Skip to main content

Formulation of Therapeutics for Neuraxial Infusion

  • Chapter
  • First Online:
Neuraxial Therapeutics

Abstract

Discussion or description of spinal delivery of therapeutics typically centers on the pharmacological agent to be administered both in terms of safety and efficacy. However, the pharmaceutical preparation of such agents for spinal delivery is equally important for appropriate biodistribution of the therapeutic and for safety. The unique properties of central nervous system tissue yield formulation requirements that are different from that of other parenteral routes of administration. In this chapter, we review the specific anatomical and physiological features of the central nervous system that drive formulation principles for neuraxial delivery and detail excipient properties that are considered appropriate for solutions intended for spinal drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Homer. The Odyssey. Ninth Century, B.C.E.

    Google Scholar 

  2. Brownstein MJ. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A. 1993;90(12):5391–3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Karaberopoulos D, Karamanou M, Androutsos G. The theriac in antiquity. Lancet. 2012;379(9830):1942–3.

    Article  PubMed  Google Scholar 

  4. Edwards SA. Paracelsus, the man who brought chemistry to medicine. American Association for the Advancement of Science. 2012; Scientia.

    Google Scholar 

  5. Davenport-Hines R. The pursuit of oblivion: a global history of narcotics. New York/London: Norton and Company; 2002. p. 32.

    Google Scholar 

  6. Sigerist HE. Laudanum in the works of Paracelsus. Bull Hist Med. 1941;9:530–44.

    Google Scholar 

  7. Wallace R. Scopolamine-morphine narcosis or twilight sleep. Edinburg Med J. 1919;22(2):87–102.

    Google Scholar 

  8. Stevens EB, Murphy JA. Materia Medica. Cincinnati Lancet Observer. 1876;7(5):320.

    Google Scholar 

  9. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, A MT. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed. 2015;5(5):376–91.

    PubMed  PubMed Central  Google Scholar 

  10. Tsuchiya H. Anesthetic agents of plant origin: A review of phytochemicals with anesthetic activity. Molecules. 2017;22(8)

    Google Scholar 

  11. Olcina GM, Simonart T. Severe vasculitis after therapy with diazepam. Am J Psychiatry. 1999;156(6):972–3.

    Article  PubMed  Google Scholar 

  12. Deer TR, Pope JE, Hayek SM, Bux A, Buchser E, Eldabe S, et al. The Polyanalgesic Consensus Conference (PACC): Recommendations on Intrathecal Drug Infusion Systems Best Practices and Guidelines. Neuromodulation. 2017;20(2):96–132.

    Article  PubMed  Google Scholar 

  13. Olmos-Jimenez R, Espuny-Miro A, Carceles Rodriguez C, Diaz-Carrasco MS. Practical aspects of the use of intrathecal chemotherapy. Farm Hosp. 2017;41(n01):105–29.

    PubMed  Google Scholar 

  14. FDA. Infumorph 200 Infumorph 500 (Preservative-free Morphine Sulfate Sterile Solution) CII; 2004. https://www.accessdatafdagov/drugsatfda_docs/label/2004/018565s012lbl.pdf. Accessed June 2020

  15. Administration FaD. PRESERVATIVE-FREE DURAMORPH (morphine sulfate injection, USP) CII; 2005. https://www.accessdatafdagov/drugsatfda_docs/label/2005/018565s014lbl.pdf. Accessed June 2020.

  16. Administration FaD. DepoDur™ (morphine sulfate extended-release liposome injection); 2006. https://www.accessdatafdagov/drugsatfda_docs/label/2006/021671s004lbl.pdf. Accessed June 2020.

  17. Admnistration FaD. PRIALT (ziconotide intrathecal infusion); 2007. https://www.accessdatafdagov/drugsatfda_docs/label/2007/021060s003lbl.pdf. Acccessed June 2020.

  18. Administration FaD. GABLOFEN (baclofen injection); 2010. https://www.accessdatafdagov/drugsatfda_docs/label/2010/022462s000lbl.pdf. Accessed June 2020.

  19. Administration FaD. LIORESAL ®INTRATHECAL (baclofen injection); 2010. https://www.accessdatafdagov/drugsatfda_docs/label/2011/020075s021lbl.pdf. Accessed June 2020.

  20. Administratiion FaD. DEPOCYT - cytarabine injection, lipid complex; 2011. https://www.accessdatafdagov/drugsatfda_docs/label/2011/021041s023lbl.pdf. Accessed June 2020.

  21. Administration FaD. Duraclon (clonidine hydrochloride) injection, solution; 2010. https://www.accessdatafdagov/drugsatfda_docs/label/2010/020615s003lbl.pdf. Accessed June 2020.

  22. Administration FaD. OMNIPAQUE™ (iohexol) Injection; 2017. https://www.accessdatafdagov/drugsatfda_docs/label/2017/018956s099lbl.pdf. Accessed June 2020.

  23. Administration FaD. Polymyxin B for Injection USP 500,000 Units Rx ONLY. 2012. https://www.accessdatafdagov/drugsatfda_docs/label/2012/060716s018lbl.pdf. Accessed June 2020.

  24. Ade T, Roh J, Sharma G, Mohan M, DeLozier SJ, Janes JL, et al. Comparative effectiveness of targeted intrathecal drug delivery using a combination of bupivacaine with either low-dose fentanyl or hydromorphone in chronic back pain patients with lumbar postlaminectomy syndrome. Pain Med. 2020;21(9):1921–8.

    Article  PubMed  Google Scholar 

  25. Nau R, Blei C, Eiffert H. Intrathecal antibacterial and antifungal therapies. Clin Microbiol Rev. 2020;33(3):e00190–19.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Contrl CfD. Multistate outbreak of fungal infection associated with injection of methylprednisolone acetate solution from a single compounding pharmacy — United States, 2012. MMWR Morb Mortal Wkly Rep. 2012;61(41):839–42.

    Google Scholar 

  27. Teshome BF, Reveles KR, Lee GC, Ryan L, Frei CR. How gaps in regulation of compounding pharmacy set the stage for a multistate fungal meningitis outbreak. J Am Pharm Assoc (2003). 2014;54(4):441–5.

    Article  PubMed  Google Scholar 

  28. Kauffman CA, Malani AN. Fungal infections associated with contaminated steroid injections. Microbiol Spectr. 2016;4(2)

    Google Scholar 

  29. Administration FaD. FDA Drug Safety Communication: FDA requires label changes to warn of rare but serious neurologic problems after epidural corticosteroid injections for pain; 2014. http://www.fda.gov/Drugs/DrugSafety/ucm394280.htm.

  30. Rauck RL. In: Krames ES, Peckham PH, Rezai AR, editors. Compounding intrathecal drugs. Elsevier; 2009. p. 1088.

    Google Scholar 

  31. Kamali-Zare P, Nicholson C. Brain extracellular space: geometry, matrix and physiological importance. Basic Clin Neurosci. 2013;4(4):282–6.

    PubMed  PubMed Central  Google Scholar 

  32. Wagemans MF, Bakker EN, Zuurmond WW, Spoelder EM, Van Loenen AC, De Lange JJ. Intrathecal administration of high-dose morphine solutions decreases the pH of cerebrospinal fluid. Pain. 1995;61(1):55–9.

    Article  PubMed  Google Scholar 

  33. Artru A. In: Yaksh TL, editor. Spinal cerebrospinial fluid chemsitry and physiology. Amsterdam: Elsevier; 1999.

    Google Scholar 

  34. Friese S, Hamhaber U, Erb M, Kueker W, Klose U. The influence of pulse and respiration on spinal cerebrospinal fluid pulsation. Invest Radiol. 2004;39(2):120–30.

    Article  PubMed  Google Scholar 

  35. McDowell GC 2nd, Pope JE. Intrathecal ziconotide: dosing and administration strategies in patients with refractory chronic pain. Neuromodulation. 2016;19(5):522–32.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dodou K. Intrathecal route of drug delivery can save lives or improve quality of life. Pharmac J. 2012;289:501.

    Google Scholar 

  37. Tangen KM, Leval R, Mehta AI, Linninger AA. Computational and in vitro experimental investigation of intrathecal drug distribution: parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake. Anesth Analg. 2017;124(5):1686–96.

    Article  PubMed  Google Scholar 

  38. Gambling DR, Yu P, Cole C, McMorland GH, Palmer L. A comparative study of patient controlled epidural analgesia (PCEA) and continuous infusion epidural analgesia (CIEA) during labour. Can J Anaesth. 1988;35(3(Pt 1)):249–54.

    Article  PubMed  Google Scholar 

  39. Sng BL, Zeng Y, de Souza NNA, Leong WL, Oh TT, Siddiqui FJ, et al. Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour. Cochrane Database Syst Rev. 2018;5:CD011344.

    PubMed  Google Scholar 

  40. Gropper M, Eriksson LI, Fleisher LA, Wiender-Kronish JP, Cohen NH, Leslie K, editors. Miller’s Anesthesia. 9th Edition. 2019.

    Google Scholar 

  41. Bevan S, Geppetti P. Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci. 1994;17(12):509–12.

    Article  PubMed  Google Scholar 

  42. Carattino MD, Montalbetti N. Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol. 2020;318(3):F531–F43.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sluka KA, Kalra A, Moore SA. Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve. 2001;24(1):37–46.

    Article  PubMed  Google Scholar 

  44. Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 2003;106(3):229–39.

    Article  PubMed  Google Scholar 

  45. Fanciullacci M, Tramontana M, Del Bianco E, Alessandri M, Geppetti P. Low pH medium induces calcium dependent release of CGRP from sensory nerves of guinea-pig dural venous sinuses. Life Sci. 1991;49(8):PL27-30.

    Article  PubMed  Google Scholar 

  46. Deer T, Ranson T, Stewart D. In: Krames ES, Peckham PH, Rezai AR, editors. Relevant anatomy for spinal delivery. Elsevier; 2009. p. 1088.

    Google Scholar 

  47. Kumar R, Berger RJ, Dunsker SB, Keller JT. Innervation of the spinal dura. Myth or reality? Spine (Phila Pa 1976). 1996;21(1):18–26.

    Article  PubMed  Google Scholar 

  48. Speck U, Press WR, Mutzel W. Osmolality-related effects of injections into the central nervous system. Invest Radiol. 1988;23(Suppl 1):S114–7.

    Article  PubMed  Google Scholar 

  49. Wibroe EA, Yri HM, Jensen RH, Wibroe MA, Hamann S. Osmolality of cerebrospinal fluid from patients with idiopathic intracranial hypertension (IIH). PLoS One. 2016;11(1):e0146793.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nelson DA, Landau WM. Intraspinal steroids: history, efficacy, accidentality, and controversy with review of United States Food and Drug Administration reports. J Neurol Neurosurg Psychiatry. 2001;70(4):433–43.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Furuhama K, Akahane-Shimoda K, Kato M. Optimum properties of injectable test solutions for intrathecal administration to conscious rats. J Vet Med Sci. 1997;59(12):1103–7.

    Article  PubMed  Google Scholar 

  52. Lucas JT, Ducker TB, Perot PL Jr. Adverse reactions to intrathecal saline injection for control of pain. J Neurosurg. 1975;42(5):557–61.

    Article  PubMed  Google Scholar 

  53. Kim RC, Porter RW, Choi BH, Kim SW. Myelopathy after the intrathecal administration of hypertonic saline. Neurosurgery. 1988;22(5):942–5.

    Article  PubMed  Google Scholar 

  54. King JS, Jewett DL, Sundberg HR. Differential blockade of cat dorsal root C fibers by various chloride solutions. J Neurosurg. 1972;36(5):569–83.

    Article  PubMed  Google Scholar 

  55. Jewett DL, King JS. Conduction block of monkey dorsal rootlets by water and hypertonic saline solutions. Exp Neurol. 1971;33(1):225–37.

    Article  PubMed  Google Scholar 

  56. de Lemos ML, Monfared S, Denyssevych T, Hamata L, Jennings S, Thiessen B, et al. Evaluation of osmolality and pH of various concentrations of methotrexate, cytarabine, and thiotepa prepared in normal saline, sterile water for injection, and lactated Ringer’s solution for intrathecal administration. J Oncol Pharm Pract. 2009;15(1):45–52.

    Article  PubMed  Google Scholar 

  57. Hocking G, Wildsmith JA. Intrathecal drug spread. Br J Anaesth. 2004;93(4):568–78.

    Article  PubMed  Google Scholar 

  58. Schiffer E, Van Gessel E, Gamulin Z. Influence of sex on cerebrospinal fluid density in adults. Br J Anaesth. 1999;83(6):943–4.

    Article  PubMed  Google Scholar 

  59. Richardson MG, Wissler RN. Density of lumbar cerebrospinal fluid in pregnant and nonpregnant humans. Anesthesiology. 1996;85(2):326–30.

    Article  PubMed  Google Scholar 

  60. Greene NM. Distribution of local anesthetic solutions within the subarachnoid space. Anesth Analg. 1985;64(7):715–30.

    Article  PubMed  Google Scholar 

  61. MacPherson RD. Pharmaceutics for the anaesthetist. Anaesthesia. 2001;56(10):965–79.

    Article  PubMed  Google Scholar 

  62. Meyer BK, Ni A, Hu B, Shi L. Antimicrobial preservative use in parenteral products: past and present. J Pharm Sci. 2007;96(12):3155–67.

    Article  PubMed  Google Scholar 

  63. Burbridge MA, Jaffe RA. Excipients in anesthesia medications. Anesth Analg. 2019;128(5):891–900.

    Article  PubMed  Google Scholar 

  64. Hetherington NJ, Dooley MJ. Potential for patient harm from intrathecal administration of preserved solutions. Med J Aust. 2000;173(3):141–3.

    Article  PubMed  Google Scholar 

  65. Bagshawe KD, Magrath IT, Golding PR. Intrathecal methotrexate. Lancet. 1969;2(7632):1258.

    Article  PubMed  Google Scholar 

  66. Craig DB, Habib GG. Flaccid paraparesis following obstetrical epidural anesthesia: possible role of benzyl alcohol. Anesth Analg. 1977;56(2):219–21.

    Article  PubMed  Google Scholar 

  67. Feasby TE, Hahn AF, Gilbert JJ. Neurotoxicity of bacteriostatic water. N Engl J Med. 1983;308(16):966–7.

    Article  PubMed  Google Scholar 

  68. Hahn AF, Feasby TE, Gilbert JJ. Paraparesis following intrathecal chemotherapy. Neurology. 1983;33(8):1032–8.

    Article  PubMed  Google Scholar 

  69. Saiki JH, Thompson S, Smith F, Atkinson R. Paraplegia following intrathecal chemotherapy. Cancer. 1972;29(2):370–4.

    Article  PubMed  Google Scholar 

  70. Society SI. Best practices for epidural steroid injections in the setting of a preservative-free dexamethasone shortage. Spine Intervention Society Position Statement. 2019. spineintervention.org.

  71. D’Souza RS, Warner NS. Phenol nerve block. StatPearls, Treasure Island, FL; 2020.

    Google Scholar 

  72. Pinder C, Bhakta B, Kodavali K. Intrathecal phenol: an old treatment revisited. Disabil Rehabil. 2008;30(5):381–6.

    Article  PubMed  Google Scholar 

  73. Clausi A, Chouvenc P. Formulation approach for the development of a stable, lyophilized formaldehyde-containing vaccine. Eur J Pharm Biopharm. 2013;85(2):272–8.

    Article  PubMed  Google Scholar 

  74. Thaysen-Andersen M, Jorgensen SB, Wilhelmsen ES, Petersen JW, Hojrup P. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin. Vaccine. 2007;25(12):2213–27.

    Article  PubMed  Google Scholar 

  75. Wang BC, Hillman DE, Spielholz NI, Turndorf H. Chronic neurological deficits and Nesacaine-CE—an effect of the anesthetic, 2-chloroprocaine, or the antioxidant, sodium bisulfite? Anesth Analg. 1984;63(4):445–7.

    Article  PubMed  Google Scholar 

  76. Ready LB, Plumer MH, Haschke RH, Austin E, Sumi SM. Neurotoxicity of intrathecal local anesthetics in rabbits. Anesthesiology. 1985;63(4):364–70.

    Article  PubMed  Google Scholar 

  77. Hersh EV, Condouris GA, Havelin D. Actions of intrathecal chloroprocaine and sodium bisulfite on rat spinal reflex function utilizing a noninvasive technique. Anesthesiology. 1990;72(6):1077–82.

    Article  PubMed  Google Scholar 

  78. Takenami T, Hiruma H, Kaneko H, Okamoto H, Kawakami T. Effects of sodium bisulfite with or without procaine derivatives on axons of cultured mouse dorsal root ganglion neurons. Reg Anesth Pain Med. 2015;40(1):62–7.

    Article  PubMed  Google Scholar 

  79. Taniguchi M, Bollen AW, Drasner K. Sodium bisulfite: scapegoat for chloroprocaine neurotoxicity? Anesthesiology. 2004;100(1):85–91.

    Article  PubMed  Google Scholar 

  80. Goldblum E, Atchabahian A. The use of 2-chloroprocaine for spinal anaesthesia. Acta Anaesthesiol Scand. 2013;57(5):545–52.

    Article  PubMed  Google Scholar 

  81. Sjoberg M, Karlsson PA, Nordborg C, Wallgren A, Nitescu P, Appelgren L, et al. Neuropathologic findings after long-term intrathecal infusion of morphine and bupivacaine for pain treatment in cancer patients. Anesthesiology. 1992;76(2):173–86.

    Article  PubMed  Google Scholar 

  82. Schroeder KM, Borden SB, Ludwig TA, Wilson E. Single-use or preservative-free does not equate to sulfite-free. Newsletter Anesth Patient Safety Found. 2019;34(2)

    Google Scholar 

  83. Katdare A, Chaubal M. Excipient development for pharmaceutical, biotechnology, and drug delivery. New Yoork/London: INFORMA; 2006. p. 171.

    Book  Google Scholar 

  84. Soni MG, Carabin IG, Burdock GA. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol. 2005;43(7):985–1015.

    Article  PubMed  Google Scholar 

  85. Fukuda T, Dohi S. Anaphylactic reaction to fentanyl or preservative. Can Anaesth Soc J. 1986;33(6):826–7.

    Article  PubMed  Google Scholar 

  86. Adams HJ, Mastri AR, Charron D. Morphological effects of subarachnoid methylparaben on rabbit spinal cord. Pharmacol Res Commun. 1977;9(6):547–51.

    Article  PubMed  Google Scholar 

  87. Mizuno K, Ogawa S, Itoh S. Suppressive effect of methylparaben on the evoked compound action potentials in excised rabbit cervical vagus nerve. Masui. 1994;43(7):1008–14.

    PubMed  Google Scholar 

  88. Cerda SE, Tong C, Deal DD, Eisenach JC. A physiologic assessment of intrathecal amitriptyline in sheep. Anesthesiology. 1997;86(5):1094–103.

    Article  PubMed  Google Scholar 

  89. Eisenach JC, Hood DD, Curry R. Phase I human safety assessment of intrathecal neostigmine containing methyl- and propylparabens. Anesth Analg. 1997;85(4):842–6.

    Article  PubMed  Google Scholar 

  90. Benzon HT, Gissen AJ, Strichartz GR, Avram MJ, Covino BG. The effect of polyethylene glycol on mammalian nerve impulses. Anesth Analg. 1987;66(6):553–9.

    Article  PubMed  Google Scholar 

  91. Rowe RC, Sheskey PJ, Owen SC, editors. Polyethyleme glycol. 5th ed. London: Pharmaceutical Press/American Pharmacy Association; 2006.

    Google Scholar 

  92. Kang CE, Tator CH, Shoichet MS. Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system. J Control Release. 2010;144(1):25–31.

    Article  PubMed  Google Scholar 

  93. Schlatter J, Nguyen D, Zamy M, Kabiche S, Fontan JE, Cisternino S. Safety of intrathecal route: focus to methylprednisolone acetate (Depo-Medrol) use. Eur Spine J. 2019;28(1):21–30.

    Article  PubMed  Google Scholar 

  94. Nelson DA. Dangers from methylprednisolone acetate therapy by intraspinal injection. Arch Neurol. 1988;45(7):804–6.

    Article  PubMed  Google Scholar 

  95. Knezevic NN, Candido KD, Cokic I, Krbanjevic A, Berth SL, Knezevic I. Cytotoxic effect of commercially available methylprednisolone acetate with and without reduced preservatives on dorsal root ganglion sensory neurons in rats. Pain Physician. 2014;17(5):E609–18.

    Article  PubMed  Google Scholar 

  96. Rathmell JP, Benzon HT, Dreyfuss P, Huntoon M, Wallace M, Baker R, et al. Safeguards to prevent neurologic complications after epidural steroid injections: consensus opinions from a multidisciplinary working group and national organizations. Anesthesiology. 2015;122(5):974–84.

    Article  PubMed  Google Scholar 

  97. Okubadejo GO, Talcott MR, Schmidt RE, Sharma A, Patel AA, Mackey RB, et al. Perils of intravascular methylprednisolone injection into the vertebral artery. An animal study. J Bone Joint Surg Am. 2008;90(9):1932–8.

    Article  PubMed  Google Scholar 

  98. Rijsdijk M, van Wijck AJ, Kalkman CJ, Meulenhoff PC, Grafe MR, Steinauer J, et al. Safety assessment and pharmacokinetics of intrathecal methylprednisolone acetate in dogs. Anesthesiology. 2012;116(1):170–81.

    Article  PubMed  Google Scholar 

  99. Cooper JF, Latta KS, Smith D. Automated endotoxin testing program for high-risk-level compounded sterile preparations at an institutional compounding pharmacy. Am J Health Syst Pharm. 2010;67(4):280–6.

    Article  PubMed  Google Scholar 

  100. Cooper JF, Thoma LA. Screening extemporaneously compounded intraspinal injections with the bacterial endotoxins test. Am J Health Syst Pharm. 2002;59(24):2426–33.

    Article  PubMed  Google Scholar 

  101. Bertani B, Ruiz N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus. 2018;8(1):10–128.

    Article  PubMed Central  Google Scholar 

  102. Aurell CA, Wistrom AO. Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS). Biochem Biophys Res Commun. 1998;253(1):119–23.

    Article  PubMed  Google Scholar 

  103. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bruno K, Woller SA, Miller YI, Yaksh TL, Wallace M, Beaton G, et al. Targeting toll-like receptor-4 (TLR4)-an emerging therapeutic target for persistent pain states. Pain. 2018;159(10):1908–15.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985;229(4716):869–71.

    Article  PubMed  Google Scholar 

  106. Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parillo JE. Endotoxemia in human septic shock. Chest. 1991;99(1):169–75.

    Article  PubMed  Google Scholar 

  107. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988;81(4):1162–72.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Brandtzaeg P, Mollnes TE, Kierulf P. Complement activation and endotoxin levels in systemic meningococcal disease. J Infect Dis. 1989;160(1):58–65.

    Article  PubMed  Google Scholar 

  109. Bryans TD, Braithwaite C, Broad J, Cooper JF, Darnell KR, Hitchins VM, et al. Bacterial endotoxin testing: a report on the methods, background, data, and regulatory history of extraction recovery efficiency. Biomed Instrum Technol. 2004;38(1):73–8.

    Article  PubMed  Google Scholar 

  110. Administration FaD. Guidance Bacterial Endotoxins/Pyrogens; 2014. https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-technical-guides/bacterial-endotoxinspyrogens

  111. Buerkle H, Yaksh TL. Continuous intrathecal administration of shortlasting mu opioids remifentanil and alfentanil in the rat. Anesthesiology. 1996;84(4):926–35.

    Article  PubMed  Google Scholar 

  112. FDA. Ultiva for Injection (remifentanil hydrochloride) for IV Use ONly. accessdatafdaorg; 2004. accessdata.fda.gov/;drugsatfda_dox/label/2004/206030se5-005_ultiva_lbl.pdf.

  113. Hornfeldt CS, Larson AA. Seizures induced by fluoroacetic acid and fluorocitric acid may involve chelation of divalent cations in the spinal cord. Eur J Pharmacol. 1990;179(3):307–13.

    Article  PubMed  Google Scholar 

  114. Wang BC, Li D, Hiller JM, Simon EJ, Budzilovich G, Hillman DE. Lumbar subarachnoid ethylenediaminetetraacetate induces hindlimb tetanic contractions in rats: prevention by CaCl2 pretreatment; observation of spinal nerve root degeneration. Anesth Analg. 1992;75(6):895–9.

    Article  PubMed  Google Scholar 

  115. Stevens RA, Urmey WF, Urquhart BL, Kao TC. Back pain after epidural anesthesia with chloroprocaine. Anesthesiology. 1993;78(3):492–7.

    Article  PubMed  Google Scholar 

  116. Benzon HT, Asher YG, Hartrick CT. Back pain and neuraxial anesthesia. Anesth Analg. 2016;122(6):2047–58.

    Article  PubMed  Google Scholar 

  117. Mamet J, Yeomans DC, Yaksh TL, Manning DC, Harris S. Editor’s highlight: formulation and toxicology evaluation of the intrathecal AYX1 DNA-decoy in sprague dawley rats. Toxicol Sci. 2017;159(1):76–85.

    Article  PubMed  Google Scholar 

  118. Sia AT, Tan KH, Sng BL, Lim Y, Chan ES, Siddiqui FJ. Use of hyperbaric versus isobaric bupivacaine for spinal anaesthesia for caesarean section. Cochrane Database Syst Rev. 2013;(5):CD005143.

    Google Scholar 

  119. Uppal V, Retter S, Shanthanna H, Prabhakar C, McKeen DM. Hyperbaric versus isobaric bupivacaine for spinal anesthesia: systematic review and meta-analysis for adult patients undergoing noncesarean delivery surgery. Anesth Analg. 2017;125(5):1627–37.

    Article  PubMed  Google Scholar 

  120. Critchley LA, Morley AP, Derrick J. The influence of baricity on the haemodynamic effects of intrathecal bupivacaine 0.5%. Anaesthesia. 1999;54(5):469–74.

    Article  PubMed  Google Scholar 

  121. Aldrete JA. Epidural dextran for PDPH. Reg Anesth. 1993;18(5):325–6.

    PubMed  Google Scholar 

  122. Chanimov M, Berman S, Cohen ML, Friedland M, Weissgarten J, Averbukh Z, et al. Dextran 40 (Rheomacrodex) or Polygeline (Haemaccel) as an epidural patch for post dural puncture headache: a neurotoxicity study in a rat model of Dextran 40 and Polygeline injected intrathecally. Eur J Anaesthesiol. 2006;23(9):776–80.

    Article  PubMed  Google Scholar 

  123. Evans PJ, Lloyd JW, Wood GJ. Accidental intrathecal injection of bupivacaine and dextran. Anaesthesia. 1981;36(7):685–7.

    Article  PubMed  Google Scholar 

  124. Wu L, Luo L, Dong L. Neurologic complication after intrathecal injection of polygeline: a case report. Int J Clin Exp Med. 2018;11:8797–800.

    Google Scholar 

  125. Maher RM. Relief of pain in incurable cancer. Lancet. 1955;268(6853):18–20.

    Article  PubMed  Google Scholar 

  126. Loo NH, Matchett G. Use of a tilting orthopedic fracture table to facilitate proper patient positioning during intrathecal neurolysis with hyperbaric phenol: a case report. A A Case Rep. 2017;9(6):164–8.

    Article  PubMed  Google Scholar 

  127. Iwatsubo E, Okada E, Takehara T, Tamada K, Akatsu T. Selective intrathecal phenol block to improve activities of daily living in patients with spastic quadriplegia. A preliminary report. Paraplegia. 1994;32(7):489–92.

    PubMed  Google Scholar 

  128. Scott BA, Weinstein Z, Chiteman R, Pulliam MW. Intrathecal phenol and glycerin in metrizamide for treatment of intractable spasms in paraplegia. Case report. J Neurosurg. 1985;63(1):125–7.

    Article  PubMed  Google Scholar 

  129. King H, Xiao CS, Wooten DJ. Prolongation of epidural bupivacaine analgesia with glycerin. Can J Anaesth. 1993;40(5 Pt 1):431–4.

    Article  PubMed  Google Scholar 

  130. Cheng JS, Lim DA, Chang EF, Barbaro NM. A review of percutaneous treatments for trigeminal neuralgia. Neurosurgery. 2014;10 Suppl 1:25–33; discussion

    PubMed  Google Scholar 

  131. Doherty MM, Hughes PJ, Korszniak NV, Charman WN. Prolongation of lidocaine-induced epidural anesthesia by medium molecular weight hyaluronic acid formulations: pharmacodynamic and pharmacokinetic studies in the rabbit. Anesth Analg. 1995;80(4):740–6.

    PubMed  Google Scholar 

  132. Hassan HG, Akerman B, Renck H, Lindberg B, Lindquist B. Effects of adjuvants to local anaesthetics on their duration. III. Experimental studies of hyaluronic acid. Acta Anaesthesiol Scand. 1985;29(4):384–8.

    Article  PubMed  Google Scholar 

  133. Doherty MM, Hughes PJ, Charman SA, Brock KV, Korszniak NV, Charman WN. Biphasic drug absorption from the epidural space of the dog may limit the utility of a slow release medium molecular weight hyaluronic acid-lidocaine ionic complex formulation. Anesth Analg. 1996;83(6):1244–50.

    Article  PubMed  Google Scholar 

  134. Dollo G, Malinovsky JM, Peron A, Chevanne F, Pinaud M, Le Verge R, et al. Prolongation of epidural bupivacaine effects with hyaluronic acid in rabbits. Int J Pharm. 2004;272(1-2):109–19.

    Article  PubMed  Google Scholar 

  135. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–57.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yaksh TL, Jang JD, Nishiuchi Y, Braun KP, Ro SG, Goodman M. The utility of 2-hydroxypropyl-beta-cyclodextrin as a vehicle for the intracerebral and intrathecal administration of drugs. Life Sci. 1991;48(7):623–33.

    Article  PubMed  Google Scholar 

  137. Kao ML, Stellar S, Solon E, Lordi A, Kasica N, Swain G, et al. Pharmacokinetics and distribution of 2-hydroxypropyl-beta-cyclodextrin following a single intrathecal dose to cats. J Inherit Metab Dis. 2020;43(3):618–34.

    Article  PubMed  Google Scholar 

  138. Ulloa ML, Froyshteter AB, Kret LN, Chang DP, Sarah GE, McCarthy RJ, et al. Anesthetic management of pediatric patients with niemann-pick disease type C for intrathecal 2-hydroxypropyl-beta-cyclodextrin Injection. Paediatr Anaesth. 2020;30(7):766–72.

    Article  PubMed  Google Scholar 

  139. Farmer CA, Thurm A, Farhat N, Bianconi S, Keener LA, Porter FD. Long-term neuropsychological outcomes from an open-label phase I/IIa trial of 2-hydroxypropyl-beta-cyclodextrins (VTS-270) in Niemann-pick disease, type C1. CNS Drugs. 2019;33(7):677–83.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Berry-Kravis E, Chin J, Hoffmann A, Winston A, Stoner R, LaGorio L, et al. Long-term treatment of niemann-pick type C1 disease with intrathecal 2-hydroxypropyl-beta-cyclodextrin. Pediatr Neurol. 2018;80:24–34.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Fowler MJ, Cotter JD, Knight BE, Sevick-Muraca EM, Sandberg DI, Sirianni RW. Intrathecal drug delivery in the era of nanomedicine. Adv Drug Deliv Rev. 2020;165:77–95.

    Article  PubMed  Google Scholar 

  142. Ory DS, Ottinger EA, Farhat NY, King KA, Jiang X, Weissfeld L, et al. Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial. Lancet. 2017;390(10104):1758–68.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Freville JC, Dollo G, Le Corre P, Chevanne F, Le Verge R. Controlled systemic absorption and increased anesthetic effect of bupivacaine following epidural administration of bupivacaine-hydroxypropyl-beta-cyclodextrin complex. Pharm Res. 1996;13(10):1576–80.

    Article  PubMed  Google Scholar 

  144. Karashima K, Taniguchi M, Nakamura T, Takasaki M, Matsuo K, Irikura M, et al. Prolongation of intrathecal and sciatic nerve blocks using a complex of levobupivacaine with maltosyl-beta-cyclodextrin in rats. Anesth Analg. 2007;104(5):1121–8. tables of contents

    Article  PubMed  Google Scholar 

  145. Woller SA, Choi SH, An EJ, Low H, Schneider DA, Ramachandran R, et al. Inhibition of neuroinflammation by AIBP: spinal effects upon facilitated pain states. Cell Rep. 2018;23(9):2667–77.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Jang J, Yaksh TL, Hill HF. Use of 2-hydroxypropyl-beta-cyclodextrin as an intrathecal drug vehicle with opioids. J Pharmacol Exp Ther. 1992;261(2):592–600.

    PubMed  Google Scholar 

  147. Holvoet C, Plaizier-Vercammen J, Vander Heyden Y, Gabriels M, Camu F. Preparation and in-vitro release rate of fentanyl-cyclodextrin complexes for prolonged action in epidural analgesia. Int J Pharm. 2003;265(1-2):13–26.

    Article  PubMed  Google Scholar 

  148. Bernards CM. Effect of (hydroxypropyl)-beta-cyclodextrin on flux of morphine, fentanyl, sufentanil, and alfentanil through the spinal meninges of monkey. J Pharm Sci. 1994;83(5):620–2.

    Article  PubMed  Google Scholar 

  149. Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine. 2016;11:5381–414.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yuchong C, Jianghan C, Hai W, Julin G. Lumbar puncture drainage with intrathecal injection of amphotericin B for control of cryptococcal meningitis. Mycoses. 2011;54(4):e248–51.

    Article  PubMed  Google Scholar 

  152. Alvarez-Uria G, Midde M, Battula J, Pujari HNB. Safety and tolerability of intrathecal liposomal amphotericin B (AmBisome) for cryptococcal meningitis: a retrospective study in HIV-infected patients. Ther Adv Infect Dis. 2018;5(5):77–81.

    PubMed  PubMed Central  Google Scholar 

  153. Levinsen M, Harila-Saari A, Grell K, Jonsson OG, Taskinen M, Abrahamsson J, et al. Efficacy and toxicity of intrathecal liposomal cytarabine in first-line therapy of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2016;38(8):602–9.

    Article  PubMed  Google Scholar 

  154. Administration USDoHaHSFaD. Liposome drug products- chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation- guidance for industry. ed Center for Drug Evaluation and Research (CDER)). 2018.

    Google Scholar 

  155. Cheng R, Liu L, Xiang Y, Lu Y, Deng L, Zhang H, et al. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials. 2020;232:119706.

    Article  PubMed  Google Scholar 

  156. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharmac. 1997;154:123–40.

    Article  Google Scholar 

  158. Lambert W, Los K. Modified-release drug delivery technology. 2008:207–214.

    Google Scholar 

  159. Madden TD, Harrigan PR, Tai LC, Bally MB, Mayer LD, Redelmeier TE, et al. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990;53(1):37–46.

    Article  PubMed  Google Scholar 

  160. Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231–42.

    Article  PubMed  Google Scholar 

  161. Ishida T, Takanashi Y, Kiwada H. Safe and efficient drug delivery system with liposomes for intrathecal application of an antivasospastic drug, fasudil. Biol Pharm Bull. 2006;29(3):397–402.

    Article  PubMed  Google Scholar 

  162. Isackson J, Wallace MS, Ho RJ, Shen DD, Yaksh TL. Antinociception and side effects of L- and D-dipalmitoylphosphatidyl choline liposome-encapsulated alfentanil after spinal delivery in rats. Pharmacol Toxicol. 1995;77(5):333–40.

    Article  PubMed  Google Scholar 

  163. Wallace MS, Yanez AM, Ho RJ, Shen DD, Yaksh TL. Antinociception and side effects of liposome-encapsulated alfentanil after spinal delivery in rats. Anesth Analg. 1994;79(4):778–86.

    Article  PubMed  Google Scholar 

  164. Cipolla D, Wu H, Eastman S, Redelmeier T, Gonda I, Chan HK. Development and characterization of an in vitro release assay for liposomal ciprofloxacin for inhalation. J Pharm Sci. 2014;103:314–27.

    Article  Google Scholar 

  165. Mantripragada S. A lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog Lipid Res. 2002;41(5):392–406.

    Article  PubMed  Google Scholar 

  166. Vermehren C, Kiebler T, Hylander I, Callisen TH, Jorgensen K. Increase in phospholipase A2 activity towards lipopolymer-containing liposomes. Biochim Biophys Acta. 1998;1373(1):27–36.

    Article  PubMed  Google Scholar 

  167. Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev. 2019;148:146–80.

    Article  PubMed  Google Scholar 

  168. Viscusi E. DepoDurTM: A new drug formulation with unique safety features. Newsletter. 2005;20(3):50–1.

    Google Scholar 

  169. Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, et al. Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immun. 2012;4(5-6):509–28.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Umbrain V, Alafandy M, Bourgeois P, D’Haese J, Boogaerts JG, Goffinet G, et al. Biodistribution of liposomes after extradural administration in rodents. Br J Anaesth. 1995;75(3):311–8.

    Article  PubMed  Google Scholar 

  171. Umbrain V, D’Haese J, Alafandy M, De Roover E, Schoutens A, Van Gansbeke B, et al. Scintigraphic visualization of intrathecal liposome biodistribution. Acta Anaesthesiol Scand. 1997;41(1 Pt 1):25–34.

    Article  PubMed  Google Scholar 

  172. Boogaerts JG, Lafont ND, Carlino S, Noel E, Raynal P, Goffinet G, et al. Biodistribution of liposome-associated bupivacaine after extradural administration to rabbits. Br J Anaesth. 1995;75(3):319–25.

    Article  PubMed  Google Scholar 

  173. Lafont ND, Legros FJ, Boogaerts JG. Use of liposome-associated bupivacaine in a cancer pain syndrome. Anaesthesia. 1996;51(6):578–9.

    Article  PubMed  Google Scholar 

  174. Viscusi ER, Candiotti KA, Onel E, Morren M, Ludbrook GL. The pharmacokinetics and pharmacodynamics of liposome bupivacaine administered via a single epidural injection to healthy volunteers. Reg Anesth Pain Med. 2012;37(6):616–22.

    Article  PubMed  Google Scholar 

  175. Joshi GP, Patou G, Kharitonov V. The safety of liposome bupivacaine following various routes of administration in animals. J Pain Res. 2015;8:781–9.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Bujedo BM, Santos SG, Azpiazu AU. A review of epidural and intrathecal opioids used in the management of postoperative pain. J Opioid Manag. 2012;8(3):177–92.

    Article  PubMed  Google Scholar 

  177. Kim T, Murdande S, Gruber A, Kim S. Sustained-release morphine for epidural analgesia in rats. Anesthesiology. 1996;85(2):331–8.

    Article  PubMed  Google Scholar 

  178. Gambling D, Hughes T, Martin G, Horton W, Manvelian G. A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth Analg. 2005;100(4):1065–74.

    Article  PubMed  Google Scholar 

  179. Carvalho B, Roland LM, Chu LF, Campitelli VA 3rd, Riley ET. Single-dose, extended-release epidural morphine (DepoDur) compared to conventional epidural morphine for post-cesarean pain. Anesth Analg. 2007;105(1):176–83.

    Article  PubMed  Google Scholar 

  180. Grant GJ, Cascio M, Zakowski MI, Langerman L, Turndorf H. Intrathecal administration of liposomal morphine in a mouse model. Anesth Analg. 1995;81(3):514–8.

    PubMed  Google Scholar 

  181. Burch RM. Reply to “Management of accidental spinal administration of extended-release epidural morphine” by Gerancher and Anesthesiology. 2008;108(6):1147–9; discussion 9

    Google Scholar 

  182. Bernards CM, Luger TJ, Malmberg AB, Hill HF, Yaksh TL. Liposome encapsulation prolongs alfentanil spinal analgesia and alters systemic redistribution in the rat. Anesthesiology. 1992;77(3):529–35.

    Article  PubMed  Google Scholar 

  183. Bethune CR, Bernards CM, Bui-Nguyen T, Shen DD, Ho RJ. The role of drug-lipid interactions on the disposition of liposome-formulated opioid analgesics in vitro and in vivo. Anesth Analg. 2001;93(4):928–33.

    Article  PubMed  Google Scholar 

  184. Glantz MJ, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR, et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol. 1999;17(10):3110–6.

    Article  PubMed  Google Scholar 

  185. Peyrl A, Sauermann R, Traunmueller F, Azizi AA, Gruber-Olipitz M, Gupper A, et al. Pharmacokinetics and safety of intrathecal liposomal cytarabine in children aged <3 years. Clin Pharmacokinet. 2009;48(4):265–71.

    Article  PubMed  Google Scholar 

  186. van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res. 2002;12(1-2):81–94.

    Article  PubMed  Google Scholar 

  187. Mert T, Sahin M, Sahin E, Yaman S. Anti-inflammatory properties of Liposome-encapsulated clodronate or Anti-Ly6G can be modulated by peripheral or central inflammatory markers in carrageenan-induced inflammation model. Inflammopharmacology. 2019;27(3):603–12.

    Article  PubMed  Google Scholar 

  188. Wang YR, Mao XF, Wu HY, Wang YX. Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun. 2018;499(3):499–505.

    Article  PubMed  Google Scholar 

  189. Bitounis D, Fanciullino R, Iliadis A, Ciccolini J. Optimizing druggability through liposomal formulations: new approaches to an old concept. ISRN Pharm. 2012;2012:738432.

    PubMed  PubMed Central  Google Scholar 

  190. Yanez AM, Wallace M, Ho R, Shen D, Yaksh TL. Touch-evoked agitation produced by spinally administered phospholipid emulsion and liposomes in rats. Structure-activity relation. Anesthesiology. 1995;82(5):1189–98.

    Article  PubMed  Google Scholar 

  191. Zuidema JM, Gilbert RJ, Osterhout DJ. Nanoparticle technologies in the spinal cord. Cells Tissues Organs. 2016;202(1-2):102–15.

    Article  PubMed  Google Scholar 

  192. Kheirkhah P, Denyer S, Bhimani AD, Arnone GD, Esfahani DR, Aguilar T, et al. Magnetic drug targeting: a novel treatment for intramedullary spinal cord tumors. Sci Rep. 2018;8(1):11417.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Wu PC, Shieh DB, Hsiao HT, Wang JC, Lin YC, Liu YC. Magnetic field distribution modulation of intrathecal delivered ketorolac iron-oxide nanoparticle conjugates produce excellent analgesia for chronic inflammatory pain. J Nanobiotechnol. 2018;16(1):49.

    Article  Google Scholar 

  194. Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res. 2014;39(9):1648–60.

    Article  PubMed  Google Scholar 

  195. Pal A, Singh A, Nag TC, Chattopadhyay P, Mathur R, Jain S. Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection. Int J Nanomedicine. 2013;8:2259–72.

    PubMed  PubMed Central  Google Scholar 

  196. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22.

    Article  PubMed  Google Scholar 

  197. Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17(3):247–89.

    Article  PubMed  Google Scholar 

  198. Han FY, Thurecht KJ, Lam AL, Whittaker AK, Smith MT. Novel polymeric bioerodable microparticles for prolonged-release intrathecal delivery of analgesic agents for relief of intractable cancer-related pain. J Pharm Sci. 2015;104(7):2334–44.

    Article  PubMed  Google Scholar 

  199. Ratajczak-Enselme M, Estebe JP, Dollo G, Chevanne F, Bec D, Malinovsky JM, et al. Epidural, intrathecal and plasma pharmacokinetic study of epidural ropivacaine in PLGA-microspheres in sheep model. Eur J Pharm Biopharm. 2009;72(1):54–61.

    Article  PubMed  Google Scholar 

  200. Estebe JP, Le Corre P, Malledant Y, Chevanne F, Leverge R. Prolongation of spinal anesthesia with bupivacaine-loaded (DL-lactide) microspheres. Anesth Analg. 1995;81(1):99–103.

    PubMed  Google Scholar 

  201. Le Guevello P, Le Corre P, Chevanne F, Le Verge R. High-performance liquid chromatographic determination of bupivacaine in plasma samples for biopharmaceutical studies and application to seven other local anaesthetics. J Chromatogr. 1993;622(2):284–90.

    Article  PubMed  Google Scholar 

  202. Lagarce F, Renaud P, Faisant N, Nicolas G, Cailleux A, Richard J, et al. Baclofen-loaded microspheres: preparation and efficacy testing in a new rabbit model. Eur J Pharm Biopharm. 2005;59(3):449–59.

    Article  PubMed  Google Scholar 

  203. Hu X, Huang F, Szymusiak M, Tian X, Liu Y, Wang ZJ. PLGA-curcumin attenuates opioid-induced hyperalgesia and inhibits spinal CaMKIIalpha. PLoS One. 2016;11(1):e0146393.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Pieretti S, Ranjan AP, Di Giannuario A, Mukerjee A, Marzoli F, Di Giovannandrea R, et al. Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice. Colloids Surf B Biointerfaces. 2017;158:379–86.

    Article  PubMed  Google Scholar 

  205. Hanggi D, Macdonald RL. Response by Hanggi and Macdonald to Letter Regarding Article, “Randomized, Open-label, phase 1/2a study to determine the maximum tolerated dose of intraventricular sustained release nimodipine for subarachnoid hemorrhage (NEWTON [nimodipine microparticles to enhance recovery while reducing toxicity after subarachnoid hemorrhage])”. Stroke. 2017;48(4):e114.

    Article  PubMed  Google Scholar 

  206. Hanggi D, Etminan N, Mayer SA, Aldrich EF, Diringer MN, Schmutzhard E, et al. Clinical trial protocol: phase 3, multicenter, randomized, double-blind, placebo-controlled, parallel-group, efficacy, and safety study comparing EG-1962 to standard of care oral nimodipine in adults with aneurysmal subarachnoid hemorrhage [NEWTON-2 (nimodipine microparticles to enhance recovery while reducing toxicity after subarachnoid hemorrhage)]. Neurocrit Care. 2019;30(1):88–97.

    Article  PubMed  Google Scholar 

  207. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ghafoor VL, Epshteyn M, Carlson GH, Terhaar DM, Charry O, Phelps PK. Intrathecal drug therapy for long-term pain management. Am J Health Syst Pharm. 2007;64(23):2447–61.

    Article  PubMed  Google Scholar 

  209. Noon K, Porree LR, Jones RCW. In: Anitescu M, Benzon H, Wallace M, editors. Intrathecal pump malfunction: flipped, expired, stalled, and malfunctioned valves and rotors leading to under- and over-infusion. Cham: Springer; 2018. 17, August, 2017.

    Google Scholar 

  210. Medtronic. Increased risk of motor stall and loss of or change in therapy with unapproved drug formulations. 2012:1–2.

    Google Scholar 

  211. McEwan MT, Hayek SM, Galica R, Sundaram V, Veizi E. Sudden intrathecal drug delivery device motor stalls: a case series update. Reg Anesth Pain Med. 2018;43(6):654–5.

    Article  PubMed  Google Scholar 

  212. Galica R, Hayek SM, Veizi IE, Lawrence MM, Khalil AA, McEwan MT. Sudden intrathecal drug delivery device motor stalls: a case series. Reg Anesth Pain Med. 2016;41(2):135–9.

    Article  PubMed  Google Scholar 

  213. Konrad PE, Huffman JM, Stearns LM, Plunkett RJ, Grigsby EJ, Stromberg EK, et al. Intrathecal drug delivery systems (IDDS): the implantable systems performance registry (ISPR). Neuromodulation. 2016;19(8):848–56.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Adminsitration FD. 2018. https://www.fda.gov/medical-devices/safety-communications/use-caution-implanted-pumps-intrathecal-administration-medicines-pain-management-fda-safety

  215. Allen JW, Horais KA, Tozier NA, Yaksh TL. Opiate pharmacology of intrathecal granulomas. Anesthesiology. 2006;105(3):590–8.

    Article  PubMed  Google Scholar 

  216. Codipietro L, Maino P. Aseptic arachnoiditis in a patient treated with intrathecal morphine infusion: symptom resolution on switch to ziconotide. Neuromodulation. 2015;18(3):217–20. discussion 20

    Article  PubMed  Google Scholar 

  217. Veizi IE, Hayek SM, Hanes M, Galica R, Katta S, Yaksh T. Primary hydromorphone-related intrathecal catheter tip granulomas: is there a role for dose and concentration? Neuromodulation. 2016;19(7):760–9.

    Article  PubMed  Google Scholar 

  218. Kim AJ, Basu S, Glass C, Ross EL, Agar N, He Q, et al. Unique intradural inflammatory mass containing precipitated morphine: confirmatory analysis by LESA-MS and MALDI-MS. Pain Pract. 2018;18(7):889–94.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Yaksh TL. Letter to Editor re: “Unique intradural inflammatory mass containing precipitated morphine” by Kim et al. Pain Pract. 2019;19(4):456.

    Article  PubMed  Google Scholar 

  220. Yaksh TL, Eddinger KA, Kokubu S, Wang Z, DiNardo A, Ramachandran R, et al. Mast cell degranulation and fibroblast activation in the morphine-induced spinal mass: role of mas-related g protein-coupled receptor signaling. Anesthesiology. 2019;131(1):132–47.

    Article  PubMed  Google Scholar 

  221. Liu H, Tariq R, Liu GL, Yan H, Kaye AD. Inadvertent intrathecal injections and best practice management. Acta Anaesthesiol Scand. 2017;61(1):11–22.

    Article  PubMed  Google Scholar 

  222. Beckers A, Verelst P, van Zundert A. Inadvertent epidural injection of drugs for intravenous use. A review. Acta Anaesthesiol Belg. 2012;63(2):75–9.

    PubMed  Google Scholar 

  223. Gilani MT, Zirak N, Razavi M. Accidental intrathecal injection of magnesium sulfate for cesarean section. Saudi J Anaesth. 2014;8(4):562–4.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Butala BP, Shah VR, Bhosale GP, Shah RB. Medication error: Subarachnoid injection of tranexamic acid. Indian J Anaesth. 2012;56(2):168–70.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Dias J, Lages N, Marinho A, Maria L, Tinoco J, Vieira D, et al. Accidental spinal potassium chloride injection successfully treated with spinal lavage. Anaesthesia. 2014;69(1):72–6.

    Article  PubMed  Google Scholar 

  226. Bogod D. The sting in the tail: antiseptics and the neuraxis revisited. Anaesthesia. 2012;67(12):1305–9.

    Article  PubMed  Google Scholar 

  227. Association of Anaesthetists of Great B, Ireland, Obstetric Anaesthetists A, Regional Anaesthesia UK, Association of Paediatric Anaesthetists of Great B, Ireland, et al. Safety guideline: skin antisepsis for central neuraxial blockade. Anaesthesia. 2014;69(11):1279–86.

    Article  Google Scholar 

  228. Gilbar P, Seger AC. Deaths reported from the accidental intrathecal administration of bortezomib. J Oncol Pharm Pract. 2012;18(3):377–8.

    Article  PubMed  Google Scholar 

  229. Meel B. Inadvertent intrathecal administration of potassium chloride during routine spinal anesthesia: case report. Am J Forensic Med Pathol. 1998;19(3):255–7.

    Article  PubMed  Google Scholar 

  230. Kal JE, Vlassak EE, Bulder ER, Franssen EJ. Inadvertent epidural administration of insulin. Anaesthesia. 2007;62(6):621–3.

    Article  PubMed  Google Scholar 

  231. Sidi A, Froelich MA. Inadvertent epidural injection of ephedrine in labor. J Clin Anesth. 2004;16(1):74–6.

    Article  PubMed  Google Scholar 

  232. Naqvi A, Fadoo Z. Inadvertent intrathecal injection of PEG-asparaginase. J Pediatr Hematol Oncol. 2010;32(5):416.

    Article  PubMed  Google Scholar 

  233. Davis JH, Mittleman RE. In-vivo glutaraldehyde fixation of the brain stem and spinal cord after inadvertent intrathecal injection. J Forensic Sci. 1998;43(6):1232–6.

    Article  PubMed  Google Scholar 

  234. Sharr MM, Weller RO, Brice JG. Spinal cord necrosis after intrathecal injection of methylene blue. J Neurol Neurosurg Psychiatry. 1978;41(4):384–6.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Tournel G, Becart-Robert A, Courtin P, Hedouin V, Gosset D. Fatal accidental intrathecal injection of vindesine. J Forensic Sci. 2006;51(5):1166–8.

    Article  PubMed  Google Scholar 

  236. Michelagnoli MP, Bailey CC, Wilson I, Livingston J, Kinsey SE. Potential salvage therapy for inadvertent intrathecal administration of vincristine. Br J Haematol. 1997;99(2):364–7.

    Article  PubMed  Google Scholar 

  237. Abedini M, Parish M, Mahmoodpoor A, Vazifehshenas H. Cauda equina syndrome as a result of inadvertent intrathecal injection of sodium thiopentone. Anaesth Intensive Care. 2015;43(1):131–2.

    PubMed  Google Scholar 

  238. Balestrieri PJ, Hamza MS, Ting PH, Blank RS, Grubb CT. Inadvertent intrathecal injection of labetalol in a patient undergoing post-partum tubal ligation. Int J Obstet Anesth. 2005;14(4):340–2.

    Article  PubMed  Google Scholar 

  239. Mortensen ME, Cecalupo AJ, Lo WD, Egorin MJ, Batley R. Inadvertent intrathecal injection of daunorubicin with fatal outcome. Med Pediatr Oncol. 1992;20(3):249–53.

    Article  PubMed  Google Scholar 

  240. Arico M, Nespoli L, Porta F, Caselli D, Raiteri E, Burgio GR. Severe acute encephalopathy following inadvertent intrathecal doxorubicin administration. Med Pediatr Oncol. 1990;18(3):261–3.

    Article  PubMed  Google Scholar 

  241. Senbaga N, Davies EM. Inadvertent intrathecal administration of rifampicin. Br J Clin Pharmacol. 2005;60(1):116.

    Article  PubMed  PubMed Central  Google Scholar 

  242. van der Leede H, Jorens PG, Parizel P, Cras P. Inadvertent intrathecal use of ionic contrast agent. Eur Radiol. 2002;12(Suppl 3):S86–93.

    Article  PubMed  Google Scholar 

  243. Gorelick PB, Zych D. James Leonard corning and the early history of spinal puncture. Neurology. 1987;37(4):672–4.

    Article  PubMed  Google Scholar 

  244. Brill S, Gurman GM, Fisher A. A history of neuraxial administration of local analgesics and opioids. Eur J Anaesthesiol. 2003;20(9):682–9.

    Article  PubMed  Google Scholar 

  245. Matsuki A. Nothing new under the sun--a Japanese pioneer in the clinical use of intrathecal morphine. Anesthesiology. 1983;58(3):289–90.

    Article  PubMed  Google Scholar 

  246. Barker AE. A report on clinical experiences with spinal analgesia in 100 cases, and some reflections on the procedure. Br Med J. 1907;1(2412):665–74.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Bargiacchi O, De Rosa FG. Intrathecal or intraventricular colistin: a review. Infez Med. 2016;24(1):3–11.

    PubMed  Google Scholar 

  248. Velkov T, Dai C, Ciccotosto GD, Cappai R, Hoyer D, Li J. Polymyxins for CNS infections: pharmacology and neurotoxicity. Pharmacol Ther. 2018;181:85–90.

    Article  PubMed  Google Scholar 

  249. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39(1):10–39.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Mackey DC. In: Yaksh T, editor. The history of spinal drug delivery: the evolution of lumbar puncture and spinal narcosis. Amsterdam: Elsevier; 1999.

    Google Scholar 

  251. Maltby JR, Hutter CD, Clayton KC. The Woolley and Roe case. Br J Anaesth. 2000;84(1):121–6.

    Article  PubMed  Google Scholar 

  252. Winkelman NW. Neurologic symptoms following accidental intraspinal detergent injection. Neurology. 1952;2(4):284–91.

    Article  PubMed  Google Scholar 

  253. Gagliano RG, Costanzi JJ. Paraplegia following intrathecal methotrexate: report of a case and review of the literature. Cancer. 1976;37(4):1663–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Fairbanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fairbanks, C.A., Peterson, C.D., Clements, B.M., Ghafoor, V.L., Yaksh, T.L. (2023). Formulation of Therapeutics for Neuraxial Infusion. In: Yaksh, T., Hayek, S. (eds) Neuraxial Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-031-39558-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39558-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39557-4

  • Online ISBN: 978-3-031-39558-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics