Skip to main content

Immunotherapy in Pancreatic Cancer

  • Chapter
  • First Online:
Pancreatic Cancer

Abstract

Pancreatic cancer continues to have a dismal prognosis even with the advent of newer systemic therapies. Although immuno-oncology has changed the prognosis of several solid and liquid cancers, this strategy has not been successful in unselected patients with pancreatic cancer. This chapter summarizes available insights on biomarkers for immunotherapy in selected populations and recapitulate prior trial findings while describing the landscape of investigational immunotherapies. We review the combinatorial approaches to therapy based on targets within the TME, biomarker-driven approaches using the immune signatures of T cells, vaccines, oncogenic viruses, and cellular therapy that are all being actively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open. 2021;4(4):e214708. https://doi.org/10.1001/jamanetworkopen.2021.4708. PMID: 33825840; PMCID: PMC8027914.

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Cancer Society. Cancer facts & figures 2022. Atlanta, GA: American Cancer Society; 2022. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2022/2022-cancer-facts-and-figures.pdf.

    Google Scholar 

  3. Groot VP, Rezaee N, Wu W, Cameron JL, Fishman EK, Hruban RH, Weiss MJ, Zheng L, Wolfgang CL, He J. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann Surg. 2018;267(5):936–45. https://doi.org/10.1097/SLA.0000000000002234. PMID: 28338509.

    Article  PubMed  Google Scholar 

  4. Sohal DPS, Walsh RM, Ramanathan RK, Khorana AA. Pancreatic adenocarcinoma: treating a systemic disease with systemic therapy. J Natl Cancer Inst. 2014;106(3):dju011. https://doi.org/10.1093/jnci/dju011.

    Article  PubMed  Google Scholar 

  5. Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007;6(4):1186–97. https://doi.org/10.1158/1535-7163.MCT-06-0686. Epub 2007 Apr 3. PMID: 17406031.

    Article  CAS  PubMed  Google Scholar 

  6. Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, Hostetter G, Shepard HM, Von Hoff DD, Han H. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res. 2015;21:3561–8. https://doi.org/10.1158/1078-0432.CCR-14-1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ebelt ND, Zamloot V, Manuel ER. Targeting desmoplasia in pancreatic cancer as an essential first step to effective therapy. Oncotarget. 2020;11(38):3486–8. https://doi.org/10.18632/oncotarget.27745. PMID: 33014284; PMCID: PMC7517960.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chandana S, Babiker HM, Mahadevan D. Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC). Expert Opin Investig Drugs. 2019;28:161–77. https://doi.org/10.1080/13543784.2019.1557145.

    Article  CAS  PubMed  Google Scholar 

  9. Orhan A, Vogelsang RP, Andersen MB, Madsen MT, Hölmich ER, Raskov H, Gögenur I. The prognostic value of tumour-infiltrating lymphocytes in pancreatic cancer: a systematic review and meta-analysis. Eur J Cancer. 2020;132:71–84. https://doi.org/10.1016/j.ejca.2020.03.013. Epub 2020 Apr 22. PMID: 32334338.

    Article  CAS  PubMed  Google Scholar 

  10. Shibuya KC, et al. Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS One. 2014;9:e96565.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carstens J, Correa de Sampaio P, Yang D, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun. 2017;8:15095. https://doi.org/10.1038/ncomms15095.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Masugi YAT, Ueno A, et al. Characterization of spatial distribution of tumor-infiltrating CD8+ T cells refines their prognostic utility for pancreatic cancer survival. Mod Pathol. 2019;32:1495–507.

    Article  CAS  PubMed  Google Scholar 

  13. Grünwald BT, Devisme A, Andrieux G, Vyas F, Aliar K, McCloskey CW, Macklin A, Jang GH, Denroche R, Romero JM, Bavi P, Bronsert P, Notta F, O’Kane G, Wilson J, Knox J, Tamblyn L, Udaskin M, Radulovich N, Fischer SE, Boerries M, Gallinger S, Kislinger T, Khokha R. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell. 2021;184(22):5577–5592.e18. https://doi.org/10.1016/j.cell.2021.09.022. Epub 2021 Oct 12. PMID: 34644529.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol. 2005;174:5215–23. https://doi.org/10.4049/jimmunol.174.9.5215.

    Article  CAS  PubMed  Google Scholar 

  15. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110:20212–7. https://doi.org/10.1073/pnas.1320318110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann AM, Ridinger-Saison M, DelGiorno KE, Antal CE, Liang G, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131–5. https://doi.org/10.1038/s41586-019-1130-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10:1835. https://doi.org/10.3389/fimmu.2019.01835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9:4692. https://doi.org/10.1038/s41467-018-06654-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, Senbabaoglu Y, Modrusan Z, Liang Y, Junttila MR, Klijn C, Bourgon R, Turley SJ. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 2020;10(2):232–53. https://doi.org/10.1158/2159-8290.CD-19-0644. Epub 2019 Nov 7. PMID: 31699795.

    Article  CAS  PubMed  Google Scholar 

  20. Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, Müller S, Turley SJ, Brekken RA. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656–673.e7. https://doi.org/10.1016/j.ccell.2022.04.011. Epub 2022 May 5. PMID: 35523176; PMCID: PMC9197998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–40. PubMed: 29508855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138:105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci. 2019;20:676. https://doi.org/10.3390/ijms20030676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eibl G, Cruz-Monserrate Z, Korc M, Petrov MS, Goodarzi MO, Fisher WE, et al. Diabetes mellitus and obesity as risk factors for pancreatic cancer. J Acad Nutr Diet. 2018;118(4):555–67. PubMed: 28919082.

    Article  PubMed  Google Scholar 

  25. Gomez-Chou SS-SA, Badi N, et al. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment. Cancer Res. 2017;77:2647–60. PubMed: 28249896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, Krüger U, Becker T, Ebsen M, Röcken C, et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis: role of macrophages in pancreatic cancer. Int J Cancer. 2014;135:843–61.

    Article  CAS  PubMed  Google Scholar 

  27. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. PubMed: 25035953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren B, Cui M, Yang G, Wang H, Feng M, You L, et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. 2018;17(1):108. PubMed: 30060755.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, Sakoda M, Ueno S, Natsugoe S, Takao S. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res. 2011;167:e211–9.

    Article  PubMed  Google Scholar 

  30. Sadozai H, Acharjee A, Eppenberger-Castori S, Gloor B, Gruber T, Schenk M, Karamitopoulou E. Distinct stromal and immune features collectively contribute to long-term survival in pancreatic cancer. Front Immunol. 2021;12:643529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69. https://doi.org/10.1158/0008-5472.CAN-13-3723. Epub 2014 Jul 31. PMID: 25082815; PMCID: PMC4182950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Young KHD, Cunningham D, Starling N. Immunotherapy and pancreatic cancer: unique challenges and potential opportunities. Ther Adv Med Oncol. 2018;10:1–20.

    Article  Google Scholar 

  33. Weber R, Groth C, Lasser S, Arkhypov I, Petrova V, Altevogt P, Utikal J, Umansky V. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell Immunol. 2021;359:104254.

    Article  CAS  PubMed  Google Scholar 

  34. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–79.

    Article  CAS  PubMed  Google Scholar 

  35. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25. PubMed: 30413826.

    Article  CAS  PubMed  Google Scholar 

  36. Stromnes IM, Brockenbrough JS, Izeradjene K, Carlson MA, Cuevas C, Simmons RM, Greenberg PD, Hingorani SR. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut. 2014;63(11):1769–81. https://doi.org/10.1136/gutjnl-2013-306271. Epub 2014 Feb 20. PMID: 24555999; PMCID: PMC4340484.

    Article  CAS  PubMed  Google Scholar 

  37. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31. https://doi.org/10.1158/0008-5472.CAN-05-1299. PMID: 16424049.

    Article  CAS  PubMed  Google Scholar 

  38. Pinton L, Solito S, Damuzzo V, Francescato S, Pozzuoli A, Berizzi A, Mocellin S, Rossi CR, Bronte V, Mandruzzato S. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. Oncotarget. 2016;7(2):1168–84. https://doi.org/10.18632/oncotarget.6662. PMID: 26700461; PMCID: PMC4811451.

    Article  PubMed  Google Scholar 

  39. Li A, King J, Moro A, Sugi MD, Dawson DW, Kaplan J, Li G, Lu X, Strieter RM, Burdick M, et al. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol. 2011;178:1340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Velez-Delgado A, Mathew E, Li D, Mendez FM, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66(1):124–36. PubMed: 27402485.

    Article  CAS  PubMed  Google Scholar 

  41. Tang Y, Xu X, Guo S, Zhang C, Tang Y, Tian Y, Ni B, Lu B, Wang H. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS One. 2014;9:e91551.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wartenberg M, Zlobec I, Perren A, Koelzer VH, Gloor B, Lugli A, Karamitopoulou E. Accumulation of FOXP3+T-cells in the tumor microenvironment is associated with an epithelial-mesenchymal-transition-type tumor budding phenotype and is an independent prognostic factor in surgically resected pancreatic ductal adenocarcinoma. Oncotarget. 2015;6:4190–201.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, Hiraoka N. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jang J-E, et al. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep. 2017;20(3):558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Lazarus J, Steele NG, Yan W, Lee H-J, Nwosu ZC, Halbrook CJ, Menjivar RE, Kemp SB, Sirihorachai V, et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 2020;10:422–39. https://doi.org/10.1158/2159-8290.CD-19-0958.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, Fields RC, DeNardo DG, Hawkins WG, Goedegebuure P, Linehan DC. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 2018;67(6):1112–23. https://doi.org/10.1136/gutjnl-2017-313738. Epub 2017 Dec 1. PMID: 29196437; PMCID: PMC5969359.

    Article  CAS  PubMed  Google Scholar 

  47. Chao T, Furth EE, Vonderheide RH. CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol Res. 2016;4(11):968–82. https://doi.org/10.1158/2326-6066.CIR-16-0188. Epub 2016 Oct 13. PMID: 27737879; PMCID: PMC5110270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z, Eberlein C, Candido JB, Clarke M, Nixon C, Connelly J, Jamieson N, Carter CR, Balkwill F, Chang DK, Evans TRJ, Strathdee D, Biankin AV, Nibbs RJB, Barry ST, Sansom OJ, Morton JP. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29(6):832–45. https://doi.org/10.1016/j.ccell.2016.04.014. Epub 2016 Jun 2. PMID: 27265504; PMCID: PMC4912354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, et al. Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFalpha and NO-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology. 2017;6(11):e1356965. PubMed: 29147615.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020;217(12):e20190354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McAllister F, Bailey JM, Alsina J, Nirschl CJ, Sharma R, Fan H, et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell. 2014;25(5):621–37. PubMed: 24823639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 2012;21(6):822–35. PubMed: 22698406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O’Neil BH, Mehnert JM, Lopez J, Doi T, van Brummelen EMJ, Cristescu R, Yang P, Emancipator K, Stein K, Ayers M, Joe AK, Lunceford JK. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37(4):318–27. https://doi.org/10.1200/JCO.2018.78.2276. Epub 2018 Dec 13. PMID: 30557521.

    Article  PubMed  Google Scholar 

  54. Rousseau B, Foote MB, Maron SB, Diplas BH, Lu S, Argilés G, Cercek A, Diaz LA Jr. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N Engl J Med. 2021;384(12):1168–70. https://doi.org/10.1056/NEJMc2031965. PMID: 33761214; PMCID: PMC8403269.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lawlor RT, Mattiolo P, Mafficini A, Hong SM, Piredda ML, Taormina SV, Malleo G, Marchegiani G, Pea A, Salvia R, Kryklyva V, Shin JI, Brosens LA, Milella M, Scarpa A, Luchini C. Tumor mutational burden as a potential biomarker for immunotherapy in pancreatic cancer: systematic review and still-open questions. Cancers. 2021;13(13):3119. https://doi.org/10.3390/cancers13133119. PMID: 34206554; PMCID: PMC8269341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34. https://doi.org/10.1186/s13073-017-0424-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Valero C, Lee M, Hoen D, et al. Response rates to anti–PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol. 2021;7:739–43.

    Article  PubMed  Google Scholar 

  58. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard J-Y, Andre F, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30:1232–43. https://doi.org/10.1093/annonc/mdz116.

    Article  CAS  PubMed  Google Scholar 

  59. McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, Jonasch E, Khasraw M, Heimberger AB, Lim B, Ueno NT, Litton JK, Ferrarotto R, Chang JT, Moulder SL, Lin SY. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32(5):661–72. https://doi.org/10.1016/j.annonc.2021.02.006. Epub 2021 Mar 15. PMID: 33736924; PMCID: PMC8053682.

    Article  CAS  PubMed  Google Scholar 

  60. Karamitopoulou E, Andreou A, Wenning AS, Gloor B, Perren A. High tumor mutational burden (TMB) identifies a microsatellite stable pancreatic cancer subset with prolonged survival and strong anti-tumor immunity. Eur J Cancer. 2022;169:64–73. https://doi.org/10.1016/j.ejca.2022.03.033. Epub 2022 May 2. PMID: 35512587.

    Article  CAS  PubMed  Google Scholar 

  61. Balachandran VP, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Łuksza M, Sethna ZM, Rojas LA, et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature. 2022;606:389–95. https://doi.org/10.1038/s41586-022-04735-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luchini C, Brosens LAA, Wood LD, Chatterjee D, Shin JI, Sciammarella C, Fiadone G, Malleo G, Salvia R, Kryklyva V, Piredda ML, Cheng L, Lawlor RT, Adsay V, Scarpa A. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut. 2021;70(1):148–56. https://doi.org/10.1136/gutjnl-2020-320726. Epub 2020 Apr 29. PMID: 32350089; PMCID: PMC7211065.

    Article  CAS  PubMed  Google Scholar 

  64. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. PubMed: 31682550.

    Article  CAS  PubMed  Google Scholar 

  65. Chida K, Kawazoe A, Kawazu M, Suzuki T, Nakamura Y, Nakatsura T, Kuwata T, Ueno T, Kuboki Y, Kotani D, Kojima T, Taniguchi H, Mano H, Ikeda M, Shitara K, Endo I, Yoshino T. A low tumor mutational burden and PTEN mutations are predictors of a negative response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. Clin Cancer Res. 2021;27(13):3714–24. https://doi.org/10.1158/1078-0432.CCR-21-0401. Epub 2021 Apr 29. PMID: 33926917.

    Article  CAS  PubMed  Google Scholar 

  66. Salem ME, Puccini A, Grothey A, Raghavan D, Goldberg RM, Xiu J, Korn WM, Weinberg BA, Hwang JJ, Shields AF, Marshall JL, Philip PA, Lenz HJ. Landscape of tumor mutation load, mismatch repair deficiency, and PD-L1 expression in a large patient cohort of gastrointestinal cancers. Mol Cancer Res. 2018;16(5):805–12. https://doi.org/10.1158/1541-7786.MCR-17-0735. Epub 2018 Mar 9. PMID: 29523759; PMCID: PMC6833953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Salem ME, Bodor JN, Puccini A, Xiu J, Goldberg RM, Grothey A, Korn WM, Shields AF, Worrilow WM, Kim ES, Lenz HJ, Marshall JL, Hall MJ. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer. 2020;147(10):2948–56. https://doi.org/10.1002/ijc.33115. Epub 2020 Jun 18. PMID: 32449172; PMCID: PMC7530095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pandey V, Storz P. Targeting the tumor microenvironment in pancreatic ductal adenocarcinoma. Expert Rev Anticancer Ther. 2019;19:473–82. https://doi.org/10.1080/14737140.2019.1622417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deng Y, Xia X, Zhao Y, Zhao Z, Martinez C, Yin W, Yao J, Hang Q, Wu W, Zhang J, Yu Y, Xia W, Yao F, Zhao D, Sun Y, Ying H, Hung MC, Ma L. Glucocorticoid receptor regulates PD-L1 and MHC-I in pancreatic cancer cells to promote immune evasion and immunotherapy resistance. Nat Commun. 2021;12(1):7041. https://doi.org/10.1038/s41467-021-27349-7. PMID: 34873175; PMCID: PMC8649069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tessier-Cloutier B, Kalloger SE, Al-Kandari M, Milne K, Gao D, Nelson BH, Renouf DJ, Sheffield BS, Schaeffer DF. Programmed cell death ligand 1 cut-point is associated with reduced disease specific survival in resected pancreatic ductal adenocarcinoma. BMC Cancer. 2017;17(1):618. https://doi.org/10.1186/s12885-017-3634-5. PMID: 28870260; PMCID: PMC5584324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Danilova L, Ho WJ, Zhu Q, Vithayathil T, De Jesus-Acosta A, Azad NS, Laheru DA, Fertig EJ, Anders R, Jaffee EM, Yarchoan M. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol Res. 2019;7(6):886–95. https://doi.org/10.1158/2326-6066.CIR-18-0822. Epub 2019 May 1. PMID: 31043417; PMCID: PMC6548624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8:1069–86. https://doi.org/10.1158/2159-8290.CD-18-0367.

    Article  PubMed  Google Scholar 

  73. Farren M, Mace TA, Geyer S, Mikhail S, Wu C, Ciombor KK, Tahiri S, Ahn D, Noonan A, Villalonacalero M, et al. Systemic immune activity predicts overall survival in treatment-naïve patients with metastatic pancreatic cancer. Clin Cancer Res. 2015;22:2565–74. https://doi.org/10.1158/1078-0432.CCR-15-1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I, et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33:828–33. https://doi.org/10.1097/CJI.0b013e3181eec14c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, et al. Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science. 2017;355:1423–7. https://doi.org/10.1126/science.aaf0683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, et al. T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science. 2017;355:1428–33. https://doi.org/10.1126/science.aaf1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yarchoan M, Albacker LA, Hopkins AC, Montesion M, Murugesan K, Vithayathil TT, Zaidi N, Azad NS, Laheru DA, Frampton GM, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4:e126908. https://doi.org/10.1172/jci.insight.126908.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gao H-L, Liu L, Qi Z-H, Xu H-X, Wang W-Q, Wu C-T, Zhang S-R, Xu J-Z, Ni Q-X, Yu X-J. The clinicopathological and prognostic significance of PD-L1 expression in pancreatic cancer: a meta-analysis. Hepatobil Pancreat Dis Int. 2018;17:95–100. https://doi.org/10.1016/j.hbpd.2018.03.007.

    Article  CAS  Google Scholar 

  79. Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord J-P, Geva R, Gottfried M, Penel N, Hansen A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38:1–10. https://doi.org/10.1200/JCO.19.02105.

    Article  CAS  PubMed  Google Scholar 

  81. O’Reilly EM, Oh D-Y, Dhani N, Renouf DJ, Lee MA, Sun W, Fisher G, Hezel A, Chang S-C, Vlahovic G, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma. JAMA Oncol. 2019;5:1431–8. https://doi.org/10.1001/jamaoncol.2019.1588.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH, Bagalà C, Colombi F, Cagnazzo C, Gioeni L, Wang E, et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol. 2014;25:1750–5. https://doi.org/10.1093/annonc/mdu205.

    Article  CAS  PubMed  Google Scholar 

  83. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, Bennouna J, Bachet JB, Khemissa-Akouz F, Péré-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M, Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25. https://doi.org/10.1056/NEJMoa1011923. PMID: 21561347.

    Article  CAS  PubMed  Google Scholar 

  84. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703. https://doi.org/10.1056/NEJMoa1304369. Epub 2013 Oct 16. PMID: 24131140; PMCID: PMC4631139.

    Article  CAS  Google Scholar 

  85. Mohindra NA, Kircher SM, Nimeiri HS, Benson AB, Rademaker A, Alonso E, Blatner N, Khazaie K, Mulcahy MF. Results of the phase Ib study of ipilimumab and gemcitabine for advanced pancreas cancer. J Clin Oncol. 2015;33:e15281. https://doi.org/10.1200/jco.2015.33.15_suppl.e15281.

    Article  Google Scholar 

  86. Kalyan A, Kircher SM, Mohindra NA, Nimeiri HS, Maurer V, Rademaker A, Benson AB, Mulcahy MF. Ipilimumab and gemcitabine for advanced pancreas cancer: a phase Ib study. J Clin Oncol. 2016;34:e15747. https://doi.org/10.1200/JCO.2016.34.15_suppl.e15747.

    Article  Google Scholar 

  87. Kamath SD, Kalyan A, Kircher S, Nimeiri H, Fought AJ, Benson A, Mulcahy M. Ipilimumab and gemcitabine for advanced pancreatic cancer: a phase Ib study. Oncology. 2019;25:e808–15. https://doi.org/10.1634/theoncologist.2019-0473.

    Article  CAS  Google Scholar 

  88. Weiss GJ, Waypa J, Blaydorn L, Coats J, McGahey K, Sangal A, Niu J, Lynch C, Farley JH, Khemka V. A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br J Cancer. 2017;117:33–40. https://doi.org/10.1038/bjc.2017.145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schütz E, Khemka V. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investig New Drugs. 2017;36:96–102. https://doi.org/10.1007/s10637-017-0525-1.

    Article  CAS  Google Scholar 

  90. Renouf DJ, Knox JJ, Kavan P, Jonker D, Welch S, Couture F, Lemay F, Tehfe M, Harb M, Aucoin N, et al. LBA65—The Canadian Cancer Trials Group PA.7 trial: results of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel (Nab-P) vs GEM, Nab-P, Durvalumab (D) and Tremelimumab (T) as first line therapy in metastatic pancreatic ductal adenocarcinoma (MPDAC). Ann Oncol. 2020;31:S1195.

    Article  Google Scholar 

  91. Balli D, Rech AJ, Stanger BZ, Vonderheide RH. Immune cytolytic activity stratifies molecular subsets of human pancreatic cancer. Clin Cancer Res. 2017;23(12):3129–38. PubMed: 28007776.

    Article  CAS  PubMed  Google Scholar 

  92. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A. 2009;106(42):17858–63. PubMed: 19815499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10(1):48–57. PubMed: 19011627.

    Article  CAS  PubMed  Google Scholar 

  94. Pauken KE, Wherry EJ. TIGIT and CD226: tipping the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell. 2014;26:785–7.

    Article  CAS  PubMed  Google Scholar 

  95. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8 + T cell effector function. Cancer Cell. 2014;26:923–37.

    Article  CAS  PubMed  Google Scholar 

  96. Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T, Kinoshita S, Nagai M, Konishi N, Nakajima Y. Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 2015;35:2287–97.

    CAS  PubMed  Google Scholar 

  97. Jin H-S, Ko M, Choi D-S, Kim JH, Lee D-H, Kang S-H, Kim I, Lee HJ, Choi EK, Kim K-P, et al. CD226hiCD8+ T cells are a prerequisite for anti-TIGIT immunotherapy. Cancer Immunol Res. 2020;8:912–25.

    Article  CAS  PubMed  Google Scholar 

  98. Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020;8:e000911.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, Kane LP, Lu B. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017;18:645.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lenzo FL, Kato S, Pabla S, DePietro P, Nesline MK, Conroy JM, Burgher B, Glenn ST, Kuvshinoff B, Kurzrock R, Morrison C. Immune profiling and immunotherapeutic targets in pancreatic cancer. Ann Transl Med. 2021;9(2):119. https://doi.org/10.21037/atm-20-1076. PMID: 33569421; PMCID: PMC7867882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peng P-J, Li Y, Sun S. On the significance of Tim-3 expression in pancreatic cancer. Saudi J Biol Sci. 2017;24:1754–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2019;20:173–85.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cebrián MJG, Bauden M, Andersson R, Holdenrieder S, Ansari D. Paradoxical role of HMGB1 in pancreatic cancer: tumor suppressor or tumor promoter? Anticancer Res. 2016;36:4381–90.

    Article  PubMed  Google Scholar 

  104. Gebauer F, Wicklein D, Horst J, Sundermann P, Maar H, Streichert T, Tachezy M, Izbicki JR, Bockhorn M, Schumacher U. Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. PLoS One. 2014;9:e113023.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Seifert AM, Reiche C, Heiduk M, Tannert A, Meinecke A-C, Baier S, von Renesse J, Kahlert C, Distler M, Welsch T, et al. Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels. Oncogene. 2020;39:3102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Blando JSA, Higa MG, et al. Comparison of immune infiltrates in melanome and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci. 2019;116(5):1692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thakkar D, Paliwal S, Dharmadhikari B, Guan S, Liu L, Kar S, Tulsian NK, Gruber JJ, DiMascio L, Paszkiewicz KH, Ingram PJ, Boyd-Kirkup DJ. Rationally targeted anti-VISTA antibody that blockades the C-C′ loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner. J Immunother Cancer. 2022;10(2):e003382. https://doi.org/10.1136/jitc-2021-003382. Erratum in: J Immunother Cancer. 2022;10(2): PMID: 35131861; PMCID: PMC8823246.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Meng Q, Liu Z, Rangelova E, Poiret T, Ambati A, Rane L, et al. Expansion of tumor-reactive T cells from patients with pancreatic cancer. J Immunother. 2016;39(2):81–9. PubMed: 26849077.

    Article  CAS  PubMed  Google Scholar 

  109. Rosenberg AMD. Immunotherapy in pancreatic adenocarcinoma -- overcoming barriers to response. J Gastrointest Oncol. 2018;9(1):143–59. PubMed: 29564181.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 2018;67(6):1112–23. PubMed: 29196437.

    Article  CAS  PubMed  Google Scholar 

  111. Nywening TMM, Wang-Gillam A, Sanford DEE, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016;17:651–62. https://doi.org/10.1016/S1470-2045(16)00078-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bockorny B, Semenisty V, Macarulla T, Borazanci E, Wolpin BM, Stemmer SM, Golan T, Geva R, Borad MJ, Pedersen KS, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med. 2020;26:878–85. https://doi.org/10.1038/s41591-020-0880-x.

    Article  CAS  PubMed  Google Scholar 

  113. Seeber A, et al. J Clin Oncol. 2021;39(15_suppl):4021. https://doi.org/10.1200/JCO.2021.39.15_suppl.4021.

    Article  Google Scholar 

  114. Pellicciotta I, et al. J Clin Oncol. 2021;39(3_suppl):TPS454. https://doi.org/10.1200/JCO.2021.39.3_suppl.TPS454.

    Article  Google Scholar 

  115. Hong D, Rasco D, Veeder M, Luke JJ, Chandler J, Balmanoukian A, George T, Munster P, Berlin JD, Gutierrez M, et al. A phase 1b/2 study of the Bruton tyrosine kinase inhibitor ibrutinib and the PD-L1 inhibitor durvalumab in patients with pretreated solid tumors. Oncology. 2019;97:102–11. https://doi.org/10.1159/000500571.

    Article  CAS  PubMed  Google Scholar 

  116. Wainberg ZA, Piha-Paul SA, Luke JJ, et al. First-in-human phase 1 dose escalation and expansion of a novel combination, anti—CSF-1 receptor (cabiralizumab) plus ant-PD-1 (nivolumab), in patients with advanced solid tumors. Presented at: 32nd SITC Annual Meeting; November 8–12, 2017; National Harbor, MD. Abstract O4. https://go.aws/3c8iEjG.

  117. PipelineReview.com. Five prime therapeutics provides update on phase 2 trial of cabiralizumab combined with Opdivo® in pancreatic cancer. 2020. https://pipelinereview.com/index.php/2020021973818/Antibodies/Five-Prime-Therapeutics-Provides-Update-on-Phase-2-Trial-of-Cabiralizumab-Combined-with-Opdivo-in-Pancreatic-Cancer.html.

  118. Ho WJ, Jaffee EM. Macrophage-targeting by CSF1/1R blockade in pancreatic cancers. Cancer Res. 2021;81(24):6071–3. https://doi.org/10.1158/0008-5472.CAN-21-3603. PMID: 34911778; PMCID: PMC9164148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vonderheide R. The immune revolution: a case for priming, not checkpoint. Cancer Cell. 2018;33:563–9. PubMed: 29634944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Padron LJ, Maurer DM, O’Hara MH, et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat Med. 2022;28:1167–77. https://doi.org/10.1038/s41591-022-01829-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barlesi F, Lolkema M, Rohrberg KS, et al. 291 Phase Ib study of selicrelumab (CD40 agonist) in combination with atezolizumab (anti-PD-L1) in patients with advanced solid tumors. J ImmunoTher Cancer. 2020;8:291. https://doi.org/10.1136/jitc-2020-SITC2020.0291.

    Article  Google Scholar 

  122. Byrne KT, Betts CB, Mick R, Sivagnanam S, Bajor DL, Laheru DA, Chiorean EG, O’Hara MH, Liudahl SM, Newcomb C, Alanio C, Ferreira AP, Park BS, Ohtani T, Huffman AP, Väyrynen SA, Dias Costa A, Kaiser JC, Lacroix AM, Redlinger C, Stern M, Nowak JA, Wherry EJ, Cheever MA, Wolpin BM, Furth EE, Jaffee EM, Coussens LM, Vonderheide RH. Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res. 2021;27(16):4574–86. https://doi.org/10.1158/1078-0432.CCR-21-1047. Epub 2021 Jun 10. PMID: 34112709; PMCID: PMC8667686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ, et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 2010;70(6):2245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Overman M, LoRusso P, Strickler J, et al. Safety, efficacy and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc). J Clin Oncol. 2018;36(Suppl):abstr 4123.

    Article  Google Scholar 

  125. Manji GA, et al. J Clin Oncol. 2021;39(3_suppl):404. https://doi.org/10.1200/JCO.2021.39.3_suppl.404.

    Article  Google Scholar 

  126. Provenzano PPCC, Chang AE, et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21:418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wong KMHK, Coveler AL, et al. Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep. 2017;19(47):1–9.

    CAS  Google Scholar 

  128. Ramanathan RKMS, Philip PA, et al. Phase Ib/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol. 2019;37(13):1062–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Van Cutsem E, Tempero MA, Sigal D, Oh DY, Fazio N, Macarulla T, et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J Clin Oncol. 2020;38(27):3185–94. PubMed: 32706635.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93. PubMed: 25259922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pitarresi JRLX, Avendano A, et al. Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Sci Allian. 2018;1(5):1–12.

    Article  Google Scholar 

  132. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61. PubMed: 19460966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. De Jesus-Acosta A, Sugar EA, O’Dwyer PJ, Ramanathan RK, Von Hoff DD, Rasheed Z, et al. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br J Cancer. 2020;122(4):498–505. PubMed: 31857726.

    Article  PubMed  Google Scholar 

  134. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–60. PubMed: 27376576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Piccozi VJ, et al. J Clin Oncol. 2018;36(15_suppl):4016. https://doi.org/10.1200/JCO.2018.36.15_suppl.4016.

    Article  Google Scholar 

  136. Hassan R, Blumenschein GR Jr, Moore KN, Santin AD, Kindler HL, Nemunaitis JJ, Seward SM, Thomas A, Kim SK, Rajagopalan P, Walter AO, Laurent D, Childs BH, Sarapa N, Elbi C, Bendell JC. First-in-human, multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody-drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J Clin Oncol. 2020;38(16):1824–35. https://doi.org/10.1200/JCO.19.02085. Epub 2020 Mar 26. PMID: 32213105; PMCID: PMC7255978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Park W. J Clin Oncol. 2020;38(15_suppl):TPS4667. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS4667.

    Article  Google Scholar 

  138. Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131–5. https://doi.org/10.1038/s41586-019-1130-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, Tartakovsky I, Nemunaitis J, Le D, Sugar E, et al. Allogeneic granulocyte macrophage colony-stimulating factor–secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res. 2008;14:1455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, Morse M, Zeh H, Cohen D, Fine RL, et al. Safety and survival with GVAX pancreas prime and listeria monocytogenes–expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. JCO. 2015;33:1325–33.

    Article  CAS  Google Scholar 

  141. Chen S-H, Hung W-C, Wang P, Paul C, Konstantopoulos K. Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation. Sci Rep. 2013;3:srep01870.

    Google Scholar 

  142. Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. 2015;38(1):1–11. PubMed: 25415283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tsujikawa T, Crocenzi T, Durham JN, Sugar EA, Wu AA, Onners B, et al. Evaluation of cyclophosphamide/GVAX pancreas followed by listeria-mesothelin (CRS-207) with or without nivolumab in patients with pancreatic cancer. Clin Cancer Res. 2020;26(14):3578–88. PubMed: 32273276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz L, Donehower RC, Jaffee E, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36:382–9. https://doi.org/10.1097/CJI.0b013e31829fb7a2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wu AA, Bever KM, Ho WJ, Fertig EJ, Niu N, Zheng L, Parkinson RM, Durham JN, Onners BL, Ferguson AK, et al. A phase II study of allogeneic GM-CSF–transfected pancreatic tumor vaccine (GVAX) with ipilimumab as maintenance treatment for metastatic pancreatic cancer. Clin Cancer Res. 2020;26:5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Oji Y, Nakamori S, Fujikawa M, Nakatsuka S-I, Yokota A, Tatsumi N, Abeno S, Ikeba A, Takashima S, Tsujie M, et al. Overexpression of the Wilms’ tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci. 2004;95:583–7.

    Article  CAS  PubMed  Google Scholar 

  147. Kaida M, Morita-Hoshi Y, Soeda A, Wakeda T, Yamaki Y, Kojima Y, Ueno H, Kondo S, Morizane C, Ikeda M, et al. Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother. 2011;34:92–9.

    Article  CAS  PubMed  Google Scholar 

  148. Nishida S, Koido S, Takeda Y, Homma S, Komita H, Takahara A, Morita S, Ito T, Morimoto S, Hara K, et al. Wilms tumor gene (WT1) peptide–based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer. J Immunother. 2014;37:105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Koido S, Homma S, Okamoto M, Takakura K, Mori M, Yoshizaki S, Tsukinaga S, Odahara S, Koyama S, Imazu H, et al. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms’ tumor 1 (WT1)–specific MHC class I/II–restricted epitopes for pancreatic cancer. Clin Cancer Res. 2014;20:4228–39.

    Article  CAS  PubMed  Google Scholar 

  150. Tsukinaga S, Kajihara M, Takakura K, Ito Z, Kanai T, Saito K, Takami S, Kobayashi H, Matsumoto Y, Odahara S, et al. Prognostic significance of plasma interleukin-6/-8 in pancreatic cancer patients receiving chemoimmunotherapy. World J Gastroenterol. 2015;21:11168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mayanagi S, Kitago M, Sakurai T, Matsuda T, Fujita T, Higuchi H, Taguchi J, Takeuchi H, Itano O, Aiura K, et al. Phase I pilot study of Wilms tumor gene 1 peptide-pulsed dendritic cell vaccination combined with gemcitabine in pancreatic cancer. Cancer Sci. 2015;106:397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yanagisawa R, Koizumi T, Koya T, Sano K, Koido S, Nagai K, Kobayashi M, Okamoto M, Sugiyama H, Shimodaira S. WT1-pulsed dendritic cell vaccine combined with chemotherapy for resected pancreatic cancer in a phase I study. Anticancer Res. 2018;38(4):2217–25. https://doi.org/10.21873/anticanres.12464. PMID: 29599342.

    Article  CAS  PubMed  Google Scholar 

  153. Nishida S, Ishikawa T, Egawa S, Koido S, Yanagimoto H, Ishii J, Kanno Y, Kokura S, Yasuda H, Oba MS, et al. Combination gemcitabine and WT1 peptide vaccination improves progression-free survival in advanced pancreatic ductal adenocarcinoma: a phase II randomized study. Cancer Immunol Res. 2018;6:320–31.

    Article  CAS  PubMed  Google Scholar 

  154. Hanada S, Tsuruta T, Haraguchi K, Okamoto M, Sugiyama H, Koido S. Long-term survival of pancreatic cancer patients treated with multimodal therapy combined with WT1-targeted dendritic cell vaccines. Hum Vacc Immunother. 2018;15:397–406.

    Article  Google Scholar 

  155. Nagai K, Adachi T, Harada H, Eguchi S, Sugiyama H, Miyazaki Y. Dendritic cell-based immunotherapy pulsed with Wilms tumor 1 peptide and mucin 1 as an adjuvant therapy for pancreatic ductal adenocarcinoma after curative resection: a phase I/IIa clinical trial. Anticancer Res. 2020;40:5765–76.

    Article  CAS  PubMed  Google Scholar 

  156. Suh H, Pillai K, Morris DL. Mucins in pancreatic cancer: biological role, implications in carcinogenesis and applications in diagnosis and therapy. Am J Cancer Res. 2017;7:1372–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Rong Y, Qin X, Jin D, Lou W, Wu L, Wang D, Wu W, Ni X, Mao Z, Kuang T, Zang YQ, Qin X. A phase I pilot trial of MUC1-peptide-pulsed dendritic cells in the treatment of advanced pancreatic cancer. Clin Exp Med. 2012;12(3):173–80. https://doi.org/10.1007/s10238-011-0159-0. Epub 2011 Sep 20. PMID: 21932124.

    Article  CAS  PubMed  Google Scholar 

  158. Taniuchi K, Nakagawa H, Nakamura T, Eguchi H, Ohigashi H, Ishikawa O, Katagiri T, Nakamura Y. Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res. 2005;65:105–12.

    Article  CAS  PubMed  Google Scholar 

  159. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, Harao M, Inoue M, Tomita Y, Tsunoda T, et al. Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer. 2010;104:300–7.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H. Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med. 2013;11:291.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Miyazawa M, Katsuda M, Maguchi H, Katanuma A, Ishii H, Ozaka M, Yamao K, Imaoka H, Kawai M, Hirono S, et al. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int J Cancer. 2016;140:973–82.

    Article  PubMed  Google Scholar 

  162. Yamaue H, Tsunoda T, Tani M, Miyazawa M, Yamao K, Mizuno N, Okusaka T, Ueno H, Boku N, Fukutomi A, et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS—PC study. Cancer Sci. 2015;106:883–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dong H, Qian N, Wang Y, Meng L, Chen D, Ji X, Feng W. Survivin expression and serum levels in pancreatic cancer. World J Surg Oncol. 2015;13:189.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Brown M, Zhang W, Yan D, Kenath R, Le LTT, Wang H, Delitto D, Ostrov D, Robertson K, Liu C, et al. The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC. PLoS One. 2020;15:e0226917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shima H, Tsurita G, Wada S, Hirohashi Y, Yasui H, Hayashi H, Miyakoshi T, Watanabe K, Murai A, Asanuma H, Tokita S, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Nakae Y, Sugita O, Ito YM, Ota Y, Kimura Y, Kutomi G, Hirata K, Mizuguchi T, Imai K, Takemasa I, Sato N, Torigoe T. Randomized phase II trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma. Cancer Sci. 2019;110(8):2378–85. https://doi.org/10.1111/cas.14106. Epub 2019 Jul 23. PMID: 31218770; PMCID: PMC6676125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase targeted therapies. Genome Med. 2016;8:1–18.

    Article  Google Scholar 

  167. Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, Coxon F, Ross P, Madhusudan S, Roques T, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014;15:829–40.

    Article  CAS  PubMed  Google Scholar 

  168. Kim J, Reber HA, Dry SM, Elashoff D, Chen SL, Umetani N, Kitago M, Hines OJ, Kazanjian KK, Hiramatsu S, et al. Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut. 2006;55:1598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kubuschok B, Pfreundschuh M, Breit R, Hartmann F, Sester M, Gärtner B, König J, Murawski N, Held G, Zwick C, et al. Mutated ras-transfected, EBV-transformed lymphoblastoid cell lines as a model tumor vaccine for boosting T-cell responses against pancreatic cancer: a pilot trial. Hum Gene Ther. 2012;23:1224–36.

    Article  CAS  PubMed  Google Scholar 

  170. Wedén S, Klemp M, Gladhaug IP, Møller M, Eriksen JA, Gaudernack G, Buanes T. Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Int J Cancer. 2010;128:1120–8.

    Article  Google Scholar 

  171. Palmer DH, Valle JW, Ma YT, Faluyi O, Neoptolemos JP, Gjertsen TJ, Iversen B, Eriksen JA, Møller A-S, Aksnes A-K, et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): a single-arm, phase 1/2 trial. Br J Cancer. 2020;122:971–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zülke C, Fahlke J, Arning MB, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer. JAMA. 2013;310:1473–81.

    Article  CAS  PubMed  Google Scholar 

  173. Kinkead HL, Hopkins A, Lutz E, Wu AA, Yarchoan M, Cruz K, Woolman S, Vithayathil T, Glickman LH, Ndubaku CO, et al. Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer. JCI Insight. 2018;3:e122857.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Foote JB, Kok M, Leatherman JM, Armstrong TD, Marcinkowski B, Ojalvo LS, Kanne DB, Jaffee E, Dubensky TW, Emens LA. A STING agonist given with OX40 receptor and PD-L1 modulators primes immunity and reduces tumor growth in tolerized mice. Cancer Immunol Res. 2017;5:468–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bassani-Sternberg M, Digklia A, Huber F, Wagner D, Sempoux C, Stevenson BJ, Thierry A-C, Michaux J, Pak H, Racle J, et al. A phase Ib study of the combination of personalized autologous dendritic cell vaccine, aspirin, and standard of care adjuvant chemotherapy followed by nivolumab for resected pancreatic adenocarcinoma—a proof of antigen discovery feasibility in three patients. Front Immunol. 1832;2019:10.

    Google Scholar 

  176. Yanagimoto H, Shiomi H, Satoi S, Mine T, Toyokawa H, Yamamoto T, Tani T, Yamada A, Kwon AH, Komatsu N, Itoh K, Noguchi M. A phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients. Oncol Rep. 2010;24(3):795–801. https://doi.org/10.3892/or_00000923. PMID: 20664989.

    Article  CAS  PubMed  Google Scholar 

  177. Qiu Y, Yun MM, Xu MB, Wang YZ, Yun S. Pancreatic carcinoma-specific immunotherapy using synthesised alpha-galactosyl epitope-activated immune responders: findings from a pilot study. Int J Clin Oncol. 2013;18(4):657–65. https://doi.org/10.1007/s10147-012-0434-4. Epub 2012 Jul 31. PMID: 22847800.

    Article  CAS  PubMed  Google Scholar 

  178. Mehrotra S, Britten CD, Chin S, et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol. 2017;10:82. https://doi.org/10.1186/s13045-017-0459-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hewitt DB, Nissen N, Hatoum H, Musher B, Seng J, Coveler AL, Al-Rajabi R, Yeo CJ, Leiby B, Banks J, Balducci L, Vaccaro G, LoConte N, George TJ, Brenner W, Elquza E, Vahanian N, Rossi G, Kennedy E, Link C, Lavu H. A phase 3 randomized clinical trial of chemotherapy with or without algenpantucel-L (hyperacute-pancreas) immunotherapy in subjects with borderline resectable or locally advanced unresectable pancreatic cancer. Ann Surg. 2022;275(1):45–53. https://doi.org/10.1097/SLA.0000000000004669. PMID: 33630475.

    Article  PubMed  Google Scholar 

  180. Bailey P, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52. https://doi.org/10.1038/nature16965.

    Article  CAS  PubMed  Google Scholar 

  181. Melisi D, et al. LY2109761, a novel transforming growth factor-beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther. 2008;7:829–40. https://doi.org/10.1158/1535-7163.MCT-07-0337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, Trojan J, Oettle H, Kozloff M, Cleverly A, Smith C, Estrem ST, Gueorguieva I, Lahn MMF, Blunt A, Benhadji KA, Tabernero J. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 2018;119(10):1208–14. https://doi.org/10.1038/s41416-018-0246-z. Epub 2018 Oct 15. PMID: 30318515; PMCID: PMC6251034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Melisi D, Oh DY, Hollebecque A, Calvo E, Varghese A, Borazanci E, Macarulla T, Merz V, Zecchetto C, Zhao Y, Gueorguieva I, Man M, Gandhi L, Estrem ST, Benhadji KA, Lanasa MC, Avsar E, Guba SC, Garcia-Carbonero R. Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J Immunother Cancer. 2021;9(3):e002068. https://doi.org/10.1136/jitc-2020-002068. PMID: 33688022; PMCID: PMC7944986.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Wang-Gillam A, Plambeck-Suess S, Goedegebuure P, Simon PO, Mitchem J, Hornick JR, Sorscher S, Picus J, Suresh R, Lockhart AC, et al. A phase I study of IMP321 and gemcitabine as the front-line therapy in patients with advanced pancreatic adenocarcinoma. Investig New Drugs. 2012;31:707–13.

    Article  Google Scholar 

  185. Lu X. OX40 and OX40L interaction in cancer. Curr Med Chem. 2020;28:1–13.

    Google Scholar 

  186. Ma Y, Li J, Wang H, Chiu Y, Kingsley CV, Fry D, Delaney SN, Wei SC, Zhang J, Maitra A, et al. Combination of PD-1 inhibitor and OX40 agonist induces tumor rejection and immune memory in mouse models of pancreatic cancer. Gastroenterology. 2020;159:306–19.

    Article  CAS  PubMed  Google Scholar 

  187. Soerensen MM, et al. J Clin Oncol. 2018;36(15_suppl):e15155. https://doi.org/10.1200/JCO.2018.36.15_suppl.e15155.

    Article  Google Scholar 

  188. Circelli L, Tornesello ML, Buonaguro FM, Buonaguro L. Use of adjuvants for immunotherapy. Hum Vacc Immunother. 2017;13:1774–7.

    Article  Google Scholar 

  189. Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer. 2016;4:56.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Nierkens S, Brok MHD, Roelofsen T, Wagenaars JAL, Figdor CG, Ruers TJ, Adema GJ. Route of administration of the TLR9 agonist CpG critically determines the efficacy of cancer immunotherapy in mice. PLoS One. 2009;4:e8368.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari K-M, Lehenkari P, Saarnio J, Karttunen TJ. High toll-like receptor (TLR) 9 expression is associated with better prognosis in surgically treated pancreatic cancer patients. Virchows Arch. 2017;470:401–10.

    Article  PubMed  Google Scholar 

  192. Lanki M, Seppänen H, Mustonen H, Hagström J, Haglund C. Toll-like receptor 1 predicts favorable prognosis in pancreatic cancer. PLoS One. 2019;14:e0219245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lanki AM, Seppänen EH, Mustonen HK, Böckelman C, Juuti AT, Hagström J, Haglund CH. Toll-like receptor 2 and Toll-like receptor 4 predict favorable prognosis in local pancreatic cancer. Tumor Biol. 2018;40:1010428318801188.

    Article  Google Scholar 

  194. Zambirinis C, Levie E, Nguy S, Avanzi A, Barilla R, Xu Y, Seifert L, Daley D, Greco SH, Deutsch M, et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med. 2015;212:2077–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sun Y, Wu C, Ma J, Yang Y, Man X, Wu H, Li S. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling. Exp Cell Res. 2016;347:274–82.

    Article  CAS  PubMed  Google Scholar 

  196. Jacobs C, Duewell P, Heckelsmiller K, Wei J, Bauernfeind F, Ellermeier J, Kisser U, Bauer CA, Dauer M, Eigler A, et al. An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int J Cancer. 2010;128:897–907.

    Article  Google Scholar 

  197. Michaelis KA, Norgard MA, Zhu X, Levasseur PR, Sivagnanam S, Liudahl SM, Burfeind KG, Olson B, Pelz KR, Ramos DMA, et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat Commun. 2019;10:1–15.

    Google Scholar 

  198. Zou B-B, Wang F, Li L, Cheng F-W, Jin R, Luo X, Zhu L-X, Geng X, Zhang S-Q. Activation of Toll-like receptor 7 inhibits the proliferation and migration, and induces the apoptosis of pancreatic cancer cells. Mol Med Rep. 2015;12:6079–85.

    Article  CAS  PubMed  Google Scholar 

  199. Schölch S, Rauber C, Tietz A, Rahbari NN, Bork U, Schmidt T, Kahlert C, Haberkorn U, Tomai MA, Lipson K, et al. Radiotherapy combined with TLR7/8 activation induces strong immune responses against gastrointestinal tumors. Oncotarget. 2014;6:4663–76.

    Article  PubMed Central  Google Scholar 

  200. Narayanan JSS, Ray P, Hayashi T, Whisenant TC, Vicente D, Carson DA, Miller AM, Schoenberger SP, White RR. Irreversible electroporation combined with checkpoint blockade and TLR7 stimulation induces antitumor immunity in a murine pancreatic cancer model. Cancer Immunol Res. 2019;7:1714–26.

    Article  CAS  PubMed  Google Scholar 

  201. Dalgleish AG, Stebbing J, Adamson DJ, Arif SS, Bidoli P, Chang D, Cheeseman S, Diaz-Beveridge R, Fernandez-Martos C, Glynne-Jones R, et al. Randomised, open-label, phase II study of gemcitabine with and without IMM-101 for advanced pancreatic cancer. Br J Cancer. 2016;115:789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Geboers B, Timmer F, Ruarus A, Pouw J, Schouten E, Bakker J, Puijk R, Nieuwenhuizen S, Dijkstra M, Tol MVD, et al. Irreversible electroporation and nivolumab combined with intratumoral administration of a toll-like receptor ligand, as a means of in vivo vaccination for metastatic pancreatic ductal adenocarcinoma (PANFIRE-III). A phase-I study protocol. Cancers. 2021;13:3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jiang M, Chen P, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Ye L, He Y, et al. cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol. 2020;13:1–11.

    Article  Google Scholar 

  204. Jing W, McAllister D, Vonderhaar EP, Palen K, Riese MJ, Gershan J, Johnson BD, Dwinell MB. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J Immunother Cancer. 2019;7:115.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Baird JR, Friedman D, Cottam B, Dubensky TW, Kanne DB, Bambina S, Bahjat KS, Crittenden MR, Gough MJ. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 2015;76:50–61.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13:1–15.

    Article  Google Scholar 

  207. de Graaf J, de Vor L, Fouchier R, Hoogen BVD. Armed oncolytic viruses: a kick-start for antitumor immunity. Cytokine Growth Factor Rev. 2018;41:28–39.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Zhang L, Wang W, Wang R, Zhang N, Shang H, Bi Y, Chen D, Zhang C, Li L, Yin J, et al. Reshaping the immune microenvironment by oncolytic herpes simplex virus in murine pancreatic ductal adenocarcinoma. Mol Ther. 2020;29:744–61.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, Keith B, Young RM, Engels B, Sorsa S, et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight. 2018;3:e99573.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Nakao A, Kasuya H, Sahin TT, Nomura N, Kanzaki A, Misawa M, Shirota T, Yamada S, Fujii T, Sugimoto H, et al. A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Ther. 2010;18:167–75.

    Article  PubMed  Google Scholar 

  211. Kasuya H, Kodera Y, Nakao A, Yamamura K, Gewen T, Zhiwen W, Hotta Y, Yamada S, Fujii T, Fukuda S, et al. Phase I dose-escalation clinical trial of HF10 oncolytic herpes virus in 17 Japanese patients with advanced cancer. Hepato-Gastroenterology. 2014;61:599–605.

    PubMed  Google Scholar 

  212. Aguilar LK, Shirley L, Chung VM, Marsh C, Walker J, Coyle W, Marx H, Bekaii-Saab T, Lesinski GB, Swanson B, et al. Gene-mediated cytotoxic immunotherapy as adjuvant to surgery or chemoradiation for pancreatic adenocarcinoma. Cancer Immunol Immunother. 2015;64:727–36.

    Article  CAS  PubMed  Google Scholar 

  213. Noonan A, Farren M, Geyer SM, Huang Y, Tahiri S, Ahn D, Mikhail S, Ciombor KK, Pant S, Aparo S, et al. Randomized phase 2 trial of the oncolytic virus pelareorep (reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther. 2016;24:1150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mahalingam D, Wilkinson GA, Eng K, Fields P, Raber P, Moseley JL, Cheetham K, Coffey M, Nuovo G, Kalinski P, et al. Pembrolizumab in combination with the oncolytic virus pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: a phase Ib study. Clin Cancer Res. 2019;26:71–81.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Hirooka Y, Kasuya H, Ishikawa T, Kawashima H, Ohno E, Villalobos IB, Naoe Y, Ichinose T, Koyama N, Tanaka M, et al. A Phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. BMC Cancer. 2018;18:1–9.

    Article  Google Scholar 

  216. Hajda J, Leuchs B, Angelova AL, Frehtman V, Rommelaere J, Mertens M, Pilz M, Kieser M, Krebs O, Dahm M, Huber B, Engeland CE, Mavratzas A, Hohmann N, Schreiber J, Jäger D, Halama N, Sedlaczek O, Gaida MM, Daniel V, Springfeld C, Ungerechts G. Phase 2 trial of oncolytic H-1 parvovirus therapy shows safety and signs of immune system activation in patients with metastatic pancreatic ductal adenocarcinoma. Clin Cancer Res. 2021;27(20):5546–56. https://doi.org/10.1158/1078-0432.CCR-21-1020. Epub 2021 Aug 23. PMID: 34426438.

    Article  CAS  PubMed  Google Scholar 

  217. Hashimoto Y, et al. J Clin Oncol. 2019;37(4_suppl):325. https://doi.org/10.1200/JCO.2019.37.4_suppl.325.

    Article  Google Scholar 

  218. Musher BL, et al. J Clin Oncol. 2022;40(16_suppl):4138. https://doi.org/10.1200/JCO.2022.40.16_suppl.4138.

    Article  Google Scholar 

  219. Garcia-Carbonero R, Bazan-Peregrino M, Gil-Martín M, Álvarez R, Macarulla T, Riesco-Martinez MC, Verdaguer H, Guillén-Ponce C, Farrera-Sal M, Moreno R, Mato-Berciano A, Maliandi MV, Torres-Manjon S, Costa M, Del Pozo N, Martínez de Villarreal J, Real FX, Vidal N, Capella G, Alemany R, Blasi E, Blasco C, Cascalló M, Salazar R. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J Immunother Cancer. 2022;10(3):e003255. https://doi.org/10.1136/jitc-2021-003255. PMID: 35338084; PMCID: PMC8961117.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Haas AR, Tanyi JL, O’Hara MH, Gladney WL, Lacey SF, Torigian DA, Soulen MC, Tian L, McGarvey M, Nelson AM, et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther. 2019;27:1919–29. https://doi.org/10.1016/j.ymthe.2019.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Beatty GL, O’Hara M, Lacey SF, Torigian DA, Nazimuddin F, Chen F, Kulikovskaya IM, Soulen MC, McGarvey M, Nelson AM, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology. 2018;155:29–32. https://doi.org/10.1053/j.gastro.2018.03.029.

    Article  CAS  PubMed  Google Scholar 

  222. Aoki T, Matsushita H, Hoshikawa M, Hasegawa K, Kokudo N, Kakimi K. Adjuvant combination therapy with gemcitabine and autologous γδ T-cell transfer in patients with curatively resected pancreatic cancer. Cytotherapy. 2017;19:473–85. https://doi.org/10.1016/j.jcyt.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  223. Kumai T, Mizukoshi E, Hashiba T, Nakagawa H, Kitahara M, Miyashita T, Mochizuki T, Goto S, Kamigaki T, Takimoto R, et al. Effect of adoptive T-cell immunotherapy on immunological parameters and prognosis in patients with advanced pancreatic cancer. Cytotherapy. 2020;23:137–45. https://doi.org/10.1016/j.jcyt.2020.08.001.

    Article  CAS  PubMed  Google Scholar 

  224. Wang Y, Chen M, Wu Z, et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology. 2018;7(7):e1440169.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Liu Y, Guo Y, Wu Z, et al. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: a phase I clinical trial. Cytotherapy. 2020;22:573–80.

    Article  PubMed  Google Scholar 

  226. Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H, Yang Q, Wang Y, Han W. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Prot Cell. 2018;9:838–47.

    Article  CAS  Google Scholar 

  227. Katz SC, Moody AE, Guha P, Hardaway JC, Prince E, LaPorte J, Stancu M, Slansky JE, Jordan KR, Schulick RD, Knight R, Saied A, Armenio V, Junghans RP. HITM-SURE: hepatic immunotherapy for metastases phase Ib anti-CEA CAR-T study utilizing pressure enabled drug delivery. J Immunother Cancer. 2020;8(2):e001097. https://doi.org/10.1136/jitc-2020-001097. PMID: 32843493; PMCID: PMC7449487.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ, Boutros C, Hanna N, Junghans RP. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther. 2016;23:142–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Raj D, Yang MH, Rodgers D, Hampton EN, Begum J, Mustafa A, Lorizio D, Garces I, Propper D, Kench JG, et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut. 2019;68:1052–64.

    Article  CAS  PubMed  Google Scholar 

  230. Cutmore LC, Brown NF, Raj D, Chauduri S, Wang P, Maher J, Wang Y, Lemoine NR, Marshall JF. Pancreatic cancer UK grand challenge: developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology. 2020;20:394–408.

    Article  CAS  PubMed  Google Scholar 

  231. Raj D, Nikolaidi M, Garces I, Lorizio D, Castro NM, Caiafa SG, Moore K, Brown NF, Kocher HM, Duan XB, et al. CEACAM7 is an effective target for CAR T-cell therapy of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2021;27:1538–52.

    Article  CAS  PubMed  Google Scholar 

  232. Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31(3):311–25. PubMed: 28292435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, Kim YJ, Mac J, Lu Z, Wang S, et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res. 2017;23:6982.

    Article  CAS  PubMed  Google Scholar 

  234. Yang C-Y, Fan MH, Miao CH, Liao YJ, Yuan R-H, Liu CL. Engineering chimeric antigen receptor T cells against immune checkpoint inhibitors PD-1/PD-L1 for treating pancreatic cancer. Mol Ther Oncolyt. 2020;17:571.

    Article  CAS  Google Scholar 

  235. Lesch S, Blumenberg V, Stoiber S, Gottschlich A, Ogonek J, Cadilha BL, Dantes Z, Rataj F, Dorman K, Lutz J, et al. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours Nat. Biomed Eng. 2021;21:1246–60.

    Google Scholar 

  236. Di Pilato M, Kfuri-Rubens R, Pruessmann JN, Ozga AJ, Messemaker M, Cadilha BL, Sivakumar R, Cianciaruso C, Warner RD, Marangoni F, et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell. 2021;184:4512–4530.e22.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Cadilha BL, Benmebarek MR, Dorman K, Oner A, Lorenzini T, Obeck H, Vanttinen M, Di Pilato M, Pruessmann JN, Stoiber S, et al. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Sci Adv. 2021;7:eabi5781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Rezaei R, Ghaleh HEG, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, et al. Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther. 2021;29:647. https://doi.org/10.1038/s41417-021-00359-9.

    Article  CAS  PubMed  Google Scholar 

  239. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19:185–99.

    Article  CAS  PubMed  Google Scholar 

  240. Geller MA, Miller JS. Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy. 2011;3:1445–59.

    Article  CAS  PubMed  Google Scholar 

  241. Froelich W. CAR NK cell therapy directed against pancreatic cancer. Oncol Times. 2021;43:46.

    Article  Google Scholar 

  242. Li C, Yang N, Li H, Wang Z. Robo1-specific chimeric antigen receptor natural killer cell therapy for pancreatic ductal adenocarcinoma with liver metastasis. J Cancer Res Ther. 2020;16:393–6.

    Article  PubMed  Google Scholar 

  243. Boyd NR, Tiedemann M, Cartledge K, Cao M, Evtimov V, Shu R, Nguyen T, Nguyen N, Nisbet I, Boyd R, Trounson A. Off-the-shelf ipsc derived car-nk immunotherapy for solid tumors. Cytotherapy. 2020;22:S199.

    Article  Google Scholar 

  244. Underwood J. Lymphoreticular infiltration in human tumours: prognostic and biological implications: a review. Br J Cancer. 1974;30:538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Nguyen LT, Saibil SD, Sotov V, Le MX, Khoja L, Ghazarian D, Bonilla L, Majeed H, Hogg D, Joshua AM, et al. Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol Immunother. 2019;68:773–85.

    Article  CAS  PubMed  Google Scholar 

  246. Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, Cummins KD, Shen F, Shan X, Veliz K, Blouch K, Yashiro-Ohtani Y, Kenderian SS, Kim MY, O’Connor RS, Wallace SR, Kozlowski MS, Marchione DM, Shestov M, Garcia BA, June CH, Gill S. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–53. https://doi.org/10.1038/s41587-020-0462-y. Epub 2020 Mar 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C, Shih YP, Leung A, Payne R, Sutcliffe K, Cramer J, Rosenberg SA, Fox BA, Urba WJ, Tran E. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N Engl J Med. 2022;386(22):2112–9. https://doi.org/10.1056/NEJMoa2119662. PMID: 35648703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Parikh AR, Szabolcs A, Allen JN, Clark JW, Wo JY, Raabe M, Thel H, Hoyos D, Mehta A, Arshad S, Lieb DJ, Drapek LC, Blaszkowsky LS, Giantonio BJ, Weekes CD, Zhu AX, Goyal L, Nipp RD, Dubois JS, Van Seventer EE, Foreman BE, Matlack LE, Ly L, Meurer JA, Hacohen N, Ryan DP, Yeap BY, Corcoran RB, Greenbaum BD, Ting DT, Hong TS. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat Can. 2021;2(11):1124–35. https://doi.org/10.1038/s43018-021-00269-7. Epub 2021 Nov 18. PMID: 35122060; PMCID: PMC8809884.

    Article  CAS  Google Scholar 

  249. Scheffer HJ, Stam AG, Geboers B, Vroomen LG, Ruarus A, De Bruijn B, Tol MPVD, Kazemier G, Meijerink MR, De Gruijl TD. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology. 2019;8:1652532.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, Li SP, Martin RCG. Evaluating the Regulatory Immunomodulation Effect of Irreversible Electroporation (IRE) in Pancreatic Adenocarcinoma. Ann Surg Oncol. 2019;26:800–6.

    Article  PubMed  Google Scholar 

  251. Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S, Puijk RS, Tol PMVD, Davalos RV, Rubinsky B, De Gruijl TD, et al. High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology. 2020;295:254–72.

    Article  PubMed  Google Scholar 

  252. Yang J, Eresen A, Shangguan J, Ma Q, Yaghmai V, Zhang Z. Irreversible electroporation ablation overcomes tumor-associated immunosuppression to improve the efficacy of DC vaccination in a mice model of pancreatic cancer. OncoImmunology. 2021;10:1875638.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Zhao J, Wen X, Tian L, Li T, Xu C, Wen X, Melancon MP, Gupta S, Shen B, Peng W, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun. 2019;10:1–14.

    Google Scholar 

  254. O’Neill C, Hayat T, Hamm J, Healey M, Zheng Q, Li Y, Martin RC. A phase 1b trial of concurrent immunotherapy and irreversible electroporation in the treatment of locally advanced pancreatic adenocarcinoma. Surgery. 2020;168:610–6.

    Article  PubMed  Google Scholar 

  255. Ruarus AH, Vroomen L, Geboers B, van Veldhuisen E, Puijk RS, Nieuwenhuizen S, et al. Percutaneous irreversible electroporation in locally advanced and recurrent pancreatic cancer (PANFIRE-2): a multicenter, prospective, single-arm, phase II study. Radiology. 2020;294(1):212–20. PubMed: 31687922.

    Article  PubMed  Google Scholar 

  256. Lin M, Liang S, Wang X, Liang Y, Zhang M, Chen J, Niu L, Xu K. Percutaneous irreversible electroporation combined with allogeneic natural killer cell immunotherapy for patients with unresectable (stage III/IV) pancreatic cancer: a promising treatment. J Cancer Res Clin Oncol. 2017;143:2607–18.

    Article  CAS  PubMed  Google Scholar 

  257. Lin M, Zhang X, Liang S, Luo H, Alnaggar M, Liu A, Yin Z, Chen J, Niu L, Jiang Y. Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. Signal Transduct Target Ther. 2020;5:1–9.

    CAS  Google Scholar 

  258. Mills BN, Connolly KA, Ye J, Murphy J, Uccello T, Han BJ, Zhao T, Drage MG, Murthy A, Qiu H, et al. Stereotactic body radiation and interleukin-12 combination therapy eradicates pancreatic tumors by repolarizing the immune microenvironment. Cell Rep. 2019;29:406–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Yasmin-Karim S, Bruck PT, Moreau M, Kunjachan S, Chen GZ, Kumar R, Grabow S, Dougan SK, Ngwa W. Radiation and local anti-CD40 generate an effective in situ vaccine in preclinical models of pancreatic cancer. Front Immunol. 2018;9:2030.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Xie C, Duffy AG, Brar G, Fioravanti S, Mabry-Hrones D, Walker M, Bonilla CM, Wood BJ, Citrin DE, Gil Ramirez EM, et al. Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Clin Cancer Res. 2020;26:2318–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lin C, Verma V, Lazenby A, Ly QP, Berim LD, Schwarz JK, Madiyalakan M, Nicodemus CF, Hollingsworth MA, Meza JL, et al. Phase I/II trial of neoadjuvant oregovomab-based chemoimmunotherapy followed by stereotactic body radiotherapy and nelfinavir for locally advanced pancreatic adenocarcinoma. Am J Clin Oncol. 2019;42:755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8:403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol. 2020;17(1):53–64. PubMed: 31811279.

    Article  PubMed  Google Scholar 

  264. Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology. 2018;155:33.

    Article  CAS  PubMed  Google Scholar 

  265. Ren Z, Jiang J, Xie H, Li A, Lu H, Xu S, et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget. 2017;8(56):95176–91. PubMed: 29221120.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156–60. PubMed: 28912244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Riquelme E, Maitra A, McAllister F. Immunotherapy for pancreatic cancer: more than just a gut feeling. Cancer Discov. 2018;8(4):386–8. PubMed: 29610286.

    Article  PubMed  Google Scholar 

  268. Riquelme EZY, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178:795–806. PubMed: 31398337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–9. PubMed: 33303685.

    Article  CAS  PubMed  Google Scholar 

  270. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602. PubMed: 33542131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Sokol ES, Pavlick D, Khiabanian H, et al. Pan-canceranalysisofBRCA1and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precis Oncol. 2020;4:442–65. https://doi.org/10.1200/PO.19.00345.

    Article  PubMed  Google Scholar 

  272. Park W, Chen J, Chou JF, et al. Genomic methods identify homologous recombination deficiency in pancreas adenocarcinoma and optimize treatment selection. Clin Cancer Res. 2020;26:3239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Momtaz P, O’Connor CA, Chou JF, et al. Pancreas cancer and BRCA: a critical subset of patients with improving therapeutic outcomes. Cancer. 2021;127:4393–402.

    Article  CAS  PubMed  Google Scholar 

  274. Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27. https://doi.org/10.1056/NEJMoa1903387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Strickland KC, Howitt BE, Shukla SA, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):13587–98. https://doi.org/10.18632/oncotarget.7277.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Seeber A. Proceedings ASCO. Alexandria, VA: ASCO; 2019.

    Google Scholar 

  277. Renouf DJ, et al. Predictive value of germline ATM mutations in the CCTG PA.7 trial: gemcitabine (GEM) and nab-paclitaxel (Nab-P) versus GEM, nab-P, durvalumab (D) and tremelimumab (T) as first-line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). J Clin Oncol. 2021;39(15_suppl):4135. https://doi.org/10.1200/JCO.2021.39.15_suppl.4135.

    Article  Google Scholar 

  278. Zhang Q, Green MD, Lang X, Lazarus J, Parsels JD, Wei S, et al. Inhibition of ATM increases interferon signaling and sensitizes pancreatic cancer to immune checkpoint blockade therapy. Cancer Res. 2019;79(15):3940–51. PubMed: 31101760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Terrero G, Datta J, Dennison J, Sussman D, Lohse I, Merchant N, Hosein P. Ipilimumab/nivolumab therapy in patients with metastatic pancreatic or biliary cancer with homologous recombination deficiency pathogenic germline variants. JAMA Oncol. 2022;8:1. https://doi.org/10.1001/jamaoncol.2022.0611.

    Article  PubMed  Google Scholar 

  280. Lundy J, McKay O, Croagh D, et al. Exceptional response to olaparib and pembrolizumab for pancreatic adenocarcinoma with germline BRCA1 mutation and high tumor mutation burden: case report and literature review. JCO Precis Oncol. 2022;6:e2100437.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Reiss KA, Mick R, Teitelbaum U, O’Hara M, Schneider C, Massa R, Karasic T, Tondon R, Onyiah C, Gosselin MK, Donze A, Domchek SM, Vonderheide RH. Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial. Lancet Oncol. 2022;23:1009. https://doi.org/10.1016/S1470-2045(22)00369-2. PMID: 35810751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madappa N. Kundranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeung, Z.P., Kundranda, M.N. (2023). Immunotherapy in Pancreatic Cancer. In: Pant, S. (eds) Pancreatic Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-38623-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38623-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38622-0

  • Online ISBN: 978-3-031-38623-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics