Skip to main content

Mesenchymal Stem Cells for Regeneration of the Ocular Surface

  • Chapter
  • First Online:
Modern Keratoplasty

Abstract

Mesenchymal tissues can provide a source of stem cells (MSCs) that are readily available, non-immunogenic, and have tremendous regenerative and anti-inflammatory properties. For these reasons, MSCs have emerged as very attractive candidates for cell-based therapies in numerous and diverse clinical applications including the treatment of ocular surface diseases such as limbal stem cell deficiency, dry eye disease, or even as a potential therapy to improve corneal allograft survival. Although some of the current preclinical evidence has already been successfully translated into clinical applications, work must continue to overcome all of the scientific and technical challenges that remain unsolved. This book chapter summarizes the main preclinical and clinical evidence that strongly supports MSC-based therapies as safe and effective treatments for the regeneration of the ocular surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Cluster of differentiation

CK:

Cytokeratin

CLET:

Cultivated limbal epithelial transplantation

DED:

Dry eye disease

EVs:

Extracellular vesicles

GVHD:

Graft-versus-host disease

HLA-DR:

Human leukocyte antigen-DR

IL:

Interleukin

LESCs:

Limbal epithelial stem cells

LSCD:

Limbal stem cell deficiency

MSCs:

Mesenchymal stem cells

oGVHD:

Ocular graft-versus-host disease

TNF-α:

Tumour necrosis factor alpha

Treg:

Regulatory T cells

TSG-6:

Tumour necrosis factor-stimulated gene/protein-6

References

  1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen J, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong T, Taylor H, Arditi A, Barkana Y, Bozkurt B, Bron A, Budenz D, Cai F, Casson R, Chakravarthy U, Choi J, Congdon N, Dana R, Dandona R, Dandona L, Dekaris I, Del Monte M, Deva J, Dreer L, Ellwein L, Frazier M, Frick K, Friedman D, Furtado J, Gao H, Gazzard G, George R, Gichuhi S, Gonzalez V, Hammond B, Hartnett ME, He M, Hejtmancik J, Hirai F, Huang J, Ingram A, Javitt J, Joslin C, Khairallah M, Khanna R, Kim J, Lambrou G, Lansingh VC, Lanzetta P, Lim J, Mansouri K, Mathew A, Morse A, Munoz B, Musch D, Nangia V, Palaiou M, Parodi MB, Pena FY, Peto T, Quigley H, Raju M, Ramulu P, Reza D, Robin A, Rossetti L, Saaddine J, Sandar M, Serle J, Shen T, Shetty R, Sieving P, Silva JC, Sitorus RS, Stambolian D, Tejedor J, Tielsch J, Tsilimbaris M, van Meurs J, Varma R, Virgili G, Wang YX, Wang NL, West S, Wiedemann P, Wormald R, Zheng Y. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–34. https://doi.org/10.1016/S2214-109X(17)30393-5.

    Article  Google Scholar 

  2. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57:201–9. https://doi.org/10.1016/0092-8674(89)90958-6.

    Article  CAS  Google Scholar 

  3. Li W, Hayashida Y, Chen Y-T, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res. 2007;17:26–36. https://doi.org/10.1038/sj.cr.7310137.

    Article  CAS  Google Scholar 

  4. Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62. https://doi.org/10.1083/jcb.103.1.49.

    Article  CAS  Google Scholar 

  5. Dua HS, Saini JS, Azuara-Blanco A, Gupta P. Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol. 2000;48:83–92.

    CAS  Google Scholar 

  6. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363:147–55. https://doi.org/10.1056/NEJMoa0905955.

    Article  CAS  Google Scholar 

  7. Ramírez BE, Sánchez A, Herreras JM, Fernández I, García-Sancho J, Nieto-Miguel T, Calonge M. Stem cell therapy for corneal epithelium regeneration following good manufacturing and clinical procedures. Biomed Res Int. 2015;2015:1–19. https://doi.org/10.1155/2015/408495.

    Article  CAS  Google Scholar 

  8. Calonge M, Pérez I, Galindo S, Nieto-Miguel T, López-Paniagua M, Fernández I, Alberca M, García-Sancho J, Sánchez A, Herreras JM. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl Res. 2019;206:18–40. https://doi.org/10.1016/J.TRSL.2018.11.003.

    Article  Google Scholar 

  9. Behaegel J, Zakaria N, Tassignon M-J, Leysen I, Bock F, Koppen C, Ní Dhubhghaill S. Short- and long-term results of xenogeneic-free cultivated autologous and allogeneic limbal epithelial stem cell transplantations. Cornea. 2019;38:1543–9. https://doi.org/10.1097/ICO.0000000000002153.

    Article  Google Scholar 

  10. Shimazaki J, Satake Y, Higa K, Yamaguchi T, Noma H, Tsubota K. Long-term outcomes of cultivated cell sheet transplantation for treating total limbal stem cell deficiency. Ocul Surf. 2020;18:663–71. https://doi.org/10.1016/j.jtos.2020.06.005.

    Article  Google Scholar 

  11. Calonge M, Nieto-Miguel T, de la Mata A, Galindo S, Herreras JM, López-Paniagua M. Goals and challenges of stem cell-based therapy for corneal blindness due to limbal deficiency. Pharmaceutics. 2021;13:1483. https://doi.org/10.3390/pharmaceutics13091483.

    Article  Google Scholar 

  12. Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int. 2017;2017:1–16. https://doi.org/10.1155/2017/5173732.

    Article  CAS  Google Scholar 

  13. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  Google Scholar 

  14. Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WWY. Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol. 2015;15:155. https://doi.org/10.1186/s12886-015-0138-4.

    Article  CAS  Google Scholar 

  15. O’Callaghan AR, Daniels JT. Concise Review: Limbal epithelial stem cell therapy: controversies and challenges. Stem Cells. 2011;29:1923–32. https://doi.org/10.1002/stem.756.

    Article  Google Scholar 

  16. Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, Mueller-Tidow C, Mueller LP. Cryopreservation does not alter main characteristics of good manufacturing process–grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation. Cytotherapy. 2015;17:186–98. https://doi.org/10.1016/j.jcyt.2014.10.018.

    Article  Google Scholar 

  17. Ho MSH, Mei SHJ, Stewart DJ. The immunomodulatory and therapeutic effects of mesenchymal stromal cells for acute lung injury and sepsis. J Cell Physiol. 2015;230:2606–17. https://doi.org/10.1002/jcp.25028.

    Article  CAS  Google Scholar 

  18. Griffin MD, Ritter T, Mahon BP. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther. 2010;21:1641–55. https://doi.org/10.1089/hum.2010.156.

    Article  CAS  Google Scholar 

  19. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28. https://doi.org/10.1089/107632701300062859.

    Article  CAS  Google Scholar 

  20. Phinney DG, Prockop DJ. concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25:2896–902. https://doi.org/10.1634/stemcells.2007-0637.

    Article  Google Scholar 

  21. Kuo TK, Ho JH, Lee OK. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications. Cell Transplant. 2009;18:1013–28. https://doi.org/10.3727/096368909X471206.

    Article  Google Scholar 

  22. Joe AW, Gregory-Evans K. Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res. 2010;35:941–52. https://doi.org/10.3109/02713683.2010.516466.

    Article  Google Scholar 

  23. Chamberlain G, Fox J, Ashton B, Middleton J. Concise Review: Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49. https://doi.org/10.1634/stemcells.2007-0197.

    Article  CAS  Google Scholar 

  24. Ren G, Chen X, Dong F, Li W, Ren X, Zhang Y, Shi Y. Concise Review: Mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med. 2012;1:51–8. https://doi.org/10.5966/sctm.2011-0019.

    Article  CAS  Google Scholar 

  25. Nieto-Miguel T, Galindo S, López-Paniagua M, Pérez I, Herreras JM, Calonge M. Cell therapy using extraocular mesenchymal stem cells. In: Alió J, Alió del Barrio J, Arnalich-Montiel F, editors. Corneal regeneration. Essentials in ophthalmology. Cham: Springer; 2019. p. 231–62.

    Google Scholar 

  26. Beeken LJ, Ting DSJ, Sidney LE. Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem Cells Transl Med. 2021;10:39–49. https://doi.org/10.1002/sctm.20-0118.

    Article  Google Scholar 

  27. Galindo S, de la Mata A, López-Paniagua M, Herreras JM, Pérez I, Calonge M, Nieto-Miguel T. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art. Stem Cell Res Ther. 2021;12:60. https://doi.org/10.1186/s13287-020-02129-0.

    Article  CAS  Google Scholar 

  28. Galindo S, Herreras JM, López-Paniagua M, Rey E, de la Mata A, Plata-Cordero M, Calonge M, Nieto-Miguel T. Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to limbal stem cell niche damage. Stem Cells. 2017;35:2160–74. https://doi.org/10.1002/stem.2672.

    Article  CAS  Google Scholar 

  29. Di G, Du X, Qi X, Zhao X, Duan H, Li S, Xie L, Zhou Q. Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6–dependent stem cell activation and macrophage switch. Invest Opthalmol Vis Sci. 2017;58:4344. https://doi.org/10.1167/iovs.17-21506.

    Article  CAS  Google Scholar 

  30. Yao L, Li Z, Su W, Li Y, Lin M, Zhang W, Liu Y, Wan Q, Liang D. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS ONE. 2012;7:e30842. https://doi.org/10.1371/journal.pone.0030842.

    Article  CAS  Google Scholar 

  31. Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C, Li X. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoS ONE. 2015;10:e0119725. https://doi.org/10.1371/journal.pone.0119725.

    Article  CAS  Google Scholar 

  32. Lin H-F, Lai Y-C, Tai C-F, Tsai J-L, Hsu H-C, Hsu R-F, Lu S-N, Feng N-H, Chai C-Y, Lee C-H. Effects of cultured human adipose-derived stem cells transplantation on rabbit cornea regeneration after alkaline chemical burn. Kaohsiung J Med Sci. 2013;29:14–8. https://doi.org/10.1016/j.kjms.2012.08.002.

    Article  CAS  Google Scholar 

  33. Ghazaryan E, Zhang Y, He Y, Liu X, Li Y, Xie J, Su G. Mesenchymal stem cells in corneal neovascularization: comparison of different application routes. Mol Med Rep. 2016;14:3104–12. https://doi.org/10.3892/mmr.2016.5621.

    Article  CAS  Google Scholar 

  34. Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, Chauhan SK. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul Surf. 2019;17:729–36. https://doi.org/10.1016/j.jtos.2019.07.005.

    Article  Google Scholar 

  35. Li G, Zhang Y, Cai S, Sun M, Wang J, Li S, Li X, Tighe S, Chen S, Xie H, Zhu Y. Human limbal niche cells are a powerful regenerative source for the prevention of limbal stem cell deficiency in a rabbit model. Sci Rep. 2018;8:6566. https://doi.org/10.1038/s41598-018-24862-6.

    Article  CAS  Google Scholar 

  36. Pan J, Wang X, Li D, Li J, Jiang Z. MSCs inhibits the angiogenesis of HUVECs through the miR-211/Prox1 pathway. J Biochem. 2019;166:107–13. https://doi.org/10.1093/jb/mvz038.

    Article  CAS  Google Scholar 

  37. Zhang N, Luo X, Zhang S, Liu R, Liang L, Su W, Liang D. Subconjunctival injection of tumor necrosis factor-α pre-stimulated bone marrow-derived mesenchymal stem cells enhances anti-inflammation and anti-fibrosis in ocular alkali burns. Graefes Arch Clin Exp Ophthalmol. 2021;259:929–40. https://doi.org/10.1007/s00417-020-05017-8.

    Article  CAS  Google Scholar 

  38. Zeppieri M, Salvetat ML, Beltrami AP, Cesselli D, Bergamin N, Russo R, Cavaliere F, Varano GP, Alcalde I, Merayo J, Brusini P, Beltrami CA, Parodi PC. Human adipose-derived stem cells for the treatment of chemically burned rat cornea: preliminary results. Curr Eye Res. 2013;38:451–63. https://doi.org/10.3109/02713683.2012.763100.

    Article  CAS  Google Scholar 

  39. Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH, Wee WR, Lee JH. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells. 2008;26:1047–55. https://doi.org/10.1634/stemcells.2007-0737.

    Article  CAS  Google Scholar 

  40. Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, Du Y, Li L. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells. 2006;24:315–21. https://doi.org/10.1634/stemcells.2005-0046.

    Article  Google Scholar 

  41. Rohaina CM, Then KY, Ng AMH, Wan Abdul Halim WH, Zahidin AZM, Saim A, Idrus RBH. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163:200–10. https://doi.org/10.1016/j.trsl.2013.11.004.

    Article  CAS  Google Scholar 

  42. Pınarlı FA, Okten G, Beden U, Fışgın T, Kefeli M, Kara N, Duru F, Tomak L. Keratinocyte growth factor-2 and autologous serum potentiate the regenerative effect of mesenchymal stem cells in cornea damage in rats. Int J Ophthalmol. 2014;7:211–9. https://doi.org/10.3980/j.issn.2222-3959.2014.02.05.

    Article  CAS  Google Scholar 

  43. Jiang T-S, Cai L, Ji W-Y, Hui Y-N, Wang Y-S, Hu D, Zhu J. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis. 2010;16:1304–16.

    Google Scholar 

  44. Cejkova J, Trosan P, Cejka C, Lencova A, Zajicova A, Javorkova E, Kubinova S, Sykova E, Holan V. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp Eye Res. 2013;116:312–23. https://doi.org/10.1016/j.exer.2013.10.002.

    Article  CAS  Google Scholar 

  45. Cejka C, Cejkova J, Trosan P, Zajicova A, Sykova E, Holan V. Transfer of mesenchymal stem cells and cyclosporine A on alkali-injured rabbit cornea using nanofiber scaffolds strongly reduces corneal neovascularization and scar formation. Histol Histopathol. 2016;31:969–80. https://doi.org/10.14670/HH-11-724.

    Article  CAS  Google Scholar 

  46. Cejka C, Holan V, Trosan P, Zajicova A, Javorkova E, Cejkova J. The favorable effect of mesenchymal stem cell treatment on the antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. Oxidative Med Cell Longev. 2016;2016:1–12. https://doi.org/10.1155/2016/5843809.

    Article  CAS  Google Scholar 

  47. Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M, Cejkova J. A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Transl Med. 2015;4:1052–63. https://doi.org/10.5966/sctm.2015-0039.

    Article  CAS  Google Scholar 

  48. Mittal SK, Omoto M, Amouzegar A, Sahu A, Rezazadeh A, Katikireddy KR, Shah DI, Sahu SK, Chauhan SK. Restoration of corneal transparency by mesenchymal stem cells. Stem Cell Rep. 2016;7:583–90. https://doi.org/10.1016/j.stemcr.2016.09.001.

    Article  CAS  Google Scholar 

  49. Lee RH, Yu JM, Foskett AM, Peltier G, Reneau JC, Bazhanov N, Oh JY, Prockop DJ. TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci. 2014;111:16766–71. https://doi.org/10.1073/pnas.1416121111.

    Article  CAS  Google Scholar 

  50. Lan Y, Kodati S, Lee HS, Omoto M, Jin Y, Chauhan SK. Kinetics and function of mesenchymal stem cells in corneal injury. Invest Opthalmol Vis Sci. 2012;53:3638. https://doi.org/10.1167/iovs.11-9311.

    Article  CAS  Google Scholar 

  51. Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, Rosa RH, Prockop DJ. Action at a distance: systemically administered adult stem/progenitor cells (mscs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells. 2011;29:1572–9. https://doi.org/10.1002/stem.708.

    Article  CAS  Google Scholar 

  52. Ye J, Yao K, Kim JC. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye. 2006;20:482–90. https://doi.org/10.1038/sj.eye.6701913.

    Article  CAS  Google Scholar 

  53. Yun YI, Park SY, Lee HJ, Ko JH, Kim MK, Wee WR, Reger RL, Gregory CA, Choi H, Fulcher SF, Prockop DJ, Oh JY. Comparison of the anti-inflammatory effects of induced pluripotent stem cell–derived and bone marrow–derived mesenchymal stromal cells in a murine model of corneal injury. Cytotherapy. 2017;19:28–35. https://doi.org/10.1016/j.jcyt.2016.10.007.

    Article  CAS  Google Scholar 

  54. Acar U, Pinarli FA, Acar DE, Beyazyildiz E, Sobaci G, Ozgermen BB, Sonmez AA, Delibasi T. Effect of allogeneic limbal mesenchymal stem cell therapy in corneal healing: role of administration route. Ophthalmic Res. 2015;53:82–9. https://doi.org/10.1159/000368659.

    Article  CAS  Google Scholar 

  55. Nili E, Li FJ, Dawson RA, Lau C, McEwan B, Barnett NL, Weier S, Walshe J, Richardson NA, Harkin DG. The impact of limbal mesenchymal stromal cells on healing of acute ocular surface wounds is improved by pre-cultivation and implantation in the presence of limbal epithelial cells. Cell Transplant. 2019;28:1257–70. https://doi.org/10.1177/0963689719858577.

    Article  Google Scholar 

  56. Gomes JÁP, Geraldes Monteiro B, Melo GB, Smith RL, Pereira C, da Silva M, Lizier NF, Kerkis A, Cerruti H, Kerkis I. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Opthalmol Vis Sci. 2010;51:1408. https://doi.org/10.1167/iovs.09-4029.

    Article  Google Scholar 

  57. Espandar L, Caldwell D, Watson R, Blanco-Mezquita T, Zhang S, Bunnell B. Application of adipose-derived stem cells on scleral contact lens carrier in an animal model of severe acute alkaline burn. Eye Contact Lens Sci Clin Pract. 2014;40:243–7. https://doi.org/10.1097/ICL.0000000000000045.

    Article  Google Scholar 

  58. Ahmed SK, Soliman AA, Omar SMM, Mohammed WR. Bone marrow mesenchymal stem cell transplantation in a rabbit corneal alkali burn model (a histological and immune histo-chemical study). Int J Stem Cells. 2015;8:69–78. https://doi.org/10.15283/ijsc.2015.8.1.69.

    Article  CAS  Google Scholar 

  59. Almaliotis D, Koliakos G, Papakonstantinou E, Komnenou A, Thomas A, Petrakis S, Nakos I, Gounari E, Karampatakis V. Mesenchymal stem cells improve healing of the cornea after alkali injury. Graefes Arch Clin Exp Ophthalmol. 2015;253:1121–35. https://doi.org/10.1007/s00417-015-3042-y.

    Article  Google Scholar 

  60. Gu S, Xing C, Han J, Tso MOM, Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis. 2009;15:99–107.

    CAS  Google Scholar 

  61. Reinshagen H, Auw-Haedrich C, Sorg RV, Boehringer D, Eberwein P, Schwartzkopff J, Sundmacher R, Reinhard T. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol. 2011;89:741–8. https://doi.org/10.1111/j.1755-3768.2009.01812.x.

    Article  Google Scholar 

  62. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo C-K, Liu Z, Nelson JD, Nichols JJ, Tsubota K, Stapleton F. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15:276–83. https://doi.org/10.1016/j.jtos.2017.05.008.

    Article  Google Scholar 

  63. Gayton J. Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol. 2009;3:405. https://doi.org/10.2147/OPTH.S5555.

    Article  Google Scholar 

  64. Calonge M, Enríquez-de-Salamanca A, Diebold Y, González-García MJ, Reinoso R, Herreras JM, Corell A. Dry eye disease as an inflammatory disorder. Ocul Immunol Inflamm. 2010;18:244–53. https://doi.org/10.3109/09273941003721926.

    Article  Google Scholar 

  65. Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation. Eye Contact Lens Sci Clin Pract. 2014;40:248–56. https://doi.org/10.1097/ICL.0000000000000042.

    Article  Google Scholar 

  66. Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 2016;7:15. https://doi.org/10.1186/s13167-016-0065-3.

    Article  Google Scholar 

  67. Choi SW, Cha BG, Kim J. Therapeutic contact lens for scavenging excessive reactive oxygen species on the ocular surface. ACS Nano. 2020;14:2483–96. https://doi.org/10.1021/acsnano.9b10145.

    Article  CAS  Google Scholar 

  68. Xu J, Wang D, Liu D, Fan Z, Zhang H, Liu O, Ding G, Gao R, Zhang C, Ding Y, Bromberg JS, Chen W, Sun L, Wang S. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood. 2012;120:3142–51. https://doi.org/10.1182/blood-2011-11-391144.

    Article  CAS  Google Scholar 

  69. Beyazyıldız E, Pınarlı FA, Beyazyıldız Ö, Hekimoğlu ER, Acar U, Demir MN, Albayrak A, Kaymaz F, Sobacı G, Delibaşı T. Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model. Stem Cells Int. 2014;2014:1–9. https://doi.org/10.1155/2014/250230.

    Article  Google Scholar 

  70. Lee MJ, Ko AY, Ko JH, Lee HJ, Kim MK, Wee WR, Khwarg SI, Oh JY. Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye. Mol Ther. 2015;23:139–46. https://doi.org/10.1038/mt.2014.159.

    Article  CAS  Google Scholar 

  71. Aluri HS, Samizadeh M, Edman MC, Hawley DR, Armaos HL, Janga SR, Meng Z, Sendra VG, Hamrah P, Kublin CL, Hamm-Alvarez SF, Zoukhri D. Delivery of bone marrow-derived mesenchymal stem cells improves tear production in a mouse model of Sjögren’s syndrome. Stem Cells Int. 2017;2017:1–10. https://doi.org/10.1155/2017/3134543.

    Article  CAS  Google Scholar 

  72. Abughanam G, Elkashty OA, Liu Y, Bakkar MO, Tran SD. Mesenchymal stem cells extract (MSCsE)-based therapy alleviates xerostomia and keratoconjunctivitis sicca in Sjogren’s syndrome-like disease. Int J Mol Sci. 2019;20:4750. https://doi.org/10.3390/ijms20194750.

    Article  CAS  Google Scholar 

  73. Park SA, Reilly CM, Wood JA, Chung DJ, Carrade DD, Deremer SL, Seraphin RL, Clark KC, Zwingenberger AL, Borjesson DL, Hayashi K, Russell P, Murphy CJ. Safety and immunomodulatory effects of allogeneic canine adipose-derived mesenchymal stromal cells transplanted into the region of the lacrimal gland, the gland of the third eyelid and the knee joint. Cytotherapy. 2013;15:1498–510. https://doi.org/10.1016/j.jcyt.2013.06.009.

    Article  CAS  Google Scholar 

  74. Villatoro AJ, Fernández V, Claros S, Rico-Llanos GA, Becerra J, Andrades JA. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. Biomed Res Int. 2015;2015:1–10. https://doi.org/10.1155/2015/527926.

    Article  CAS  Google Scholar 

  75. Bittencourt MKW, Barros MA, Martins JFP, Vasconcellos JPC, Morais BP, Pompeia C, Bittencourt MD, Evangelho KDS, Kerkis I, Wenceslau CV. Allogeneic mesenchymal stem cell transplantation in dogs with keratoconjunctivitis sicca. Cell Med. 2016;8:63–77. https://doi.org/10.3727/215517916X693366.

    Article  Google Scholar 

  76. Lu X, Li N, Zhao L, Guo D, Yi H, Yang L, Liu X, Sun D, Nian H, Wei R. Human umbilical cord mesenchymal stem cells alleviate ongoing autoimmune dacryoadenitis in rabbits via polarizing macrophages into an anti-inflammatory phenotype. Exp Eye Res. 2020;191:107905. https://doi.org/10.1016/j.exer.2019.107905.

    Article  CAS  Google Scholar 

  77. Dietrich J, Ott L, Roth M, Witt J, Geerling G, Mertsch S, Schrader S. MSC transplantation improves lacrimal gland regeneration after surgically induced dry eye disease in mice. Sci Rep. 2019;9:18299. https://doi.org/10.1038/s41598-019-54840-5.

    Article  CAS  Google Scholar 

  78. Li F, Zhao S. Control of cross talk between angiogenesis and inflammation by mesenchymal stem cells for the treatment of ocular surface diseases. Stem Cells Int. 2016;2016:1–8. https://doi.org/10.1155/2016/7961816.

    Article  CAS  Google Scholar 

  79. Ogawa Y, Shimmura S, Dogru M, Tsubota K. Immune processes and pathogenic fibrosis in ocular chronic graft-versus-host disease and clinical manifestations after allogeneic hematopoietic stem cell transplantation. Cornea. 2010;29:S68–77. https://doi.org/10.1097/ICO.0b013e3181ea9a6b.

    Article  Google Scholar 

  80. Ogawa Y, Okamoto S, Wakui M, Watanabe R, Yamada M, Yoshino M, Ono M, Yang H-Y, Mashima Y, Oguchi Y, Ikeda Y, Tsubota K. Dry eye after haematopoietic stem cell transplantation. Br J Ophthalmol. 1999;83:1125–30. https://doi.org/10.1136/bjo.83.10.1125.

    Article  CAS  Google Scholar 

  81. Shikari H, Antin JH, Dana R. Ocular graft-versus-host disease: a review. Surv Ophthalmol. 2013;58:233–51. https://doi.org/10.1016/j.survophthal.2012.08.004.

    Article  Google Scholar 

  82. Ogawa Y, Kawakami Y, Tsubota K. Cascade of inflammatory, fibrotic processes, and stress-induced senescence in chronic GVHD-related dry eye disease. Int J Mol Sci. 2021;22:6114. https://doi.org/10.3390/ijms22116114.

    Article  CAS  Google Scholar 

  83. Shimizu S, Sato S, Taniguchi H, Shimizu E, He J, Hayashi S, Negishi K, Ogawa Y, Shimmura S. Observation of chronic graft-versus-host disease mouse model cornea with in vivo confocal microscopy. Diagnostics. 2021;11:1515. https://doi.org/10.3390/diagnostics11081515.

    Article  CAS  Google Scholar 

  84. Sanchez-Abarca LI, Hernandez-Galilea E, Lorenzo R, Herrero C, Velasco A, Carrancio S, Caballero-Velazquez T, Rodriguez-Barbosa JI, Parrilla M, Del Canizo C, San Miguel J, Aijon J, Perez-Simon JA. Human bone marrow stromal cells differentiate into corneal tissue and prevent ocular graft-versus-host disease in mice. Cell Transplant. 2015;24:2423–33. https://doi.org/10.3727/096368915x687480.

    Article  Google Scholar 

  85. Martínez-Carrasco R, Sánchez-Abarca LI, Nieto-Gómez C, Martín García E, Sánchez-Guijo F, Argüeso P, Aijón J, Hernández-Galilea E, Velasco A. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD. Ocul Surf. 2019;17:285–94. https://doi.org/10.1016/j.jtos.2019.01.001.

    Article  Google Scholar 

  86. Rusch RM, Ogawa Y, Sato S, Morikawa S, Inagaki E, Shimizu E, Tsubota K, Shimmura S. MSCs become collagen-type I producing cells with different phenotype in allogeneic and syngeneic bone marrow transplantation. Int J Mol Sci. 2021;22:4895. https://doi.org/10.3390/ijms22094895.

    Article  CAS  Google Scholar 

  87. Al-Jaibaji O, Swioklo S, Connon CJ. Mesenchymal stromal cells for ocular surface repair. Expert Opin Biol Ther. 2019;19:643–53. https://doi.org/10.1080/14712598.2019.1607836.

    Article  Google Scholar 

  88. Dietrich J, Schrader S. Towards lacrimal gland regeneration: current concepts and experimental approaches. Curr Eye Res. 2020;45:230–40. https://doi.org/10.1080/02713683.2019.1637438.

    Article  Google Scholar 

  89. Baiula M, Spampinato S. Experimental pharmacotherapy for dry eye disease: a review. J Exp Pharmacol. 2021;13:345–58. https://doi.org/10.2147/JEP.S237487.

    Article  Google Scholar 

  90. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134:167–73. https://doi.org/10.1001/jamaophthalmol.2015.4776.

    Article  Google Scholar 

  91. Williams KA, Esterman AJ, Bartlett C, Holland H, Hornsby NB, Coster DJ. How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation. 2006;81:896–901. https://doi.org/10.1097/01.tp.0000185197.37824.35.

    Article  Google Scholar 

  92. Alio JL, Montesel A, El Sayyad F, Barraquer RI, Arnalich-Montiel F, Alio Del Barrio JL. Corneal graft failure: an update. Br J Ophthalmol. 2021;105:1049–58. https://doi.org/10.1136/bjophthalmol-2020-316705.

    Article  Google Scholar 

  93. Tahvildari M, Amouzegar A, Foulsham W, Dana R. Therapeutic approaches for induction of tolerance and immune quiescence in corneal allotransplantation. Cell Mol Life Sci. 2018;75:1509–20. https://doi.org/10.1007/s00018-017-2739-y.

    Article  CAS  Google Scholar 

  94. Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 1992;10:505–12.

    Article  CAS  Google Scholar 

  95. Murphy N, Lynch K, Lohan P, Treacy O, Ritter T. Mesenchymal stem cell therapy to promote corneal allograft survival. Curr Opin Organ Transplant. 2016;21:559–67. https://doi.org/10.1097/MOT.0000000000000360.

    Article  CAS  Google Scholar 

  96. Oh JY, Kim E, Yun YI, Lee RH. Mesenchymal stromal cells for corneal transplantation: literature review and suggestions for successful clinical trials. Ocul Surf. 2021;20:185–94. https://doi.org/10.1016/j.jtos.2021.02.002.

    Article  Google Scholar 

  97. Treacy O, Lynch K, Murphy N, Chen X, Donohoe E, Canning A, Lohan P, Shaw G, Fahy G, Ryan AE, Ritter T. Subconjunctival administration of low-dose murine allogeneic mesenchymal stromal cells promotes corneal allograft survival in mice. Stem Cell Res Ther. 2021;12:227. https://doi.org/10.1186/s13287-021-02293-x.

    Article  CAS  Google Scholar 

  98. Lynch K, Treacy O, Chen X, Murphy N, Lohan P, Islam MN, Donohoe E, Griffin MD, Watson L, McLoughlin S, O’Malley G, Ryan AE, Ritter T. TGF-β1-licensed murine MSCs show superior therapeutic efficacy in modulating corneal allograft immune rejection in vivo. Mol Ther. 2020;28:2023–43. https://doi.org/10.1016/j.ymthe.2020.05.023.

    Article  CAS  Google Scholar 

  99. Murphy N, Treacy O, Lynch K, Morcos M, Lohan P, Howard L, Fahy G, Griffin MD, Ryan AE, Ritter T. TNF-α/IL-1β—licensed mesenchymal stromal cells promote corneal allograft survival via myeloid cell-mediated induction of Foxp3 + regulatory T cells in the lung. FASEB J. 2019;33:9404–21. https://doi.org/10.1096/fj.201900047R.

    Article  CAS  Google Scholar 

  100. Oh JY, Lee RH, Yu JM, Ko JH, Lee HJ, Ko AY, Roddy GW, Prockop DJ. Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. Mol Ther. 2012;20:2143–52. https://doi.org/10.1038/mt.2012.165.

    Article  CAS  Google Scholar 

  101. Mittal SK, Foulsham W, Shukla S, Elbasiony E, Omoto M, Chauhan SK. Mesenchymal stromal cells modulate corneal alloimmunity via secretion of hepatocyte growth factor. Stem Cells Transl Med. 2019;8:1030–40. https://doi.org/10.1002/sctm.19-0004.

    Article  CAS  Google Scholar 

  102. Ramos T, Scott D, Ahmad S. An update on ocular surface epithelial stem cells: cornea and conjunctiva. Stem Cells Int. 2015;2015:1–7. https://doi.org/10.1155/2015/601731.

    Article  Google Scholar 

  103. Elhusseiny AM, Soleimani M, Eleiwa TK, ElSheikh RH, Frank CR, Naderan M, Yazdanpanah G, Rosenblatt MI, Djalilian AR. Current and emerging therapies for limbal stem cell deficiency. Stem Cells Transl Med. 2022;11:259–68. https://doi.org/10.1093/stcltm/szab028.

    Article  Google Scholar 

  104. Keivyon KR, Tseng SCG. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96:709–23. https://doi.org/10.1016/S0161-6420(89)32833-8.

    Article  Google Scholar 

  105. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:990–3. https://doi.org/10.1016/S0140-6736(96)11188-0.

    Article  CAS  Google Scholar 

  106. Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96:931–4. https://doi.org/10.1136/bjophthalmol-2011-301164.

    Article  Google Scholar 

  107. López-Paniagua M, De La Mata A, Galindo S, Blázquez F, Calonge M, Nieto-Miguel T. Advanced therapy medicinal products for the eye: definitions and regulatory framework. Pharmaceutics. 2021;13:347. https://doi.org/10.3390/pharmaceutics13030347.

    Article  CAS  Google Scholar 

  108. Jacobs R, Tran U, Chen H, Kassim A, Engelhardt BG, Greer JP, Goodman SG, Clifton C, Lucid C, Vaughan LA, Savani BN, Jagasia M. Prevalence and risk factors associated with development of ocular GVHD defined by NIH consensus criteria. Bone Marrow Transplant. 2012;47:1470–3. https://doi.org/10.1038/bmt.2012.56.

    Article  CAS  Google Scholar 

  109. Weng J, He C, Lai P, Luo C, Guo R, Wu S, Geng S, Xiangpeng A, Liu X, Du X. Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease. Mol Ther. 2012;20:2347–54. https://doi.org/10.1038/mt.2012.208.

    Article  CAS  Google Scholar 

  110. Møller-Hansen M, Larsen A-C, Toft PB, Lynggaard CD, Schwartz C, Bruunsgaard H, Haack-Sørensen M, Ekblond A, Kastrup J, Heegaard S. Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease. Ocul Surf. 2021;19:43–52. https://doi.org/10.1016/j.jtos.2020.11.013.

    Article  Google Scholar 

  111. Zhou T, He C, Lai P, Yang Z, Liu Y, Xu H, Lin X, Ni B, Ju R, Yi W, Liang L, Pei D, Egwuagu CE, Liu X. miR-204–containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv. 2022;8:eabj9617. https://doi.org/10.1126/sciadv.abj9617.

    Article  CAS  Google Scholar 

  112. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23:812–23. https://doi.org/10.1038/mt.2015.44.

    Article  CAS  Google Scholar 

  113. Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Malviya R, Singh A, Fuloria NK. Mesenchymal stem cell-derived extracellular vesicles: regenerative potential and challenges. Biology. 2021;10:172. https://doi.org/10.3390/biology10030172.

    Article  CAS  Google Scholar 

  114. Deng SX, Dos Santos A, Gee S. Therapeutic potential of extracellular vesicles for the treatment of corneal injuries and scars. Transl Vis Sci Technol. 2020;9:1. https://doi.org/10.1167/tvst.9.12.1.

    Article  Google Scholar 

  115. McKay TB, Yeung V, Hutcheon AEK, Guo X, Zieske JD, Ciolino JB. Extracellular vesicles in the cornea: insights from other tissues. Anal Cell Pathol. 2021;2021:1–12. https://doi.org/10.1155/2021/9983900.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Bromberg (Certified Editor in Life Sciences, Xenofile Editing) for his assistance in the final editing and preparation of this manuscript. This work was funded by the Ministry of Science and Innovation (grant PID2019-105525RB-100/AEI/10.13039/501100011033 MICINN/FEDER, EU), Spain; the Carlos III National Institute of Health, CIBER-BBN (CB06/01/003 MICINN/FEDER, EU), Spain; and the Regional Center for Regenerative Medicine and Cell Therapy of Castilla y León, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Nieto-Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Paniagua, M. et al. (2023). Mesenchymal Stem Cells for Regeneration of the Ocular Surface. In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics