Skip to main content

A Force-Based Formation Synthesis Approach for the Cooperative Transportation of Objects

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2023)

Abstract

Increasing demands in automation entail that some tasks either cannot be accomplished by a single robotic manipulator or it is economically not meaningful to indiscriminately increase the robot’s size or sophistication. At the same time, ongoing technological progress has paved the way for an increased usage of cost-effective robotic agents. Hence, the question whether the cooperation of multiple simple robotic agents is expedient to accomplish automation tasks is raised. Possible benefits are manifold, e.g., an increased versatility, resilience regarding failure, and the ability to solve more complex and larger tasks. A meaningful benchmark problem in distributed robotics is the cooperative object transportation where mobile robots organize around the object to move it by pushing. Thus, this paper deals with the question of how to allocate robotic agents around the object. Novelly, the problem is treated using second-order dynamics, explicitly including and limiting the exerted force of the agents. We derive a description of the manipulation space in terms of a zonotope which is useful for robotic manipulation beyond the scope of this benchmark problem. The proposed scheme’s versatility and functionality is demonstrated by experimental results.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant 433183605 and through Germany’s Excellence Strategy (Project PN4-4 Theoretical Guarantees for Predictive Control in Adaptive Multi-Agent Scenarios) under Grant EXC2075-390740016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertoncelli, F., Ruggiero, F., Sabattini, L.: Characterization of grasp configurations for multi-robot object pushing. In: Proceedings of the 2021 IEEE International Symposium on Multi-Robot and Multi-Agent Systems, pp. 38–46. Cambridge, UK (2021)

    Google Scholar 

  2. Ebel, H.: Distributed control and organization of communicating mobile robots: design, simulation, and experimentation. Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol. 69, Shaker Verlag (2021). https://www.itm.uni-stuttgart.de/institut/team/ebel/Ebel2021.pdf

  3. Ebel, H., Eberhard, P.: Non-prehensile cooperative object transportation with omnidirectional mobile robots: organization, control, simulation, and experimentation. In: Proceedings of the 2021 IEEE International Symposium on Multi-Robot and Multi-Agent Systems, pp. 1–10. Cambridge, UK (2021)

    Google Scholar 

  4. Ebel, H., Fahse, D.N., Rosenfelder, M., Eberhard, P.: Finding formations for the non-prehensile object transportation with differentially-driven mobile robots. In: Kecskeméthy, A., Parenti-Castelli, V. (eds.) ROMANSY 24 - Robot Design, Dynamics and Control ROMANSY 2022. CISM International Centre for Mechanical Sciences, vol. 606, pp. 163–170. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06409-8_17

    Chapter  Google Scholar 

  5. Huang, A., Olson, E., Moore, D.: LCM: lightweight communications and marshalling. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4057–4062. Taipei (2010)

    Google Scholar 

  6. Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 671–700. Springer, Berlin, Germany (2008)

    Chapter  Google Scholar 

  7. Rosenfelder, M., Ebel, H., Eberhard, P.: A force-based control approach for the non-prehensile cooperative transportation of objects using omnidirectional mobile robots. In: Proceedings of the 2022 IEEE Conference on Control Technology and Applications (CCTA), pp. 349–356. Trieste, Italy (2022)

    Google Scholar 

  8. Rosenfelder, M., Ebel, H., Eberhard, P.: Experiment videos of the force-based non-prehensile cooperative transportation of objects with mobile robots (2023). https://doi.org/10.18419/darus-3331

  9. Tuci, E., Alkilabi, M.H.M., Akanyeti, O.: Cooperative object transport in multi-robot systems: a review of the state-of-the-art. Front. Robot. AI 5, 59 (2018)

    Article  Google Scholar 

  10. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, New York, USA (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Rosenfelder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosenfelder, M., Ebel, H., Eberhard, P. (2023). A Force-Based Formation Synthesis Approach for the Cooperative Transportation of Objects. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_37

Download citation

Publish with us

Policies and ethics