Skip to main content

Advertisement

Log in

Mesenchymal stem cells improve healing of the cornea after alkali injury

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the efficacy of mesenchymal stem cells (MSCs) to ameliorate the consequences of corneal alkali injuries.

Methods

Corneal alkali injuries were created in 30 rabbit eyes. The MSC group (n = 15) were treated with intrastromal and subconjunctival injections of phosphate-buffered saline (PBS) containing 2 × 106 MSCs and topical application. The control group (n = 15) was treated with PBS by the same applications forms. Drops of standard treatment (ascorbate 10 %, citrate 10 %, tobramycin, dexamethasone, Cyclogyl) were instilled for 2 weeks. Rabbits underwent slit-lamp examination, fluorescein staining, photography, and were evaluated for corneal neovascularization, opacification, and epithelial defects. Tear secretion and IOP were also evaluated. Furthermore, the concentration of Serumglutamic–pyruvic transaminase (SGPT) and vascular endothelial factor (VEGF) were measured. Immunohistochemistry was also performed for a-SMA and Ki-67.

Results

Eyes treated with MSCs showed better recovery. The mean neovascularized area was significantly smaller in the MSC group (p < 0.05). A significant difference in the degree of corneal opacification and re-epithelialization was also observed, as well as the IOP at 21 and 28 posttraumatic days (p < 0.05). Histology showed that MSCs resulted in almost normal architecture of eye tissues. After the MSCs infusion, SGPT and VEGF levels in cornea were significantly reduced. Immunohistochemistry demonstrated a reduction of a-SMA in the MSC group with higher mitotic-regenerative activity with the presence of Ki67.

Conclusions

Our study represents a first step in understanding the possibilities of the MSC approach to treatment of alkali injuries of the cornea and shows that such an approach improves clinical outcomes and leads to better prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yao L, Li Z-R, Su W-R, Li Y-P, Lin M-L et al (2012) Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One 7(2):e30842. doi:10.1371/journal.pone.0030842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Singh P, Tyagi M, Kumar Y, Gupta KK, Sharma PD (2013) Ocular chemical injuries and their management. Oman J Ophthalmol 6(2):83–86

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, Du Y, Li L (2006) Reconstruction of chemically burned rat corneal surface by bone marrow–derived human mesenchymal stem cells. Stem Cells 24(2):315–321

    Article  PubMed  Google Scholar 

  4. Kuo IC (2004) Corneal wound healing. Curr Opin Ophthalmol 15:311–315

    Article  PubMed  Google Scholar 

  5. Adamis AP, Aiello LP, D’Amato RA (1999) Angiogenesis and ophthalmic disease. Angiogenesis 3:9–14

    Article  CAS  PubMed  Google Scholar 

  6. Srinivasan BD (1982) Corneal reepithelialization and anti-inflammatory agents. Trans Am Ophthalmol Soc 80:758–822

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Wagoner MD (1997) Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 41:275–313

    Article  CAS  PubMed  Google Scholar 

  8. Brodovsky SC, McCarty CA, Snibson G, Loughnan M, Sullivan L et al (2000) Management of alkali burns: an 11-year retrospective review. Ophthalmology 107:1829–1835

    Article  CAS  PubMed  Google Scholar 

  9. Cogan DG (1948) Vascularization of the cornea. Its experimental induction by small lesions and a new theory of its pathogenesis. Trans Am Ophthalmolol Soc 46:457–471

    CAS  Google Scholar 

  10. Langham M (1953) Observations on the growth of blood vessels into the cornea; application of a new experimental technique. Br J of Ophthalmol 37(4):210–222

    Article  CAS  Google Scholar 

  11. Lee P, Wang CC, Adamis AP (1998) Ocular neovascularization: epidemiologic review. Surv Ophthalmol 43:245–269

    Article  CAS  PubMed  Google Scholar 

  12. Lin KJ, Loi MX, Lien GS, Cheng CF, Pao HY, Chang YC, Ji AT, Ho JH (2013) Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Res Therapy 4(3):72

    Article  CAS  Google Scholar 

  13. Arora R, Mehta D, Jain V (2005) Amniotic membrane transplantation in acute chemical burns. Eye 19(3):273–278

    Article  CAS  PubMed  Google Scholar 

  14. Mitra S (2009) Combined autologous and allograft limbal cell transplantation with penetrating keratoplasty in a case of chemical corneal burn patient. Oman J Ophthalmol 2(3):126–129. doi:10.4103/0974-620X.57312

    Article  PubMed Central  PubMed  Google Scholar 

  15. Stamper RL, Lieberman MF, Drake MV (2009) Becker-Shaffer’s Diagnosis and Therapy of the Glaucomas, 8th edn. Mosby-Elsevier, China

    Google Scholar 

  16. Fish R, Davidson RS (2010) Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol 21(4):317–321. doi:10.1097/ICU.0b013e32833a8da2

    PubMed  Google Scholar 

  17. Tuft SJ, Shortt AJ (2009) Surgical rehabilitation following severe ocular burns. Eye Oct 23(10):1966–1971. doi:10.1038/eye.2008.414

    Article  CAS  Google Scholar 

  18. Shields MB (1998) Textbook of Glaucoma, 4th edn. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  19. Hemmati H, Colby KA (2012) Treating acute chemical injuries of the cornea. Cornea, Ophthalmic Pearls, pp 43–45

    Google Scholar 

  20. Kosoko A, Vu Q, Kosoko-Lasaki O (2009) Chemical ocular burns: a case review. Am J Clin Med 6(3):41

    Google Scholar 

  21. Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378

    Article  CAS  PubMed  Google Scholar 

  22. Ambati BK, Joussen AM, Ambati J et al (2002) Angiostatin inhibits and regresses corneal neovascularization. Arch Ophthalmol 120(8):1063–1068

    Article  CAS  PubMed  Google Scholar 

  23. Joussen AM, Kruse FE, Volcker HE, Kirchhof B (1999) Topical application of methotrexate for inhibition of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol 237(11):920–927

    Article  CAS  PubMed  Google Scholar 

  24. Mendelsohn AD, Stock EL, Lo GG, Schneck GL (1986) Laser photocoagulation of feeder vessels in lipid keratopathy. Ophthalmic Surg 17(8):502–508

    CAS  PubMed  Google Scholar 

  25. Peyman GA, Kivilcim M, Morales AM et al (2007) Inhibition of corneal angiogenesis by ascorbic acid in the rat model. Graefes Arch Clin Exp Ophthalmol 245(10):1461–1467

    Article  CAS  PubMed  Google Scholar 

  26. Benelli U, Bocci G, Danesi R et al (1998) The heparan sulfate suleparoide inhibits rat corneal angiogenesis and in vitro neovascularization. Exp Eye Res 67(2):133–142

    Article  CAS  PubMed  Google Scholar 

  27. D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91(9):4082–4085

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ey RC, Hughes WF, Bloome MA et al (1968) Prevention of corneal vascularization. Am J Ophthalmol 66(6):1118–1131

    Article  CAS  PubMed  Google Scholar 

  29. Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B (2000) Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization, Exp. Eye Res 70(4):419–428

    Article  CAS  Google Scholar 

  30. Phillips GD, Stone AM, Jones BD et al (1994) Vascular endothelial growth factor (rhVEGF165) stimulates direct angiogenesis in the rabbit cornea. In Vivo 8(6):961–965

    CAS  PubMed  Google Scholar 

  31. Philipp W, Speicher L, Humpel C (2000) Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 41(9):2514–2522

    CAS  PubMed  Google Scholar 

  32. Oh W, Kim DS, Yang YS, Lee JK (2008) Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cell Immunol 251(2):116–123. doi:10.1016/j.cellimm.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  33. Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH et al (2008) The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cell 26(4):1047–1055. doi:10.1634/stemcells.2007-0737

    Article  CAS  Google Scholar 

  34. Ye J, Yao K, Kim JC (2006) Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye (Lond) 20(4):482–490

    Article  CAS  Google Scholar 

  35. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147. doi:10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  36. Hakuno D, Fukuda K, Makino S et al (2000) Bone marrow-derived regenerated cardiomyocytes (CMG cells) express functional adrenergic and muscarinic receptors. Circulation 105(3):380–386

    Article  Google Scholar 

  37. Zannettino AC, Paton S, Arthur A, Khor F, Itescu S et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421

    Article  CAS  PubMed  Google Scholar 

  38. Hoogduijin MJ, Crop MJ, Peeters AM, Van Osch GJ, Balk AH et al (2007) Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev 16(4):597–604

    Article  Google Scholar 

  39. Su WR, Zhang QZ, Shi SH, Nguyen AL, Le AD (2011) Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E(2)-dependent mechanisms. Stem Cells 29(11):1849–1860. doi:10.1002/stem.738

    Article  CAS  PubMed  Google Scholar 

  40. Arnalich-Montiel F, Pastor S, Blazquez-Martinez A, Fernandez- Delgado J, Nistal M, Alio JL (2008) Adipose-derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells 26(2):570–579

    Article  CAS  PubMed  Google Scholar 

  41. Karathanasis V, Petrakis S, Topouridou K, Koliakou E, Koliakos G, Demiri E (2013) Intradermal injection of GFP-producing adipose-derived stromal cells promotes survival of random-pattern skin flaps in rats. Eur J Plast Surg 36(5):281–288

    Article  Google Scholar 

  42. Jones EA, English A, Kinsey SE, Straszynski L, Emery P, Ponchel F, McGonagle D (2006) Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 70(6):391–399

    Article  PubMed  Google Scholar 

  43. Association for Research in Vision and Ophthalmology. Statement for the use of animals in ophthalmic and visual research. (2007) Available at: http://www.arvo.org/eweb/dynamicpage.aspx?siteZarvo2& webcodeZAnimalsResearch

  44. Bagley DM, Casterton PL, Dressler WE et al (2006) Proposed new classification scheme for chemical injury to the human eye. Regul Toxicol Pharmacol 45(2):206–213

    Article  CAS  PubMed  Google Scholar 

  45. Rusanen E, Florin M, Hässig M, Spiess BM (2010) Evaluation of a rebound tonometer (Tonovet) in clinically normal cat eyes. Vet Ophthalmol 13(1):31–36. doi:10.1111/j.1463-5224.2009.00752.x

    Article  PubMed  Google Scholar 

  46. Leiva M, Naranjo C, Peña MT (2006) Comparison of the rebound tonometer (ICare) to the applanation tonometer (Tonopen XL) in normotensive dogs. Vet Ophthalmol 9(1):17–21

    Article  CAS  PubMed  Google Scholar 

  47. Edward J. Bilsky S. Stevens Negus (2009) Opiate receptors and antagonists: from bench to clinic (Contemporary Neuroscience) pp 263

  48. Jiang D, Hu Y, Ling S (2004) Expression of VEGF-C in rat cornea after alkali injury. J Huazhong Univ Sci Technolog Med Sci 24(5):483–485

    Article  CAS  PubMed  Google Scholar 

  49. Friedenstein AJ, Petrakova KV, Kurolesova AI, Froloba GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic. Transplantation 6(2):230–247

    Article  CAS  PubMed  Google Scholar 

  50. He Q, Wan C, Li G (2007) Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells 25(1):69–77

    Article  CAS  PubMed  Google Scholar 

  51. Polisetty N, Fatima A, Madhira SL, Sangwan VS, Vemuganti GK (2008) Mesenchymal cells from limbal stroma of human eye. Mol Vis 14:431–442

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Yao L, Bai H (2013) Review: Mesenchymal stem cells and corneal reconstruction. Mol Vis 19:2237–2243

    PubMed Central  PubMed  Google Scholar 

  53. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissue. Science 276(5309):71–74. doi:10.1126/science.276.5309.71

    Article  CAS  PubMed  Google Scholar 

  54. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31(10):890–896

    Article  PubMed  Google Scholar 

  55. Reggiani MG, Marcos L, Pizzolatti WD, Santhiago R, Budel MV, Moreira H (2011) The effect of subconjunctival bevacizumab on corneal neovascularization, inflammation and re-epithelization in a rabbit model. Clinics 66(8):1443–1449

    Article  Google Scholar 

  56. Miltiadis P, Panagiotis TG, Vasilios L, Alexandros R, Evaggelos G-B, Ioannis V (2008) Inhibition of corneal neovascularization by subconjunctival bevacizumab in an animal model. Am J Ophthalmol 145(3):424–431. doi:10.1016/j.ajo.2007.11.003

    Article  Google Scholar 

  57. Jiang TS, Cai L, Ji WY, Hui YN, Wang YS et al (2010) Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis 16:1304–1316

    PubMed Central  PubMed  Google Scholar 

  58. Lan Y, Kodati S, Lee HS, Omoto M, Jin Y, Chauhan SK (2012) Kinetics and function of mesenchymal stem cells in corneal injury. Invest Ophthalmol Vis Sci 53(7):3638–3644. doi:10.1167/iovs.11-9311

    Article  CAS  PubMed  Google Scholar 

  59. Ho JH, Ma WH, Tseng TC, Chen YF, Chen MH, Lee OK (2011) Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng Part A 17(1–2):255–266. doi:10.1089/ten.TEA.2010.0106

    Article  CAS  PubMed  Google Scholar 

  60. Agorogiannis GI, Alexaki VI, Castana O, Kymionis GD (2012) Topical application of autologous adipose-derived mesenchymal stem cells (MSCs) for persistent sterile corneal epithelial defect. Graefes Arch Clin Exp Ophthalmol 250(3):455–457. doi:10.1007/s00417-011-1841-3

    Article  PubMed  Google Scholar 

  61. Liu K, Chi L, Guo L et al (2008) The interactions between brain microvascular endothelial cells and mesenchymal stem cells under hypoxic conditions. Microvasc Res 75:59–67

    Article  CAS  PubMed  Google Scholar 

  62. Ball SG, Shuttleworth CA, Kielty CM (2007) Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med 11:1012–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Desmouliere A, Darby IA, Gabbiani G (2003) Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83:1689–1707

    Article  PubMed  Google Scholar 

  64. Jester JV, Huang J, Petroll WM, Cavanagh HD (2002) TGFbeta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGFbeta, PDGF and integrin signaling. Exp Eye Res 75:645–657

    Article  CAS  PubMed  Google Scholar 

  65. Ishizaki M, Wakamatsu K, Matsunami T, Yamanaka N, Saiga T, Shimizu Y et al (1994) Dynamics of the expression of cytoskeleton components and adherens molecules by fibroblastic cells in alkali-burned and lacerated corneas. Exp Eye Res 59(5):537–549

    Article  CAS  PubMed  Google Scholar 

  66. Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T (1988) Development of diabetes in the non-obese NIDDM rat (GK rat). Adv Exp Med Biol 246:29–31

    Article  CAS  PubMed  Google Scholar 

  67. Goto Y (1988) What do spontaneously diabetic animals suggest? (in Japanese) Nippon Naika Gakkai Zasshi 77:1177–1185

    Article  CAS  PubMed  Google Scholar 

  68. Trinkaus-Randall V, Edelhauser HF, Leibowitz HM, et al. (1998) Corneal structure and function. Leibowitz HM Waring GO eds. Corneal Disorders. 2nd ed. 2–31.

  69. Taranta Martin LF, Rocha E, Garcia S, Paula J (2013) Topical Brazilian propolis improves corneal wound healing and inflammation in rats following alkali burns. BMC Complement Altern Med 13:337

    Article  Google Scholar 

  70. Zhao M, Chen J, Yang P (2000) Immunologic experimental studies on the alkali burn of cornea in rats] Chinese. Zhonghua Yan Ke Za Zhi 36:40–42. 4

    CAS  PubMed  Google Scholar 

  71. Sun TT, Green H (1977) Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature 269:489–493

    Article  CAS  PubMed  Google Scholar 

Download references

Ethical standards

The study was approved by the local Ethics Committee of the Aristotle University of Thessaloniki as well as by the Committee of the Veterinary Medicine of Thessaloniki and have therefore been performed in accordance with the ethical standards of Declaration of Helsinki and its later amendments.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diamantis Almaliotis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaliotis, D., Koliakos, G., Papakonstantinou, E. et al. Mesenchymal stem cells improve healing of the cornea after alkali injury. Graefes Arch Clin Exp Ophthalmol 253, 1121–1135 (2015). https://doi.org/10.1007/s00417-015-3042-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3042-y

Keywords

Navigation