar 

  43. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005;132(23):5329–39.

    Article  PubMed  Google Scholar 

  46. Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res. 2013;91(9):1117–32.

    Article  PubMed  Google Scholar 

  47. Nguyen T, Chin WC, O’Brien JA, Verdugo P, Berger AJ. Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol. 2001;531(1):131–40.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tomé M, Moreira E, Pérez-Fígares J-M, Jiménez A. Presence of D 1-and D 2-like dopamine receptors in the rat, mouse and bovine multiciliated ependyma. J Neural Transm. 2007;114(8):983–94.

    Article  PubMed  Google Scholar 

  49. Faubel R, Westendorf C, Bodenschatz E, Eichele G. Cilia-based flow network in the brain ventricles. Science. 2016;353(6295):176–8.

    Article  PubMed  Google Scholar 

  50. Del Bigio MR. The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia. 1995;14(1):1–13.

    Article  PubMed  Google Scholar 

  51. Oliver C, González CA, Alvial G, Flores CA, Rodríguez EM, Bátiz LF. Disruption of CDH2/N-cadherin-based adherens junctions leads to apoptosis of ependymal cells and denudation of brain ventricular walls. J Neuropathol Exp Neurol. 2013;72(9):846–60.

    Article  PubMed  Google Scholar 

  52. Alvarez JI, Teale JM. Differential changes in junctional complex proteins suggest the ependymal lining as the main source of leukocyte infiltration into ventricles in murine neurocysticercosis. J Neuroimmunol. 2007;187(1–2):102–13.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jiménez AJ, Domínguez-Pinos M-D, Guerra MM, Fernández-Llebrez P, Pérez-Fígares J-M. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers. 2014;2(1):e28426.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bruni J. Ependymal development, proliferation, and functions: a review. Microsc Res Tech. 1998;41(1):2–13.

    Article  PubMed  Google Scholar 

  55. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke. 2006;37(6):1391–8.

    Article  PubMed  Google Scholar 

  56. Del Bigio MR. Glial linings of the brain. In: The neuronal environment. Springer; 2002. p. 341–75.

    Google Scholar 

  57. Rash J, Olson C, Davidson K, Yasumura T, Kamasawa N, Nagy J. Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience. 2007;147(4):938–56.

    Article  PubMed  Google Scholar 

  58. Hutchings M, Weller RO. Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986;65(3):316–25.

    Article  PubMed  Google Scholar 

  59. Ichimura T, Fraser P, Cserr HF. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991;545(1–2):103–13.

    Article  PubMed  Google Scholar 

  60. Weller RO, Sharp MM, Christodoulides M, Carare RO, Møllgård K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 2018;135(3):363–85.

    Article  PubMed  Google Scholar 

  61. Alcolado R, Weller R, Parrish E, Garrod D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol. 1988;14(1):1.

    Article  PubMed  Google Scholar 

  62. Hannocks M-J, Pizzo ME, Huppert J, Deshpande T, Abbott NJ, Thorne RG, et al. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab. 2018;38(4):669–86.

    Article  PubMed  Google Scholar 

  63. Brightman MW. The brain’s interstitial clefts and their glial walls. J Neurocytol. 2002;31(8–9):595–603.

    Article  PubMed  Google Scholar 

  64. Ghersi-Egea J-F, Finnegan W, Chen J-L, Fenstermacher J. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996;75(4):1271–88.

    Article  PubMed  Google Scholar 

  65. Kacem K, Lacombe P, Seylaz J, Bonvento G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia. 1998;23(1):1–10.

    Article  PubMed  Google Scholar 

  66. Patel N, Kirmi O. Anatomy and imaging of the normal meninges, Seminars in ultrasound, CT and MRI. Elsevier; 2009.

    Book  Google Scholar 

  67. Hasegawa M, Yamashima T, Kida S, Yamashita J. Membranous ultrastructure of human arachnoid cells. J Neuropathol Exp Neurol. 1997;56(11):1217–27.

    Article  PubMed  Google Scholar 

  68. Brøchner CB, Holst CB, Møllgård K. Outer brain barriers in rat and human development. Front Neurosci. 2015;9:75.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rascher G, Wolburg H. The tight junctions of the leptomeningeal blood-cerebrospinal fluid barrier during development. J Hirnforsch. 1997;38(4):525–40.

    PubMed  Google Scholar 

  70. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Absinta M, Ha S-K, Nair G, Sati P, Luciano NJ, Palisoc M, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017;6:e29738.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1–13.

    Article  Google Scholar 

  74. Goodman JR, Iliff JJ. Vasomotor influences on glymphatic-lymphatic coupling and solute trafficking in the central nervous system. J Cereb Blood Flow Metab. 2020;40(8):1724–34.

    Article  PubMed  Google Scholar 

  75. Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21(10):1380–91.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li L, Zhang H, Verkman A. Greatly attenuated experimental autoimmune encephalomyelitis in aquaporin-4 knockout mice. BMC Neurosci. 2009;10(1):94.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ahimsadasan N, Kumar A. Neuroanatomy, dorsal root ganglion. Treasure Island, FL: StatPearls Publishing; 2021.

    Google Scholar 

  78. Kobayashi S, Mwaka ES, Baba H, Takeno K, Miyazaki T, Matsuo H, et al. Microvascular system of the lumbar dorsal root ganglia in rats. Part I: A 3D analysis with scanning electron microscopy of vascular corrosion casts. J Neurosurg Spine. 2010;12(2):197–202.

    Article  PubMed  Google Scholar 

  79. Jimenez-Andrade JM, Herrera MB, Ghilardi JR, Vardanyan M, Melemedjian OK, Mantyh PW. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: implications for chemical-induced peripheral sensory neuropathies. Mol Pain. 2008;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hirakawa H, Okajima S, Nagaoka T, Kubo T, Takamatsu T, Oyamada M. Regional differences in blood–nerve barrier function and tight-junction protein expression within the rat dorsal root ganglion. Neuroreport. 2004;15(3):405–8.

    Article  PubMed  Google Scholar 

  81. Jacobs JM, Macfarlane RM, Cavanagh J. Vascular leakage in the dorsal root ganglia of the rat, studied with horseradish peroxidase. J Neurol Sci. 1976;29(1):95–107.

    Article  PubMed  Google Scholar 

  82. Haller FR, Low FN. The fine structure of the peripheral nerve root sheath in the subarachnoid space in the rat and other laboratory animals. Am J Anat. 1971;131(1):1–19.

    Article  PubMed  Google Scholar 

  83. Weerasuriya A, Mizisin AP. The blood-nerve barrier: structure and functional significance. In: The blood-brain and other neural barriers. Springer; 2011. p. 149–73.

    Chapter  Google Scholar 

  84. McCabe JS, Low FN. The subarachnoid angle: an area of transition in peripheral nerve. Anat Rec. 1969;164(1):15–33.

    Article  PubMed  Google Scholar 

  85. Joukal M, Klusáková I, Dubový P. Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia. Ann Anat. 2016;205:9–15.

    Article  PubMed  Google Scholar 

  86. Ruoslahti E. Brain extracellular matrix. Glycobiology. 1996;6(5):489–92.

    Article  PubMed  Google Scholar 

  87. Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88(4):1277–340.

    Article  PubMed  Google Scholar 

  88. Wolak DJ, Pizzo ME, Thorne RG. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging. J Control Release. 2015;197:78–86.

    Article  PubMed  Google Scholar 

  89. Nicholson C, Hrabětová S. Brain extracellular space: the final frontier of neuroscience. Biophys J. 2017;113(10):2133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Soria FN, Miguelez C, Peñagarikano O, Tønnesen J. Current techniques for investigating the brain extracellular space. Front Neurosci. 2020;14:570750.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hrabetova S, Cognet L, Rusakov DA, Nägerl UV. Unveiling the extracellular space of the brain: from super-resolved microstructure to in vivo function. J Neurosci. 2018;38(44):9355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cserr HF. Physiology of the choroid plexus. Physiol Rev. 1971;51(2):273–311.

    Article  PubMed  Google Scholar 

  93. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 2018;135(3):387–407.

    Article  PubMed  Google Scholar 

  94. Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9(1):1–9.

    Article  Google Scholar 

  95. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.

    Article  PubMed  Google Scholar 

  96. Ray L, Iliff JJ, Heys JJ. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS. 2019;16(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Groothuis DR, Vavra MW, Schlageter KE, Kang EW, Itskovich AC, Hertzler S, et al. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab. 2007;27(1):43–56.

    Article  PubMed  Google Scholar 

  98. Rall DP. Transport through the ependymal linings, Prog Brain Res, vol. 29. Elsevier; 1968. p. 159–72.

    Google Scholar 

  99. James AE Jr, Strecker E-P, Sperber E, Flor WJ, Merz T, Burns B. An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus: transependymal movement. Radiology. 1974;111(1):143–6.

    Article  PubMed  Google Scholar 

  100. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra11.

    Article  Google Scholar 

  101. Grzanna R, Dubin JR, Dent GW, Ji Z, Zhang W, Ho SP, et al. Intrastriatal and intraventricular injections of oligodeoxynucleotides in the rat brain: tissue penetration, intracellular distribution and c-fos antisense effects. Brain Res Mol Brain Res. 1998;63(1):35–52.

    Article  PubMed  Google Scholar 

  102. Proescholdt M, Hutto B, Brady L, Herkenham M. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C] inulin in rat. Neuroscience. 1999;95(2):577–92.

    Article  Google Scholar 

  103. Fenstermacher J, Patlak C. The exchange of material between cerebrospinal fluid and brain. Fluid environment of the brain. New York: Academic; 1975. p. 201–14.

    Google Scholar 

  104. Fenstermacher J, Patlak C, Blasberg R. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc. 1974;33(9):2070–4.

    PubMed  Google Scholar 

  105. Reina MA, Casasola ODL, Villanueva M, López A, Machés F, De Andrés JA. Ultrastructural findings in human spinal pia mater in relation to subarachnoid anesthesia. Anesth Analg. 2004;98(5):1479–85.

    Article  PubMed  Google Scholar 

  106. Miyanohara A, Kamizato K, Juhas S, Juhasova J, Navarro M, Marsala S, et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol Ther Methods Clin Dev. 2016;3:16046.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Brierley J. The penetration of particulate matter from the cerebrospinal fluid into the spinal ganglia, peripheral nerves, and perivascular spaces of the central nervous system. J Neurol Neurosurg Psychiatry. 1950;13(3):203.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Klatzo I, Miquel J, Ferris PJ, Prokop JD, Smith DE. Observations on the passage of the fluorescein labeled serum proteins (FLSP) from the cerebrospinal fluid. J Neuropathol Exp Neurol. 1964;23(1):18–35.

    Article  PubMed  Google Scholar 

  109. Brierley J, Field E. The connexions of the spinal sub-arachnoid space with the lymphatic system. J Anat. 1948;82(Pt 3):153.

    PubMed  PubMed Central  Google Scholar 

  110. Haninec P, Grim M. Localization of dipeptidylpeptidase IV and alkaline phosphatase in developing spinal cord meninges and peripheral nerve coverings of the rat. Int J Dev Neurosci. 1990;8(2):175–85.

    Article  PubMed  Google Scholar 

  111. Abram SE, Yi J, Fuchs A, Hogan QH. Permeability of injured and intact peripheral nerves and dorsal root ganglia. Anesthesiology. 2006;105(1):146–53.

    Article  PubMed  Google Scholar 

  112. Hu P, McLachlan E. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience. 2002;112(1):23–38.

    Article  PubMed  Google Scholar 

  113. Butler M, Hayes C, Chappell A, Murray S, Yaksh T, Hua X-Y. Spinal distribution and metabolism of 2′-O-(2-methoxyethyl)-modified oligonucleotides after intrathecal administration in rats. Neuroscience. 2005;131(3):705–15.

    Article  PubMed  Google Scholar 

  114. Xu Q, Chou B, Fitzsimmons B, Miyanohara A, Shubayev V, Santucci C, et al. In vivo gene knockdown in rat dorsal root ganglia mediated by self-complementary adeno-associated virus serotype 5 following intrathecal delivery. PLoS One. 2012;7(3):e32581.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tanimura Y, Hiroaki Y, Fujiyoshi Y. Acetazolamide reversibly inhibits water conduction by aquaporin-4. J Struct Biol. 2009;166(1):16–21.

    Article  PubMed  Google Scholar 

  116. Moreno AM, Alemán F, Catroli GF, Hunt M, Hu M, Dailamy A, et al. Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice. Sci Transl Med. 2021;13(584):eaay9056.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bernards CM, Hill HF. Physical and chemical properties of drug molecules governing their diffusion through the spinal meninges. Anesthesiology. 1992;77(4):750–6.

    Article  PubMed  Google Scholar 

  118. Byröd G, Rydevik B, Johansson BR, Olmarker K. Transport of epidurally applied horseradish peroxidase to the endoneurial space of dorsal root ganglia: a light and electron microscopic study. J Peripher Nerv Syst. 2000;5(4):218–26.

    Article  PubMed  Google Scholar 

  119. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7.

    Article  PubMed  Google Scholar 

  120. Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife. 2018;7:e40070.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Boespflug EL, Simon MJ, Leonard E, Grafe M, Woltjer R, Silbert LC, et al. Targeted assessment of enlargement of the perivascular space in Alzheimer’s disease and vascular dementia subtypes implicates astroglial involvement specific to Alzheimer’s disease. J Alzheimers Dis. 2018;66(4):1587–97.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Burfeind KG, Murchison CF, Westaway SK, Simon MJ, Erten-Lyons D, Kaye JA, et al. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimers Demen (N Y). 2017;3(3):348–59.

    Article  Google Scholar 

  123. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180–93.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–61.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, et al. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33(6):834–45.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta. 2016;1862(3):442–51.

    Article  PubMed  Google Scholar 

  127. Wang M, Ding F, Deng S, Guo X, Wang W, Iliff JJ, et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci. 2017;37(11):2870–7.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91–9.

    Article  PubMed  Google Scholar 

  129. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, et al. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J Neurosci. 2013;33(46):18190–9.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zervas NT, Liszczak TM, Mayberg MR, Black PM. Cerebrospinal fluid may nourish cerebral vessels through pathways in the adventitia that may be analogous to systemic vasa vasorum. J Neurosurg. 1982;56(4):475–81.

    Article  PubMed  Google Scholar 

  131. Cloyd MW, Low FN. Scanning electron microscopy of the subarachnoid space in the dog. I. Spinal cord levels. J Comp Neurol. 1974;153(4):325–67.

    Article  PubMed  Google Scholar 

  132. Jones E. On the mode of entry of blood vessels into the cerebral cortex. J Anat. 1970;106(Pt 3):507.

    PubMed  PubMed Central  Google Scholar 

  133. Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020;16(3):137–53.

    Article  PubMed  Google Scholar 

  134. Durcanova B, Appleton J, Gurijala N, Belov V, Giffenig P, Moeller E, et al. The configuration of the perivascular system transporting macromolecules in the CNS. Front Neurosci. 2019;13:511.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu S, Lam MA, Sial A, Hemley SJ, Bilston LE, Stoodley MA. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways. Fluids Barriers CNS. 2018;15(1):1–14.

    Article  Google Scholar 

  136. Lam MA, Hemley SJ, Najafi E, Vella NG, Bilston LE, Stoodley MA. The ultrastructure of spinal cord perivascular spaces: implications for the circulation of cerebrospinal fluid. Sci Rep. 2017;7(1):1–13.

    Article  Google Scholar 

  137. Stoodley MA, Jones NR, Brown CJ. Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res. 1996;707(2):155–64.

    Article  PubMed  Google Scholar 

  138. Croci M, Vinje V, Rognes ME. Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields. Fluids Barriers CNS. 2019;16(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Rosenberg G, Kyner W, Estrada E. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol Renal Physiol. 1980;238(1):F42–F9.

    Article  Google Scholar 

  140. Cserr HF, Ostrach L. Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol. 1974;45(1):50–60.

    Article  PubMed  Google Scholar 

  141. Cserr HF, Cooper D, Milhorat T. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res. 1977;25:461–73.

    Article  PubMed  Google Scholar 

  142. Bradbury M, Cserr H, Westrop R. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol Renal Physiol. 1981;240(4):F329–F36.

    Article  Google Scholar 

  143. Morris AW, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131(5):725–36.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SS, Emblem KE, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018;3(13):e121537.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab. 2019;39(7):1355–68.

    Article  PubMed  Google Scholar 

  146. Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep. 2018;8(1):7194.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kounda S, Elkin R, Nadeem S, Xue Y, Constantinou S, Sanggaard S, et al. Optimal mass transport with Lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci Rep. 2020;10(1):1–18.

    Google Scholar 

  148. Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci U S A. 2017;114(37):9894–9.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Asgari M, De Zélicourt D, Kurtcuoglu V. Glymphatic solute transport does not require bulk flow. Sci Rep. 2016;6:38635.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Valnes LM, Mitusch SK, Ringstad G, Eide PK, Funke SW, Mardal K-A. Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex. Sci Rep. 2020;10(1):1–12.

    Article  Google Scholar 

  151. Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628–31.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63.

    Article  PubMed  Google Scholar 

  153. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14(1):69–78.

    Article  PubMed  Google Scholar 

  154. Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S, Martin BA, et al. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI. J Magn Reson Imaging. 2017;46(2):431–9.

    Article  PubMed  Google Scholar 

  155. Takizawa K, Matsumae M, Sunohara S, Yatsushiro S, Kuroda K. Characterization of cardiac-and respiratory-driven cerebrospinal fluid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Fluids Barriers CNS. 2017;14(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kiviniemi V, Wang X, Korhonen V, Keinänen T, Tuovinen T, Autio J, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity—glymphatic pulsation mechanisms? J Cereb Blood Flow Metab. 2016;36(6):1033–45.

    Article  PubMed  Google Scholar 

  157. Klose U, Strik C, Kiefer C, Grodd W. Detection of a relation between respiration and CSF pulsation with an echoplanar technique. J Magn Reson Imaging. 2000;11(4):438–44.

    Article  PubMed  Google Scholar 

  158. Nuckowska MK, Gruszecki M, Kot J, Wolf J, Guminski W, Frydrychowski AF, et al. Impact of slow breathing on the blood pressure and subarachnoid space width oscillations in humans. Sci Rep. 2019;9(1):1–13.

    Article  Google Scholar 

  159. Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, et al. Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS. 2013;10(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Aktas G, Kollmeier JM, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, et al. Spinal CSF flow in response to forced thoracic and abdominal respiration. Fluids Barriers CNS. 2019;16(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  161. van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC, Frosch MP, et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron. 2020;105(3):549–561.e5.

    Article  PubMed  Google Scholar 

  162. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, et al. The effect of body posture on brain glymphatic transport. J Neurosci. 2015;35(31):11034–44.

    Article  PubMed  PubMed Central  Google Scholar 

  163. He X-f, Liu D-x, Zhang Q, Liang F-y, Dai G-y, Zeng J-s, et al. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci. 2017;10:144.

    Article  PubMed  PubMed Central  Google Scholar 

  164. von Holstein-Rathlou S, Petersen NC, Nedergaard M. Voluntary running enhances glymphatic influx in awake behaving, young mice. Neurosci Lett. 2018;662:253–8.

    Article  Google Scholar 

  165. Henry-Feugeas M, Idy-Peretti I, Blanchet B, Hassine D, Zannoli G, Schouman-Claeys E. Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn Reson Imaging. 1993;11(8):1107–18.

    Article  PubMed  Google Scholar 

  166. Uldall M, Botfield H, Jansen-Olesen I, Sinclair A, Jensen R. Acetazolamide lowers intracranial pressure and modulates the cerebrospinal fluid secretion pathway in healthy rats. Neurosci Lett. 2017;645:33–9.

    Article  PubMed  Google Scholar 

  167. Zhang C, Lin J, Wei F, Song J, Chen W, Shan L, et al. Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine. Life Sci. 2018;201:150–60.

    Article  PubMed  Google Scholar 

  168. Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab. 2017;37(6):2112–24.

    Article  PubMed  Google Scholar 

  169. Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015;35(2):518–26.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5(2):eaav5447.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Colrain IM. The K-complex: a 7-decade history. Sleep. 2005;28(2):255–73.

    Article  PubMed  Google Scholar 

  172. Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020;11(1):1–11.

    Article  Google Scholar 

  173. Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol Regul Integr Comp Physiol. 1992;262(1):R20–R4.

    Article  Google Scholar 

  174. Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, et al. The choroid plexus is an important circadian clock component. Nat Commun. 2018;9(1):1–13.

    Article  Google Scholar 

  175. Berridge CW, Waterhouse BD. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42(1):33–84.

    Article  PubMed  Google Scholar 

  176. Benveniste H, Lee H, Ding F, Sun Q, Al-Bizri E, Makaryus R, et al. Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology. 2017;127(6):976–88.

    Article  PubMed  Google Scholar 

  177. Harrison T. The fine structure of the nervous system: the neurons and supporting cells. J Anat. 1978;127(Pt 3):638.

    PubMed Central  Google Scholar 

  178. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58(9):1094–103.

    Article  PubMed  Google Scholar 

  179. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013;14(4):265–77.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, De Lanerolle NC, Nagelhus EA, et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc Natl Acad Sci U S A. 2003;100(23):13615–20.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug F-M, Froehner SC, et al. An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A. 2003;100(4):2106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17(1):171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543–62.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A. 2001;98(24):14108–13.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Guadagno E, Moukhles H. Laminin-induced aggregation of the inwardly rectifying potassium channel, Kir4.1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes. Glia. 2004;47(2):138–49.

    Article  PubMed  Google Scholar 

  186. Papadopoulos MC, Verkman A. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem. 2005;280(14):13906–12.

    Article  PubMed  Google Scholar 

  187. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6(2):159–63.

    Article  PubMed  Google Scholar 

  188. Papadopoulos MC, Manley GT, Krishna S, Verkman A. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18(11):1291–3.

    Article  PubMed  Google Scholar 

  189. Debaker C, Djemai B, Ciobanu L, Tsurugizawa T, Le Bihan D. Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor. PLoS One. 2020;15(5):e0229702.

    Article  PubMed Central  Google Scholar 

  190. Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22(6):778–84.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Song Y, Gunnarson E. Potassium dependent regulation of astrocyte water permeability is mediated by cAMP signaling. PLoS One. 2012;7(4):e34936.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Schwinn DA, McIntyre RW, Reves J. Isoflurane-induced vasodilation: role of the alpha-adrenergic nervous system. Anesth Analg. 1990;71(5):451–9.

    Article  PubMed  Google Scholar 

  193. Zhang J, Pu H, Zhang H, Wei Z, Jiang X, Xu M, et al. Inhibition of Na+-K+-2Cl cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int. 2017;111:23–31.

    Article  PubMed  Google Scholar 

  194. Wilkinson HA, Rosenfeld S. Furosemide and mannitol in the treatment of acute experimental intracranial hypertension. Neurosurgery. 1983;12(4):405–10.

    Article  PubMed  Google Scholar 

  195. Murphy VA, Johanson CE. Alteration of sodium transport by the choroid plexus with amiloride. Biochim Biophys Acta. 1989;979(2):187–92.

    Article  PubMed  Google Scholar 

  196. Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143(8):2576–93.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Igarashi H, Huber VJ, Tsujita M, Nakada T. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci. 2011;32(1):113–6.

    Article  PubMed  Google Scholar 

  198. Popescu ES, Pirici I, Ciurea RN, Balseanu TA, Catalin B, Margaritescu C, et al. Three-dimensional organ scanning reveals brain edema reduction in a rat model of stroke treated with an aquaporin 4 inhibitor. Romanian J Morphol Embryol. 2017;58:59–66.

    Google Scholar 

  199. Pelletier MF, Farr GW, Mcguirk PR, Hall CH, Boron WF. Methods of treating cerebral edema. Patent Number US9573885B2; 2017.

    Google Scholar 

  200. Gao J, Wang X, Chang Y, Zhang J, Song Q, Yu H, et al. Acetazolamide inhibits osmotic water permeability by interaction with aquaporin-1. Anal Biochem. 2006;350(2):165–70.

    Article  PubMed  Google Scholar 

  201. Nakada T, Huber VJ. Inhibitors of AQP4, methods and uses thereof. Patent Number 7,659,312; 2010.

    Google Scholar 

  202. Huber VJ, Tsujita M, Kwee IL, Nakada T. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg Med Chem. 2009;17(1):418–24.

    Article  PubMed  Google Scholar 

  203. Migliati E, Meurice N, DuBois P, Fang JS, Somasekharan S, Beckett E, et al. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol Pharmacol. 2009;76(1):105–12.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell. 2020;181(4):784–99.e19.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. II. Hyperosmolar therapy. J Neurotrauma. 2007;24(Suppl 1):S-14–20.

    Article  Google Scholar 

  206. Marko NF. Hypertonic saline, not mannitol, should be considered gold-standard medical therapy for intracranial hypertension. Crit Care. 2012;16(1):113.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Pullen R, DePasquale M, Cserr HF. Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am J Physiol Renal Physiol. 1987;253(3):F538–F45.

    Article  Google Scholar 

  208. Szmydynger-Chodobska J, Szczepanska-Sadowska E, Chodobski A. Effect of arginine vasopressin on CSF composition and bulk flow in hyperosmolar state. Am J Physiol Regul Integr Comp Physiol. 1990;259(6):R1250–R8.

    Article  Google Scholar 

  209. Plog BA, Mestre H, Olveda GE, Sweeney AM, Kenney HM, Cove A, et al. Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI insight. 2018;3(20):e120922.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks MJ, et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol. 2018;596(3):445–75.

    Article  PubMed  Google Scholar 

  211. Plog BA, Lou N, Pierre CA, Cove A, Kenney HM, Hitomi E, et al. When the air hits your brain: decreased arterial pulsatility after craniectomy leading to impaired glymphatic flow. J Neurosurg. 2019:1–14.

    Google Scholar 

  212. Hollander W, Prusty S, Kemper T, Rosene D, Moss M. The effects of hypertension on cerebral atherosclerosis in the cynomolgus monkey. Stroke. 1993;24(8):1218–26.

    Article  PubMed  Google Scholar 

  213. Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier AL, et al. Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci. 2019;39(32):6365–77.

    Article  PubMed  PubMed Central  Google Scholar 

  214. van Elderen SG, Brandts A, van Der Grond J, Westenberg JJ, Kroft LJ, van Buchem MA, et al. Cerebral perfusion and aortic stiffness are independent predictors of white matter brain atrophy in type 1 diabetic patients assessed with magnetic resonance imaging. Diabetes Care. 2011;34(2):459–63.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet. 2014;383(9921):984–98.

    Article  PubMed  Google Scholar 

  217. Starr J, Wardlaw J, Ferguson K, MacLullich A, Deary I, Marshall I. Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003;74(1):70–6.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, et al. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab. 2017;37(4):1326–37.

    Article  PubMed  Google Scholar 

  219. Mestre H, Du T, Sweeney AM, Liu G, Samson AJ, Peng W, et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science. 2020;367(6483):eaax7171.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke. 2014;45(10):3092–6.

    Article  PubMed  Google Scholar 

  221. Lin L, Hao X, Li C, Sun C, Wang X, Yin L, et al. Impaired glymphatic system in secondary degeneration areas after ischemic stroke in rats. J Stroke Cerebrovasc Dis. 2020;29(7):104828.

    Article  PubMed  Google Scholar 

  222. Wang M, Iliff JJ, Liao Y, Chen MJ, Shinseki MS, Venkataraman A, et al. Cognitive deficits and delayed neuronal loss in a mouse model of multiple microinfarcts. J Neurosci. 2012;32(50):17948–60.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Marstrand J, Garde E, Rostrup E, Ring P, Rosenbaum S, Mortensen EL, et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke. 2002;33(4):972–6.

    Article  PubMed  Google Scholar 

  224. Wardlaw JM, Makin SJ, Hernández MCV, Armitage PA, Heye AK, Chappell FM, et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimers Dement. 2017;13(6):634–43.

    Article  PubMed Central  Google Scholar 

  225. Deike-Hofmann K, Reuter J, Haase R, Paech D, Gnirs R, Bickelhaupt S, et al. Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted. Investig Radiol. 2019;54(4):229–37.

    Article  Google Scholar 

  226. Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci. 2017;131(17):2257–74.

    Article  Google Scholar 

  227. Piantino J, Boespflug EL, Schwartz DL, Luther M, Morales AM, Lin A, et al. Characterization of MR imaging-visible perivascular spaces in the white matter of healthy adolescents at 3T. AJNR Am J Neuroradiol. 2020;41(11):2139–45.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Barisano G, Sheikh-Bahaei N, Law M, Toga AW, Sepehrband F. Body mass index, time of day, and genetics affect perivascular spaces in the white matter. J Cereb Blood Flow Metab. 2021;41(7):1563–78.

    Article  PubMed  Google Scholar 

  229. Berezuk C, Ramirez J, Gao F, Scott CJ, Huroy M, Swartz RH, et al. Virchow-Robin spaces: correlations with polysomnography-derived sleep parameters. Sleep. 2015;38(6):853–8.

    PubMed  PubMed Central  Google Scholar 

  230. Opel RA, Christy A, Boespflug EL, Weymann KB, Case B, Pollock JM, et al. Effects of traumatic brain injury on sleep and enlarged perivascular spaces. J Cereb Blood Flow Metab. 2019;39(11):2258–67.

    Article  PubMed  Google Scholar 

  231. Inglese M, Bomsztyk E, Gonen O, Mannon LJ, Grossman RI, Rusinek H. Dilated perivascular spaces: hallmarks of mild traumatic brain injury. AJNR Am J Neuroradiol. 2005;26(4):719–24.

    PubMed  PubMed Central  Google Scholar 

  232. Van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    Article  PubMed  Google Scholar 

  233. Kamp MA, Dibué M, Etminan N, Steiger H-J, Schneider T, Hänggi D. Evidence for direct impairment of neuronal function by subarachnoid metabolites following SAH. Acta Neurochir. 2013;155(2):255–60.

    Article  PubMed  Google Scholar 

  234. Gaberel T, Gakuba C, Goulay R, De Lizarrondo SM, Hanouz J-L, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke. 2014;45(10):3092–6.

    Article  PubMed  Google Scholar 

  235. Goulay R, Flament J, Gauberti M, Naveau M, Pasquet N, Gakuba C, et al. Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke. 2017;48(8):2301–5.

    Article  PubMed  Google Scholar 

  236. Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10(1):44.

    Article  PubMed  Google Scholar 

  237. Siler DA, Gonzalez JA, Wang RK, Cetas JS, Alkayed NJ. Intracisternal administration of tissue plasminogen activator improves cerebrospinal fluid flow and cortical perfusion after subarachnoid hemorrhage in mice. Transl Stroke Res. 2014;5(2):227–37.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Golanov EV, Bovshik EI, Wong KK, Pautler RG, Foster CH, Federley RG, et al. Subarachnoid hemorrhage-induced block of cerebrospinal fluid flow: role of brain coagulation factor III (tissue factor). J Cereb Blood Flow Metab. 2018;38(5):793–808.

    Article  PubMed  Google Scholar 

  239. Pu T, Zou W, Feng W, Zhang Y, Wang L, Wang H, et al. Persistent malfunction of glymphatic and meningeal lymphatic drainage in a mouse model of subarachnoid hemorrhage. Exp Neurobiol. 2019;28(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Sun B-L, Xia Z-L, Wang J-R, Yuan H, Li W-X, Chen Y-S, et al. Effects of blockade of cerebral lymphatic drainage on regional cerebral blood flow and brain edema after subarachnoid hemorrhage. Clin Hemorheol Microcirc. 2006;34(1–2):227–32.

    PubMed  Google Scholar 

  241. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.

    Article  PubMed  Google Scholar 

  242. Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(7):2320–39.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Johnson VE, Stewart W, Smith DH. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci. 2010;11(5):361–70.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Nordström A, Nordström P. Traumatic brain injury and the risk of dementia diagnosis: a nationwide cohort study. PLoS Med. 2018;15(1):e1002496.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Bieniek KF, Blessing MM, Heckman MG, Diehl NN, Serie AM, Paolini MA, et al. Association between contact sports participation and chronic traumatic encephalopathy: a retrospective cohort study. Brain Pathol. 2020;30(1):63–74.

    Article  PubMed  Google Scholar 

  246. Sullan MJ, Asken BM, Jaffee MS, DeKosky ST, Bauer RM. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci Biobehav Rev. 2018;84:316–24.

    Article  PubMed  Google Scholar 

  247. Leao AA. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7(6):359–90.

    Article  Google Scholar 

  248. Lauritzen M. Pathophysiology of the migraine aura: the spreading depression theory. Brain. 1994;117(1):199–210.

    Article  PubMed  Google Scholar 

  249. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab. 2011;31(1):17–35.

    Article  PubMed  Google Scholar 

  250. Nakamura H, Strong AJ, Dohmen C, Sakowitz OW, Vollmar S, Sue M, et al. Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain. 2010;133(7):1994–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Schain AJ, Melo-Carrillo A, Strassman AM, Burstein R. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. J Neurosci. 2017;37(11):2904–15.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–81.

    Article  PubMed  Google Scholar 

  253. Pedersen SH, Lilja-Cyron A, Andresen M, Juhler M. The relationship between intracranial pressure and age—chasing age-related reference values. World Neurosurg. 2018;110:e119–e23.

    Article  PubMed  Google Scholar 

  254. Preston JE. Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech. 2001;52(1):31–7.

    Article  PubMed  Google Scholar 

  255. Kang HM, Sohn I, Jung J, Jeong JW, Park C. Age-related changes in pial arterial structure and blood flow in mice. Neurobiol Aging. 2016;37:161–70.

    Article  PubMed  Google Scholar 

  256. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–91.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Emerson JF, Chen P-C, Shankle WR, Greensite FS, Foltz EL, Lott IT, et al. Cortical CSF volume fluctuations by MRI in brain aging, dementia and hydrocephalus. Neuroreport. 1994;5(14):1699–704.

    Article  PubMed  Google Scholar 

  258. Albeck MJ, Skak C, Nielsen PR, Olsen KS, Børgesen SE, Gjerris F. Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg. 1998;89(2):275–8.

    Article  PubMed  Google Scholar 

  259. May C, Kaye J, Atack JR, Schapiro M, Friedland R, Rapoport S. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990;40(3 Part 1):500.

    Article  PubMed  Google Scholar 

  260. Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J Neurochem. 2018;144(5):595–608.

    Article  PubMed  Google Scholar 

  261. Fleischman D, Berdahl JP, Zaydlarova J, Stinnett S, Fautsch MP, Allingham RR. Cerebrospinal fluid pressure decreases with older age. PLoS One. 2012;7(12):e52664.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Stoquart-ElSankari S, Balédent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer M-E. Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab. 2007;27(9):1563–72.

    Article  PubMed  Google Scholar 

  263. Zdanys KF, Steffens DC. Sleep disturbances in the elderly. Psychiatr Clin North Am. 2015;38(4):723–41.

    Article  PubMed  Google Scholar 

  264. Sprecher KE, Riedner BA, Smith RF, Tononi G, Davidson RJ, Benca RM. High resolution topography of age-related changes in non-rapid eye movement sleep electroencephalography. PLoS One. 2016;11(2):e0149770.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A. 1999;96(20):11049–53.

    Article  PubMed  PubMed Central  Google Scholar 

  266. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2017;107:41–56.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Huang Y, Potter R, Sigurdson W, Santacruz A, Shih S, Ju Y-E, et al. Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system. Arch Neurol. 2012;69(1):51–8.

    Article  PubMed  Google Scholar 

  271. Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363(6429):880–4.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Kang J-E, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326(5955):1005–7.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Lucey BP, Mawuenyega KG, Patterson BW, Elbert DL, Ovod V, Kasten T, et al. Associations between β-amyloid kinetics and the β-amyloid diurnal pattern in the central nervous system. JAMA Neurol. 2017;74(2):207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Ju Y-ES, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat Rev Neurol. 2014;10(2):115–9.

    Article  PubMed  Google Scholar 

  275. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50–6.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215–25.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa L, Nilsson LN, et al. Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J Alzheimers Dis. 2011;27(4):711–22.

    Article  PubMed  Google Scholar 

  278. Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener. 2015;10(1):1–16.

    Article  Google Scholar 

  279. De Leon MJ, Li Y, Okamura N, Tsui WH, Saint-Louis LA, Glodzik L, et al. Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET. J Nucl Med. 2017;58(9):1471–6.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Nassar BR, Lippa CF. Idiopathic normal pressure hydrocephalus: a review for general practitioners. Gerontol Geriatr Med. 2016;2:2333721416643702.

    PubMed  PubMed Central  Google Scholar 

  281. Eide PK, Valnes LM, Pripp AH, Mardal K-A, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab. 2019;40(9):1849–58.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Lindstrøm EK, Ringstad G, Mardal K-A, Eide PK. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus. Neuroimage Clin. 2018;20:731–41.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Yamada S, Tsuchiya K, Bradley W, Law M, Winkler M, Borzage M, et al. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time–spatial labeling inversion pulse. Am J Neuroradiol. 2015;36(4):623–30.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Rieger H, Welter M. Integrative models of vascular remodeling during tumor growth. Wiley Interdiscip Rev Syst Biol Med. 2015;7(3):113–29.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Hahn A, Bode J, Krüwel T, Solecki G, Heiland S, Bendszus M, et al. Glioblastoma multiforme restructures the topological connectivity of cerebrovascular networks. Sci Rep. 2019;9(1):1–17.

    Article  Google Scholar 

  286. Boucher Y, Salehi H, Witwer B, Harsh G, Jain R. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br J Cancer. 1997;75(6):829–36.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Ma Q, Schlegel F, Bachmann SB, Schneider H, Decker Y, Rudin M, et al. Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Sci Rep. 2019;9(1):1–10.

    Article  Google Scholar 

  288. Voelz K, Kondziella D, von Rautenfeld DB, Brinker T, Lüdemann W. A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol. 2007;113(5):569–75.

    Article  PubMed  Google Scholar 

  289. Castro BA, Imber BS, Chen R, McDermott MW, Aghi MK. Ventriculoperitoneal shunting for glioblastoma: risk factors, indications, and efficacy. Neurosurgery. 2017;80(3):421–30.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Glober NK, Sprague S, Ahmad S, Mayfield KG, Fletcher LM, Digicaylioglu MH, et al. Acetazolamide treatment prevents redistribution of astrocyte aquaporin 4 after murine traumatic brain injury. Neurosci J. 2019;2019:2831501.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Eide PK, Ringstad G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol Open. 2015;4(11):2058460115609635.

    PubMed  PubMed Central  Google Scholar 

  292. Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus. Glia. 2019;67(1):91–100.

    Article  PubMed  Google Scholar 

  293. Ringstad G, Eide PK. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat Commun. 2020;11(1):1–9.

    Article  Google Scholar 

  294. Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, et al. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013;11:107.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–44.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Vuillemenot BR, Kennedy D, Reed RP, Boyd RB, Butt MT, Musson DG, et al. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: safety, pharmacokinetics, and distribution. Toxicol Appl Pharmacol. 2014;277(1):49–57.

    Article  PubMed  Google Scholar 

  297. Householder KT, Dharmaraj S, Sandberg D, Wechsler-Reya R, Sirianni R. Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice. Sci Rep. 2019;9(1):1–11.

    Article  Google Scholar 

  298. Hinderer C, Bell P, Katz N, Vite CH, Louboutin J-P, Bote E, et al. Evaluation of intrathecal routes of administration for adeno-associated viral vectors in large animals. Hum Gene Ther. 2018;29(1):15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  299. Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9(1):1–5.

    Google Scholar 

  300. Herz A, Teschemacher H-J. Activities and sites of antinociceptive action of morphine-like analgesics and kinetics of distribution following intravenous, intracerebral and intraventricular application. Adv Drug Res. 1971;6:79–119.

    Google Scholar 

  301. Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metab. 2018;27(4):714–39.

    Article  PubMed  Google Scholar 

  302. Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier. Fluids Barriers CNS. 2018;15(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Malmberg AB, Yaksh TL. Pharmacology of the spinal action of ketorolac, morphine, ST-91, U50488H, and L-PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology. 1993;79(2):270–81.

    Article  PubMed  Google Scholar 

  304. Xue Y, Liu N, Zhang M, Ren X, Tang J, Jianhui F. Concomitant enlargement of perivascular spaces and decrease in glymphatic transport in an animal model of cerebral small vessel disease. Brain Res Bull. 2020;161:78–83.

    Article  PubMed  Google Scholar 

  305. Lonser RR. Imaging of convective drug delivery in the nervous system. Neurosurg Clin N Am. 2017;28(4):615–22.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol. 2020;87(3):357–69.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Iliff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jansson, D.J., Iliff, J.J. (2023). Emerging Insights into the Interstitial Distribution of Neuraxial Therapeutics via the Cerebrospinal Fluid Compartment. In: Yaksh, T., Hayek, S. (eds) Neuraxial Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-031-39558-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39558-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39557-4

  • Online ISBN: 978-3-031-39558-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics