Skip to main content

Principles of Cone Beam Computed Tomography

  • Chapter
  • First Online:
3D Imaging in Endodontics
  • 173 Accesses

Abstract

Radiography is an essential diagnostic tool in clinical endodontics. Maxillofacial cone beam computed tomography (CBCT) has revolutionized diagnostic imaging providing high-resolution, limited field of view, and relatively low-dose volumetric data from which task-specific images can be reformatted for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. Successful diagnosis using CBCT requires that clinicians understand the fundamentals of CBCT acquisition, the role of both scanning and image visualization protocols in image quality and patient dose, and adopt a methodological approach to endodontic enhanced CBCT imaging. Guidance on selection of optimal parameters for task-specific endodontic imaging and visualization will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azevedo B. Thanks but no thanks. Communique, American Association of Endodontists April 1, 2022. Accessed August 29, 2022. Available at https://www.aae.org/specialty/communique/thanks-but-no-thanks/.

  2. Santaella GM, Rosalen PL, Queiroz PM, Haiter-Neto F, Wenzel A, Spin-Neto R. Quantitative assessment of variation in CBCT image technical parameters related to CBCT detector lateral-offset position. Dentomaxillofac Radiol. 2020;49(2):20190077.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seibert JA. Flat-panel detectors: how much better are they? Pediatr Radiol. 2006;36(Suppl 14):173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hassan BA, Payam J, Juyanda B, van der Stelt P, Wesselink PR. Influence of scan setting selections on root canal visibility with cone beam CT. Dentomaxillofac Radiol. 2012;41(8):645–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol. 2014;43(5):20140059.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goulston R, Davies J, Horner K, Murphy F. Dose optimization by altering the operating potential and tube current exposure time product in dental cone beam CT: a systematic review. Dentomaxillofac Radiol. 2016;45(3):20150254.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bechara B, McMahan CA, Moore WS, Noujeim M, Geha H, Teixeira FB. Contrast-to-noise ratio difference in small field of view cone beam computed tomography machines. J Oral Sci. 2012;54(3):227–32.

    Article  PubMed  Google Scholar 

  8. Palomo JM, Rao PS, Hans MG. Influence of CBCT exposure conditions on radiation dose. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(6):773–82.

    Article  PubMed  Google Scholar 

  9. Al-Okshi A, Lindh C, Salé H, Gunnarsson M, Rohlin M. Effective dose of cone beam CT (CBCT) of the facial skeleton: a systematic review. Br J Radiol. 2015;88(1045):20140658.

    Article  PubMed  Google Scholar 

  10. Pauwels R, Zhang G, Theodorakou C, Walker A, Bosmans H, Jacobs R, Bogaerts R, Horner K, SEDENTEXCT Project Consortium. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation. Br J Radiol. 2014;87(1042):20130654.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Panmekiate S, Rungwittayathon P, Suptaweeponboon W, Tangtraitham N, Pauwels R. Optimization of exposure parameters in dental cone beam computed tomography using a 3-step approach. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;126(6):545–52.

    Article  PubMed  Google Scholar 

  12. Chindasombatjaroen J, Kakimoto N, Shimamoto H, Murakami S, Furukawa S. Correlation between pixel values in a cone-beam computed tomographic scanner and the computed tomographic values in a multidetector row computed tomographic scanner. J Comput Assist Tomogr. 2011;35(5):662–5.

    Article  PubMed  Google Scholar 

  13. Vasconcelos KF, Nicolielo LF, Nascimento MC, Haiter-Neto F, Bóscolo FN, Van Dessel J, EzEldeen M, Lambrichts I, Jacobs R. Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth. Int Endod J. 2015;48(10):994–1000.

    Article  PubMed  Google Scholar 

  14. Helvacioglu-Yigit D, Demirturk Kocasarac H, Bechara B, Noujeim M. Evaluation and reduction of artifacts generated by 4 different root-end filling materials by using multiple cone-beam computed tomography imaging settings. J Endod. 2016;42(2):307–14.

    Article  PubMed  Google Scholar 

  15. Helvacioglu-Yigit D, Seki U, Kursun-Cakmak S, Demirturk Kocasarac H, Singh M. Comparative evaluation of artifacts originated by four different post materials using different CBCT settings. Tomography. 2022;8(6):2919–28.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang N, Zhang M, Zhu J, Zhu Y, Wu J. Multiple idiopathic cervical root resorption: a systematic review. Oral Dis. 2022;

    Google Scholar 

  17. Costa EDD, Queiroz PM, Santaella GM, Capelozza ALA, Ambrosano GMB, Freitas DQ. Influence of scan mode (partial/full rotations) and FOV size in the formation of artefacts in cone beam CT. Dentomaxillofac Radiol. 2019;48(4):20180340.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuo YF, Chen MH, Huang KH, Chang HH, Yeh CL, Lin CP. Comparing image qualities of dental cone-beam computed tomography with different scanning parameters for detecting root canals. J Formos Med Assoc. 2021;120(3):991–6.

    Article  PubMed  Google Scholar 

  19. Yeung AWK, Jacobs R, Bornstein MM. Novel low-dose protocols using cone beam computed tomography in dental medicine: a review focusing on indications, limitations, and future possibilities. Clin Oral Investig. 2019;23(6):2573–81.

    Article  PubMed  Google Scholar 

  20. Lennon S, Patel S, Foschi F, Wilson R, Davies J, Mannocci F. Diagnostic accuracy of limited-volume cone-beam computed tomography in the detection of periapical bone loss: 360° scans versus 180° scans. Int Endod J. 2011;44:1118–27.

    Article  PubMed  Google Scholar 

  21. Bechara B, McMahan CA, Nasseh I, Geha H, Hayek E, Khawam G, Raad M, Noujeim M. Number of basis images effect on detection of root fractures in endodontically treated teeth using a cone beam computed tomography machine: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(5):676–81.

    Article  PubMed  Google Scholar 

  22. Jones D, Mannocci F, Andiappan M, Brown J, Patel S. The effect of alteration of the exposure parameters of a cone-beam computed tomographic scan on the diagnosis of simulated horizontal root fractures. J Endod. 2015;41:520–5.

    Article  PubMed  Google Scholar 

  23. Durack C, Patel S, Davies J, Wilson R, Mannocci F. Diagnostic accuracy of small volume cone beam computed tomography and intraoral periapical radiography for the detection of simulated external inflammatory root resorption. Int Endod J. 2011;44:136–47.

    Article  PubMed  Google Scholar 

  24. Hashem D, Brown JE, Patel S, Mannocci F, Donaldson AN, Watson TF, Banerjee A. An in vitro comparison of the accuracy of measurements obtained from high-and low-resolution cone-beam computed tomography scans. J Endod. 2013;39:394–7.

    Article  PubMed  Google Scholar 

  25. Costa ED, Brasil DM, Queiroz PM, Verner FS, Junqueira RB, Freitas DQ. Use of the metal artefact reduction tool in the identification of fractured endodontic instruments in cone-beam computed tomography. Int Endod J. 2020;53(4):506–12.

    Article  PubMed  Google Scholar 

  26. Bauman R, Scarfe W, Clark S, Morelli J, Scheetz J, Farman A. Ex vivo detection of mesiobuccal canals in maxillary molars using CBCT at four different isotropic voxel dimensions. Int Endod J. 2011;44(8):752–8.

    Article  PubMed  Google Scholar 

  27. Vizzotto MB, Silveira PF, Arús NA, Montagner F, Gomes BP, da Silveira HE. CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: effect of voxel size and presence of root filling. Int Endod J. 2013;46(9):870–6.

    Article  PubMed  Google Scholar 

  28. Martins JNR, Marques D, Silva EJNL, Caramês J, Mata A, Versiani MA. Second mesiobuccal root canal in maxillary molars-A systematic review and meta-analysis of prevalence studies using cone beam computed tomography. Arch Oral Biol. 2020;113:104589.

    Article  PubMed  Google Scholar 

  29. Mouzinho-Machado S, Rosado LPL, Coelho-Silva F, Neves FS, Haiter-Neto F, de-Azevedo-Vaz SL. Influence of voxel size and filter application in detecting second Mesiobuccal canals in cone-beam computed tomographic images. J Endod. 2021;47(9):1391–7.

    Article  PubMed  Google Scholar 

  30. Aktan AM, Yildirim C, Karataşlıoğlu E, Çiftçi ME, Aksoy F. Effects of voxel size and resolution on the accuracy of endodontic length measurement using cone beam computed tomography. Ann Anat. 2016;208:96–102.

    Article  PubMed  Google Scholar 

  31. Van Pham K. Endodontic length measurements using cone beam computed tomography with dedicated or conventional software at different voxel sizes. Sci Rep. 2021;11(1):9432.

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Martin E, Silva D, Campos CN, Pires Carvalho AC, Devito KL. Diagnosis of mesiodistal vertical root fractures in teeth with metal posts: influence of applying filters in cone-beam computed tomography images at different resolutions. J Endod. 2018;44(3):470–4.

    Article  Google Scholar 

  33. Guo XL, Li G, Zheng JQ, Ma RH, Liu FC, Yuan FS, Lyu PJ, Guo YJ, Yin S. Accuracy of detecting vertical root fractures in non-root filled teeth using cone beam computed tomography: effect of voxel size and fracture width. Int Endod J. 2019;52(6):887–98.

    Article  PubMed  Google Scholar 

  34. Kolsuz ME, Eren H, Çelikten B, Dalgali Evli P, Demirtürk Kocasaraç H, Orhan K. Influence of cone-beam computed tomography voxel sizes in the detection of chemically induced external root resorptions. Med Sci Monit. 2022;28:e936160.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liedke GS, da Silveira HE, da Silveira HL, Dutra V, de Figueiredo JA. Influence of voxel size in the diagnostic ability of cone beam tomography to evaluate simulated external root resorption. J Endod. 2009;35(2):233–5.

    Article  PubMed  Google Scholar 

  36. Neves F, Vasconcelos T, Vaz S, Freitas D, Haiter-Neto F. Evaluation of reconstructed images with different voxel sizes of acquisition in the diagnosis of simulated external root resorption using cone beam computed tomography. Int Endod J. 2012;45:234–9.

    Article  PubMed  Google Scholar 

  37. Rosado LPL, Fagundes FB, Freitas DQ, Oliveira ML, Neves FS. Influence of the intracanal material and metal artifact reduction tool in the detection of the second Mesiobuccal Canal in cone-beam computed tomographic examinations. J Endod. 2020;46(8):1067–73.

    Article  PubMed  Google Scholar 

  38. Kamburoğlu K, Yılmaz F, Yeta EN, Özen D. Assessment of furcal perforations in the vicinity of different root canal sealers using a cone beam computed tomography system with and without the application of artifact reduction mode: an ex vivo investigation on extracted human teeth. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121(6):657–65.

    Article  PubMed  Google Scholar 

  39. Nikbin A, Dalili Kajan Z, Taramsari M, Khosravifard N. Effect of object position in the field of view and application of a metal artifact reduction algorithm on the detection of vertical root fractures on cone-beam computed tomography scans: an in vitro study. Imaging Sci Dent. 2018;48(4):245–54.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saati S, Eskandarloo A, Falahi A, Tapak L, Hekmat B. Evaluation of the efficacy of the metal artifact reduction algorithm in the detection of a vertical root fracture in endodontically treated teeth in cone-beam computed tomography images: an in vitro study. Dent Med Probl. 2019;56(4):357–63.

    Article  PubMed  Google Scholar 

  41. Dalili Kajan Z, Taramsari M, Khosravi Fard N, Khaksari F, Moghasem HF. The efficacy of metal artifact reduction mode in cone-beam computed tomography images on diagnostic accuracy of root fractures in teeth with intracanal posts. Iran Endod J. 2018;13(1):47–53.

    PubMed  PubMed Central  Google Scholar 

  42. Farias-Gomes A, Fontenele RC, Rosado LPL, Neves FS, Freitas DQ. The metal post material influences the performance of artefact reduction algorithms in CBCT images. Braz Dent J. 2022;33(1):31–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Santaella GM, Wenzel A, Haiter-Neto F, Rosalen PL, Spin-Neto R. Impact of movement and motion-artefact correction on image quality and interpretability in CBCT units with aligned and lateral-offset detectors. Dentomaxillofac Radiol. 2020;49(1):20190240.

    Article  PubMed  Google Scholar 

  44. Moratin J, Berger M, Rückschloss T, Metzger K, Berger H, Gottsauner M, Engel M, Hoffmann J, Freudlsperger C, Ristow O. Head motion during cone-beam computed tomography: analysis of frequency and influence on image quality. Imaging Sci Dent. 2020;50(3):227–36.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spin-Neto R, Matzen LH, Schropp L, Gotfredsen E, Wenzel A. Factors affecting patient movement and re-exposure in cone beam computed tomography examination. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(5):572–8.

    Article  PubMed  Google Scholar 

  46. Valizadeh S, Vasegh Z, Rezapanah S, Safi Y, Khaeazifard MJ. Effect of object position in cone beam computed tomography field of view for detection of root fractures in teeth with intra-canal posts. Iran J Radiol. 2015;12(4):e25272.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Iikubo M, Nishioka T, Okura S, Kobayashi K, Sano T, Katsumata A, Ariji E, Kojima I, Sakamoto M, Sasano T. Influence of voxel size and scan field of view on fracture-like artifacts from gutta-percha obturated endodontically treated teeth on cone-beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(5):631–7.

    Article  PubMed  Google Scholar 

  48. Scarfe WC, Angelopoulos C. Chapter 5: CBCT in daily use. Chapter. In: Scarfe WC, Angelopoulos C, editors. Maxillofacial cone beam computed tomography: principles, techniques and clinical applications. Springer International Publishing AG; 2018. p. 115–90.

    Chapter  Google Scholar 

  49. Ferreira LM, Visconti MA, Nascimento HA, Dallemolle RR, Ambrosano GM, Freitas DQ. Influence of CBCT enhancement filters on diagnosis of vertical root fractures: a simulation study in endodontically treated teeth with and without intracanal posts. Dentomaxillofac Radiol. 2015;44(5):20140352.

    Article  PubMed  PubMed Central  Google Scholar 

  50. González AR, Tosoni GM, Freitas DQ, Oliveira ML. Influence of sharpening filters on the detection of root fractures using low-dose cone-beam computed tomography. Clin Oral Investig. 2022;26(7):4797–803.

    Article  PubMed  Google Scholar 

  51. Nascimento MC, Nejaim Y, de Almeida SM, Bóscolo FN, Haiter-Neto F, Sobrinho LC, Silva EJ. Influence of cone beam CT enhancement filters on diagnosis ability of longitudinal root fractures. Dentomaxillofac Radiol. 2014;43(3):20130374.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bueno MR, Azevedo BC, Estrela CRA, Sousa-Neto MD, Estrela C. Method to identify accessory root canals using a new CBCT software. Braz Dent J. 2021;32(6):28–35.

    Article  PubMed  Google Scholar 

  53. Schulze R, Heil U, Groβ D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–73.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB, Scheske MJ. Effective dose of dental CBCT-a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44(1):20140197.

    Article  PubMed  Google Scholar 

  55. AAE and AAOMR Joint Position Statement: Use of Cone Beam Computed Tomography in Endodontics 2015 Update. (2015). http://www.aae.org/uploadedfiles/clinical_resources/guidelines_and_position_statements/cbctstatement_2015update.pdf. Accessed 30 Dec 2022.

  56. Patel S, Brown J, Semper M, Abella F, Mannocci F. European Society of Endodontology position statement: use of cone beam computed tomography in endodontics: European Society of Endodontology (ESE) developed by. Int Endod J. 2019;52(12):1675–8.

    Article  PubMed  Google Scholar 

  57. Hung K, Hui L, Yeung AWK, Scarfe WC, Bornstein MM. Image retake rates of cone beam computed tomography in a dental institution. Clin Oral Investig. 2020;24(12):4501–10.

    Article  PubMed  Google Scholar 

  58. Rottke D, Andersson J, Ejima KI, Sawada K, Schulze D. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography. Radiat Prot Dosim. 2017;175(1):110–7.

    Google Scholar 

  59. Schulze RKW, Sazgar M, Karle H, de Las Heras Gala H. Influence of a commercial lead apron on patient skin dose delivered during oral and maxillofacial examinations under cone beam computed tomography (CBCT). Health Phys. 2017;113(2):129–34.

    Article  PubMed  Google Scholar 

  60. Pauwels R, Horner K, Vassileva J, Rehani MM. Thyroid shielding in cone beam computed tomography: recommendations towards appropriate use. Dentomaxillofac Radiol. 2019;48(7):20190014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment The author is grateful to Dr. Sanjay M. Mallya (Los Angeles, California, USA), the author of this Chapter in the 2016 edition, for use of specific content and Fig. 1.12 for inclusion in this current chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Scarfe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scarfe, W.C. (2023). Principles of Cone Beam Computed Tomography. In: Fayad, M.I., Johnson, B.R. (eds) 3D Imaging in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-031-32755-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32755-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32754-4

  • Online ISBN: 978-3-031-32755-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics