Skip to main content

A Fruit Detection Algorithm for a Plum Harvesting Robot Based on Improved YOLOv7

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 135))

Included in the following conference series:

Abstract

The paper presents a novel fruit detection algorithm for a plum harvesting robot. At present, the adequate recognition of plum fruits remains a particularly challenging, under-researched task. Difficulties occur due to small plum fruit sizes and dense growth, as well as numerous occlusions in their environment. A harvesting robot operating in such conditions needs to understand which fruits are reachable, in order to avoid collision and end effector damage. This makes a precise and robust visual detection system of crucial importance. Therefore, a lightweight plum detection procedure based on the improved YOLOv7 algorithm has been proposed. Firstly, the images of domestic plums (Prunus domestica L.) were collected in the field, and train, validation and test sets were established. Secondly, light data augmentation was performed. Next, the initial anchor box sizes used by the original YOLOv7 have been updated, based on the plum sizes in the collected dataset. Finally, an SE (Squeeze-and-Excitation) module was added to the backbone network, which helps model the channel interdependencies at almost no computational cost. The Improved-YOLOv7 model was then trained and evaluated on our dataset. The achieved Precision, Recall and mAP were 70.2%, 72.1% and 76.8%, respectively. The model has been compared with other recent models from the YOLO family, and has shown the best accuracy and generalization ability in real, complex environments. Therefore, the proposed plum detection method can provide theoretical and technical support for harvesting robots in real environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomić, J., Štampar, F., Glišić, I., Jakopič, J.: Phytochemical assessment of plum (Prunus domesti-ca L.) cultivars selected in Serbia. Food Chem. 299, 125113 (2019). https://doi.org/10.1016/j.foodchem.2019.125113

    Article  Google Scholar 

  2. Zhou, H., Wang, X., Au, W., Kang, H., Chen, C.: Intelligent robots for fruit harvesting: recent developments and future challenges. Precis. Agric. 23(5), 1856–1907 (2022). https://doi.org/10.1007/s11119-022-09913-3

    Article  Google Scholar 

  3. Wang, Z., Xun, Y., Wang, Y., Yang, Q.: Review of smart robots for fruit and vegetable picking in agriculture. Int. J. Agric. Biol. Eng. 15(1), 33–54 (2022). https://doi.org/10.25165/j.ijabe.20221501.7232

  4. Vrochidou, E., Tsakalidou, V.N., Kalathas, I., Gkrimpizis, T., Pachidis, T., Kaburlasos, V.G.: An overview of end effectors in agricultural robotic harvesting systems. Agriculture 12(8), 1240 (2022). https://doi.org/10.3390/agriculture12081240

    Article  Google Scholar 

  5. Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C.: Deep learning – method overview and review of use for fruit detection and yield estimation. Comput. Electron. Agric. 162, 219–234 (2019). https://doi.org/10.1016/j.compag.2019.04.017

    Article  Google Scholar 

  6. Tang, Y., et al.: Recognition and localization methods for vision-based fruit picking robots: a review. Front. Plant Sci. 11, 510 (2020). https://doi.org/10.3389/fpls.2020.00510

    Article  Google Scholar 

  7. Ukwuoma, C.C., Zhiguang, Q., Bin Heyat, M.B., Ali, L., Almaspoor, Z., Monday, H.N.: Recent advancements in fruit detection and classification using deep learning techniques. Math. Probl. Eng. 2022, 1–29 (2022). https://doi.org/10.1155/2022/9210947

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016). https://doi.org/10.1109/TPAMI.2015.2437384

    Article  Google Scholar 

  9. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, Bastian, Matas, Jiri, Sebe, Nicu, Welling, Max (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015). https://doi.org/10.48550/ARXIV.1506.02640

  11. Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C.: Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO.’ Precision Agric. 20(6), 1107–1135 (2019). https://doi.org/10.1007/s11119-019-09642-0

    Article  Google Scholar 

  12. Chen, W., Lu, S., Liu, B., Li, G., Qian, T.: Detecting citrus in orchard environment by using improved YOLOv4. Sci. Program. 2020, 1–13 (2020). https://doi.org/10.1155/2020/8859237

    Article  Google Scholar 

  13. Parico, A.I.B., Ahamed, T.: Real time pear fruit detection and counting using YOLOv4 models and deep SORT. Sensors 21(14), 4803 (2021). https://doi.org/10.3390/s21144803

    Article  Google Scholar 

  14. Yan, B., Fan, P., Lei, X., Liu, Z., Yang, F.: A real-time apple targets detection method for picking robot based on improved YOLOv5. Remote Sens. 13(9), 1619 (2021). https://doi.org/10.3390/rs13091619

    Article  Google Scholar 

  15. Wu, D., et al.: Detection of camellia Oleifera fruit in complex scenes by using YOLOv7 and data augmentation. Appl. Sci. 12(22), 11318 (2022). https://doi.org/10.3390/app122211318

    Article  Google Scholar 

  16. Wang, L., Zhao, Y., Liu, S., Li, Y., Chen, S., Lan, Y.: Precision detection of dense plums in orchards using the improved YOLOv4 Model. Front. Plant Sci. 13, 839269 (2022). https://doi.org/10.3389/fpls.2022.839269

    Article  Google Scholar 

  17. Kim, E., et al.: CNN-based object detection and growth estimation of plum fruit (Prunus mume) using RGB and depth imaging techniques. Sci. Rep. 12(1), 20796 (2022). https://doi.org/10.1038/s41598-022-25260-9

    Article  MathSciNet  Google Scholar 

  18. Redmon, J., Farhadi, A.: YOLOv3: an Incremental improvement (2018). https://doi.org/10.48550/ARXIV.1804.02767

  19. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022). https://doi.org/10.48550/ARXIV.2207.02696

  20. Wang, C. Y., et al.: CSPNet: a new backbone that can enhance learning capability of CNN (2019). https://doi.org/10.48550/ARXIV.1911.11929

  21. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition (2014). https://doi.org/10.48550/ARXIV.1406.4729

  22. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze -and-excitation networks (2017). https://doi.org/10.48550/ARXIV.1709.01507

Download references

Acknowledgements

This work is the result of research and development carried out on the project “Development of a demonstration prototype of a manipulative robot for picking edible plums - proof of concept”, contract no. 623–1-22, innovation voucher no. 1216 co-financed by the Innovation Fund of the Republic of Serbia, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan Šumarac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šumarac, J., Kljajić, J., Rodić, A. (2023). A Fruit Detection Algorithm for a Plum Harvesting Robot Based on Improved YOLOv7. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_52

Download citation

Publish with us

Policies and ethics