Skip to main content

Grasping

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter introduces fundamental models of grasp analysis. The overall model is a coupling of models that define contact behavior with widely used models of rigid-body kinematics and dynamics. The contact model essentially boils down to the selection of components of contact force and moment that are transmitted through each contact. Mathematical properties of the complete model naturally give rise to five primary grasp types whose physical interpretations provide insight for grasp and manipulation planning.

After introducing the basic model and types of grasps, this chapter focuses on the most important grasp characteristic: complete restraint. A grasp with complete restraint prevents loss of contact and thus is very secure. Two primary restraint properties are form closure and force closure. A form closure grasp guarantees maintenance of contact as long as the links of the hand and the object are well approximated as rigid and as long as the joint actuators are sufficiently strong. As will be seen, the primary difference between form closure and force closure grasps is the latterʼs reliance on contact friction. This translates into

requiring fewer contacts to achieve force closure than form closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DH:

Denavit–Hartenberg

DOF:

degree of freedom

HF:

hard-finger

LP:

linear program

PwoF:

point-contact-without-friction

SF:

soft-finger

References

  1. J.K. Salisbury: Kinematic and Force Analysis of Articulated Hands. Ph.D. Thesis (Stanford University, Stanford 1982)

    Google Scholar 

  2. A.T. Miller, P.K. Allen: GraspIt! A versatile simulator for robotic grasping, IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  3. A. Bicchi: Hands for dextrous manipulation and powerful grasping: A difficult road towards simplicity, IEEE Trans. Robot. Autom. 16, 652–662 (2000)

    Article  Google Scholar 

  4. K. Salisbury, W. Townsend, B. Ebrman, D. DiPietro: Preliminary design of a whole-arm manipulation system (WAMS), Proc. IEEE Int. Conf. Robot. Autom. (1988) pp. 254–260

    Google Scholar 

  5. M.S. Ohwovoriole, B. Roth: An extension of screw theory, J. Mech. Des. 103, 725–735 (1981)

    Article  Google Scholar 

  6. K.H. Hunt: Kinematic Geometry of Mechanisms (Oxford Univ. Press, Oxford 1978)

    MATH  Google Scholar 

  7. T.R. Kane, D.A. Levinson, P.W. Likins: Spacecraft Dynamics (McGraw Hill, New York 1980)

    Google Scholar 

  8. J.J. Craig: Introduction to Robotics: Mechanics and Control, 2nd edn. (Addison-Wesley, Reading 1989)

    MATH  Google Scholar 

  9. J.K. Salisbury, B. Roth: Kinematic and force analysis of articulated mechanical hands, J. Mech. Trans. Autom. Des. 105, 35–41 (1983)

    Article  Google Scholar 

  10. M.T. Mason, J.K. Salisbury Jr: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)

    Google Scholar 

  11. A. Bicchi: On the closure properties of robotic grasping, Int. J. Robot. Res. 14(4), 319–334 (1995)

    Article  Google Scholar 

  12. D. Prattichizzo, A. Bicchi: Consistent task specification for manipulation systems with general kinematics, ASME J. Dyn. Syst. Meas. Contr. 119, 760–767 (1997)

    Article  MATH  Google Scholar 

  13. J. Kerr, B. Roth: Analysis of multifingered hands, Int. J. Robot. Res. 4(4), 3–17 (1986)

    Article  Google Scholar 

  14. G. Strang: Introduction to Linear Algebra (Wellesley-Cambridge, Wellesley 1993)

    MATH  Google Scholar 

  15. R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robot Manipulation (CRC Press, Boca Raton 1993)

    Google Scholar 

  16. D. Prattichizzo, A. Bicchi: Dynamic analysis of mobility and graspability of general manipulation systems, IEEE Trans. Robot. Autom. 14(2), 241–258 (1998)

    Article  Google Scholar 

  17. A. Bicchi: On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation, Int. J. Robot. Auton. Syst. 13, 127–147 (1994)

    Article  Google Scholar 

  18. F. Reuleaux: The Kinematics of Machinery (Macmillan, New York 1876), Republished by Dover, New York (1963)

    Google Scholar 

  19. T. Omata, K. Nagata: Rigid body analysis of the indeterminate grasp force in power grasps, IEEE Trans. Robot. Autom. 16(1), 46–54 (2000)

    Article  Google Scholar 

  20. J.C. Trinkle: The Mechanics and Planning of Enveloping Grasps. Ph.D. Thesis (University of Pennsylvania, Philadelphia 1987)

    Google Scholar 

  21. K. Lakshminarayana: Mechanics of form closure, Amer. Soc. Mech. Eng. Tech. Rep. 78-DET-32 (1978)

    Google Scholar 

  22. E. Rimon, J. Burdick: Mobility of bodies in contact i: A 2nd order mobility index for multiple-finger grasps, IEEE Trans. Robot. Autom. 14(5), 696–708 (1998)

    Article  Google Scholar 

  23. B. Mishra, J.T. Schwartz, M. Sharir: On the existence and synthesis of multifinger positive grips, Algorithmica 2(4), 541–558 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Somov: Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen, Z. Math. Phys. 42, 133–153 (1897), (in German)

    Google Scholar 

  25. A.J. Goldman, A.W. Tucker: Polyhedral convex cones. In: Linear Inequalities and Related Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton Univ., York 1956) pp. 19–40

    Google Scholar 

  26. X. Markenscoff, L. Ni, C.H. Papadimitriou: The geometry of grasping, Int. J. Robot. Res. 9(1), 61–74 (1990)

    Article  Google Scholar 

  27. D.G. Luenberger: Linear and Nonlinear Programming, 2nd edn. (Addison-Wesley, Reading 1984)

    MATH  Google Scholar 

  28. V.D. Nguyen: The synthesis of force closure grasps in the plane. M.S. Thesis (MIT, Cambridge 1985), AI-TR861

    Google Scholar 

  29. R.D. Howe, M.R. Cutkosky: Practical force-motion models for sliding manipulation, Int. J. Robot. Res. 15(6), 557–572 (1996)

    Article  Google Scholar 

  30. L. Han, J.C. Trinkle, Z. Li: Grasp analysis as linear matrix inequality problems, IEEE Trans. Robot. Autom. 16(6), 663–674 (2000)

    Article  Google Scholar 

  31. M.R. Cutkosky, I. Kao: Computing and controlling the compliance of a robotic hand, IEEE Trans. Robot. Autom. 5(2), 151–165 (1989)

    Article  Google Scholar 

  32. J.C. Trinkle: On the stability and instantaneous velocity of grasped frictionless objects, IEEE Trans. Robot. Autom. 8(5), 560–572 (1992)

    Article  Google Scholar 

  33. K.H. Hunt, A.E. Samuel, P.R. McAree: Special configurations of multi-finger multi-freedom grippers – a kinematic study, Int. J. Robot. Res. 10(2), 123–134 (1991)

    Article  Google Scholar 

  34. D.J. Montana: The kinematics of multi-fingered manipulation, IEEE Trans. Robot. Autom. 11(4), 491–503 (1995)

    Article  Google Scholar 

  35. Y. Nakamure, K. Nagai, T. Yoshikawa: Passive and active closures by constraining mechanisms, Int. J. Robot. Res. 8, 44–61 (1989)

    Article  Google Scholar 

  36. J.S. Pang, J.C. Trinkle: Stability characterizations of rigid body contact problems with coulomb friction, Z. Angew. Math. Mech. 80(10), 643–663 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. M.R. Cutkosky: Robotic Grasping and Fine Manipulation (Kluwer Academic, Norwell 1985)

    Google Scholar 

  38. W.S. Howard, V. Kumar: On the stability of grasped objects, IEEE Trans. Robot. Autom. 12(6), 904–917 (1996)

    Article  Google Scholar 

  39. A.B.A. Cole, J.E. Hauser, S.S. Sastry: Kinematics and control of multifingered hands with rolling contacts, IEEE Trans. Autom. Contr. 34, 398–404 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Buss, H. Hashimoto, J. Moore: Dexterous hand grasping force optimization, IEEE Trans. Robot. Autom. 12(3), 406–418 (1996)

    Article  Google Scholar 

  41. J. Jameson: Analytic Techniques for Automated Grasp. Ph.D. Thesis (Stanford University, Stanford 1985)

    Google Scholar 

  42. V. Nguyen: Constructing force-closure grasps, Int. J. Robot. Res. 7(3), 3–16 (1988)

    Article  Google Scholar 

  43. N.S. Pollard: Parallel algorithms for synthesis of whole-hand grasps, Proc. IEEE Int. Conf. Robot. Autom. (1997)

    Google Scholar 

  44. Y.C. Park, G.P. Starr: Grasp synthesis of polygonal objects using a three-fingered robot hand, Int. J. Robot. Res. 11(3), 163–184 (1992)

    Article  Google Scholar 

  45. I.M. Chen, J.W. Burdick: Finding antipodal point grasps on irregularly shaped objects, IEEE Trans. Robot. Autom. 9(4), 507–512 (1993)

    Article  Google Scholar 

  46. B. Mishra: Grasp metrics: Optimality and complexity, Proc. Workshop Algorithmic Found. Robot. (Peters, Boston 1994)

    Google Scholar 

  47. J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, J.-P. Merlet: On computing four-finger equilibrium and force-closure grasps of polyhedral objects, Int. J. Robot. Res. 16(1), 11–35 (1997)

    Article  Google Scholar 

  48. G.F. Liu, J. Xu, X. Wang, Z.X. Li: On quality functions for grasp synthesis, fixture planning, and coordinated manipulation, IEEE Trans. Autom. Sci. Eng. 1(2), 146–162 (2004)

    Article  Google Scholar 

  49. K. Harada, M. Kaneko: Neighborhood equilibrium grasp for multiple objects, Proc. IEEE Int. Conf. Robot. Autom. (2000) pp. 2159–2164

    Google Scholar 

  50. R.B. McGhee, D.E. Orin: A mathematical programming approach to control of positions and torques in legged locomotion systems, Proc. ROMANCY (1976)

    Google Scholar 

  51. K. Waldron: Force and motion management in legged locomotion, IEEE J. Robot. Autom. 2(4), 214–220 (1986)

    Article  Google Scholar 

  52. T. Yoshikawa, K. Nagai: Manipulating and grasping forces in manipulation by multi-fingered grippers, Proc. IEEE Int. Conf. Robot. Autom. (1987) pp. 1998–2007

    Google Scholar 

  53. V. Kumar, K. Waldron: Force distribution in closed kinematic chains, IEEE J. Robot. Autom. 4(6), 657–664 (1988)

    Article  Google Scholar 

  54. M. Buss, L. Faybusovich, J. Moore: Dikin-type algortihms for dexterous grasping force optimization, Int. J. Robot. Res. 17(8), 831–839 (1998)

    Article  Google Scholar 

  55. D. Prattichizzo, J.K. Salisbury, A. Bicchi: Contact and grasp robustness measures: Analysis and experiments. In: Experimental Robotics IV, Lecture Notes Contr. Inf. Sci., Vol. 223, ed. by O. Khatib, K. Salisbury (Springer, Berlin, Heidelberg 1997)

    Chapter  Google Scholar 

  56. H. Hanafusa, H. Asada: Stable prehension by a robot hand with elastic fingers. In: Robot Motion: Planning and Control, ed. by M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Perez, M. Mason (MIT Press, Cambridge 1982) pp. 323–336

    Google Scholar 

  57. H. Hanafusa, H. Asada: Handling of constrained objects by active elastic fingers and its applications to assembly, Trans. Soc. Instrum. Contr. Eng. 15(1), 61–66 (1979)

    Google Scholar 

  58. M.T. Mason: Manipulator Grasping and Pushing Operations. Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 1982), reprinted in Robot Hands and the Mechanics of Manipulation MIT Press, Cambridge 1985

    Google Scholar 

  59. R.C. Brost: Analysis and Planning of Planar Manipulation Tasks. Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 1991)

    Google Scholar 

  60. M.A. Peshkin, A.C. Sanderson: Planning robotic manipulation strategies for workpieces that slide, IEEE J. Robot. Autom. 4(5), 524–531 (1988)

    Article  Google Scholar 

  61. K. Lynch: Nonprehensile Manipulation: Mechanics and Planning. Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 1996)

    Google Scholar 

  62. J.C. Trinkle, J.J. Hunter: A framework for planning dexterous manipulation, Proc. IEEE Int. Conf. Robot. Autom. (1991) pp. 1245–1251

    Google Scholar 

  63. J.C. Trinkle, R.C. Ram, A.O. Farahat, P.F. Stiller: Dexterous manipulation planning and execution of an enveloped slippery workpiece, Proc. IEEE Int. Conf. Robot. Autom., Vol. 2 (1993) pp. 442–448

    Google Scholar 

  64. K. Harada, M. Kaneko, T. Tsuji: Rolling based manipulation for multiple objects, Proc. IEEE Int. Conf. Robot. Autom. (2000) pp. 3887–3894

    Google Scholar 

  65. R.S. Fearing: Simplified grasping and manipulation with dextrous robot hands, IEEE J. Robot. Autom. RA-2(4), 188–195 (1986)

    Article  Google Scholar 

  66. N.B. Zumel, M.A. Erdmann: Nonprehensible two palm manipulation with non-equilbrium transitions between stable states, Proc. IEEE Int. Conf. Robot. Autom. (1996) pp. 3317–3323

    Google Scholar 

  67. D.L. Brock: Enhancing the dexterity of a robot hand using controlled slip. M.S. Thesis (MIT, Cambridge 1987)

    Google Scholar 

  68. R. Fearing, S. Gopalswamy: Grasping polyhedral objects with slip, Proc. IEEE Int. Conf. Robot. Autom. (1989) pp. 296–301

    Google Scholar 

  69. M. Cherif, K.K. Gupta: Planning quasi-static fingertip manipulation for reconfiguring objects, IEEE Trans. Robot. Autom. 15(5), 837–848 (1999)

    Article  Google Scholar 

  70. L. Han, J.C. Trinkle: Dextrous manipulation by rolling and finger gaiting, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 730–735

    Google Scholar 

  71. L. Han, Z. Li, J.C. Trinkle, Z. Qin, S. Jiang: The planning and control of robot dexterous manipulation, Proc. IEEE Int. Conf. Robot. Autom. (2000) pp. 263–269

    Google Scholar 

  72. M. Higashimori, M. Kimura, I. Ishii, M. Kaneko: Friction independent dynamic capturing strategy for a 2d stick-shaped object, Proc. IEEE Int. Conf. Robot. Autom. (2007) pp. 217–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Domenico Prattichizzo Prof or Jeffrey C. Trinkle Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Prattichizzo, D., Trinkle, J.C. (2008). Grasping. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics