Skip to main content

Advertisement

Log in

Subconjunctival injection of tumor necrosis factor-α pre-stimulated bone marrow-derived mesenchymal stem cells enhances anti-inflammation and anti-fibrosis in ocular alkali burns

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the therapeutic effect of subconjunctival injection of tumor necrosis factor-α (TNF-α) pre-stimulated bone marrow-derived mesenchymal stem cells (BMMSCs) on ocular alkali burns in a rat model.

Methods

After applying a 6 mm filter paper soaking in 1 N NaOH on the cornea of rats, the suspension of TNF‐α pre-stimulated BMMSCs, BMMSCs and PBS were given subconjunctivally and respectively. Corneal epithelial defect, corneal opacity, inflammation as well as PTGS2 and TSG-6 expression on day 7 and fibrosis on day 14 were compared.

Results

TNF‐α pre-stimulated BMMSCs group had a more predominate effect on promoting corneal epithelial repairing, decreasing corneal opacity, reducing inflammatory cells and CD68 + macrophages on day 7 and suppressing fibrosis on day 14 compared to BMMSCs group. Besides, it had significant increased expressions of PTGS2 and TSG-6 in vitro. Pre-treated with Indomethacin revealed a reverse effect on above-mentioned changes.

Conclusion

Subconjunctival injection of TNF‐α pre-stimulated BMMSCs enhanced anti-inflammatory and anti-fibrotic effect in ocular alkali burns, which was possibly though up regulation of PTGS2 and TSG-6 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Haring RS, Sheffield ID, Channa R, Canner JK, Schneider EB (2016) Epidemiologic Trends of Chemical Ocular Burns in the United States. JAMA Ophthalmol 134(10):1119–1124

    PubMed  Google Scholar 

  2. Hong J, Qiu T, Wei A, Sun X, Xu J (2010) Clinical characteristics and visual outcome of severe ocular chemical injuries in Shanghai. Ophthalmology 117(12):2268–2272

    PubMed  Google Scholar 

  3. Cabalag MS, Wasiak J, Syed Q, Paul E, Hall AJ, Cleland H (2015) Early and late complications of ocular burn injuries. Journal of Plastic, Reconstructive & Aesthetic Surgery 68(3):356–361

    Google Scholar 

  4. Bizrah M, Yusuf A, Ahmad S (2019) An update on chemical eye burns. Eye (Lond) 33(9):1362–1377

    CAS  Google Scholar 

  5. Baradaran-Rafii A, Eslani M, Haq Z, Shirzadeh E, Huvard MJ, Djalilian AR (2017) Current and Upcoming Therapies for Ocular Surface Chemical Injuries. Ocular Surface 15(1):48–64

    Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 284(5411):143–147

    CAS  PubMed  Google Scholar 

  7. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506

    CAS  PubMed  Google Scholar 

  8. Golpanian S, Wolf A, Hatzistergos KE, Hare JM (2016) Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 96(3):1127–1168

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6. Cell Stem Cell 5(1):54–63

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang J, Zhang HY, Hua BZ, Wang H, Lu LW, Shi ST, Hou YY, Zeng XF, Gilkeson GS, Sun LY (2010) Allogenicmesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69(8):1423–1429

    PubMed  Google Scholar 

  11. Javorkova E, Trosan P, Zajicova A, Krulova M, Hajkova M, Holan V (2014) Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon-gamma-treated mesenchymal stromal cells. Stem Cells Dev 23(20):2490–2500

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA (2006) Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24(11):2582–2591

    CAS  PubMed  Google Scholar 

  13. Zhang L, Zheng H, Shao H, Nian H, Zhang Y, Bai L, Su C, Liu X, Dong L, Li X, Zhang X (2014) Long-term therapeutic effects of mesenchymal stem cells compared to dexamethasone on recurrent experimental autoimmune uveitis of rats. Invest Ophthalmol Vis Sci 55(9):5561–5571

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F (2016) Intravitreal administration of multipotentmesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Research & Therapy 16(7):42

    Google Scholar 

  15. Oh JY, Kim MK, Shin MS, Wee WR, Lee JH (2009) Cytokine secretion by human mesenchymal stem cells cocultured with damaged corneal epithelial cells. Cytokine 46(1):100–103

    CAS  PubMed  Google Scholar 

  16. Jiang DS, Muschhammer J, Qi Y, Kugler A, de Vries JC, Saffarzadeh M, Sindrilaru A, Beken SV, Wlaschek M, Kluth MA, Ganss C, Frank NY, Frank MH, Preissner KT, Scharffetter-Kochanek K (2016) Suppression of Neutrophil-Mediated Tissue Damage-A Novel Skill of Mesenchymal Stem Cells. Stem Cells 34(9):2393–2406

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mittal SK, Mashaghi A, Amouzegar A, Li MS, Foulsham W, Sahu SK, Chauhan SK (2018) Mesenchymal Stromal Cells Inhibit Neutrophil Effector Functions in a Murine Model of Ocular Inflammation. Invest Ophth Vis Sci 59(3):1191–1198

    CAS  Google Scholar 

  18. Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Gorgulu A (2018) Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Research & Therapy 9(1):286

    CAS  Google Scholar 

  19. Fan LX, Hu CX, Chen JJ, Cen PP, Wang J, Li LJ (2016) Interaction between Mesenchymal Stem Cells and B-Cells. Int J MolSci 17(5):650

    Google Scholar 

  20. Oh JY, RG, Choi H, Lee RH, Ylöstalo JH, Rosa RH Jr, Prockop DJ. (2010) Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. ProcNatlAcadSci U S A 107(39):16875–16880

    CAS  Google Scholar 

  21. Haldar D, Henderson NC, Hirschfield G, Newsome PN (2016) Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB J 30(12):3905–3928

    CAS  PubMed  Google Scholar 

  22. Grange C, Tritta S, Tapparo M, Cedrino M, Tetta C, Camussi G, Brizzi MF (2019) Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 9(1):4468

    PubMed  PubMed Central  Google Scholar 

  23. Usunier B, Benderitter M, Tamarat R, Chapel A (2014) (2014) Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough. Stem Cells Int 2014:340257

    PubMed  PubMed Central  Google Scholar 

  24. Yao L, Li ZR, Su WR, Li YP, Lin ML, Zhang WX, Liu Y, Wan Q, Liang D (2012) Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS ONE 7(2):e30842

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Su W, Wan Q, Huang J, Han L, Chen X, Chen G, Olsen N, Zheng SG, Liang D (2015a) Culture medium from TNF-α–stimulated mesenchymal stem cells attenuates allergic conjunctivitis through multiple antiallergic mechanisms. Journal of Allergy and Clinical Immunology 136(2):423-432.e428

    CAS  Google Scholar 

  26. Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C, Li X (2015) Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoS ONE 10(3):e0119725

    PubMed  PubMed Central  Google Scholar 

  27. Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH, Wee WR, Lee JH (2008) The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 26(4):1047–1055

    CAS  PubMed  Google Scholar 

  28. Choi H, Phillips C, Oh JY, Stock EM, Kim DK, Won JK, Fulcher S (2017) Comprehensive Modeling of Corneal Alkali Injury in the Rat Eye. Curr Eye Res 42(10):1348–1357

    PubMed  Google Scholar 

  29. Su WR, Zhang QZ, Shi SH, Nguyen AL, Le AD (2011) Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms. Stem Cells 29(11):1849–1860

    CAS  PubMed  Google Scholar 

  30. Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, Du Y, Li L (2006) Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24(2):315–321

    PubMed  Google Scholar 

  31. Almaliotis D, Koliakos G, Papakonstantinou E, Komnenou A, Thomas A, Petrakis S, Nakos I, Gounari E, Karampatakis V (2015) Mesenchymal stem cells improve healing of the cornea after alkali injury. Graefes Arch ClinExpOphthalmol 253(7):1121–1135

    Google Scholar 

  32. Acar U, Pinarli FA, Acar DE, Beyazyildiz E, Sobaci G, Ozgermen BB, Sonmez AA, Delibasi T (2015) Effect of Allogeneic LimbalMesenchymal Stem Cell Therapy in Corneal Healing: Role of Administration Route. Ophthalmic Res 53(2):82–89

    CAS  PubMed  Google Scholar 

  33. Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, Chauhan SK (2019) Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocular Surface 17(4):729–736

    Google Scholar 

  34. Yan L, Zheng DJ, Xu RH (2018) Critical Role of Tumor Necrosis Factor Signaling in Mesenchymal Stem Cell-Based Therapy for Autoimmune and inflammatory Diseases. Front Immunol 9(20):1658

    PubMed  PubMed Central  Google Scholar 

  35. English K, Barry FP, Field-Corbett CP, Mahon BP (2007) IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. ImmunolLett 110(2):91–100

    CAS  Google Scholar 

  36. Broekman, W, Amatngalim, GD, de Mooij-Eijk, Y, Oostendorp, J, Roelofs, H, Taube, C, Stolk, J, Hiemstra, PS. (2016) TNF-alpha and IL-1beta-activated human mesenchymal stromal cells increase airway epithelial wound healing in vitro via activation of the epidermal growth factor receptor. Respir Res. 173.

  37. Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168(6):1848–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim YS, HJP, Moon Hwa Hong, Peter M. Kang, James P. Morgan, Myung Ho Jeong, JeongGwan Cho, Jong Chun Park, YoungkeunAhn, (2009) TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Front Biosci 1(14):2845–2856

    Google Scholar 

  39. Miettinen JA, PM, Salonen RJ, Ohlmeier S, Ylitalo K, Huikuri HV, Lehenkari P. (2011) Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture. Exp Cell Res 317(6):791–801

    CAS  PubMed  Google Scholar 

  40. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150

    CAS  PubMed  Google Scholar 

  41. Lee MJ, Kim J, Kim MY, Bae YS, Ryu SH, Lee TG, Kim JH (2010) Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 9(4):1754–1762

    CAS  PubMed  Google Scholar 

  42. Miettinen JA, Pietila M, Salonen RJ, Ohlmeier S, Ylitalo K, Huikuri HV, Lehenkari P (2011) Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture. Exp Cell Res 317(6):791–801

    CAS  PubMed  Google Scholar 

  43. Saika S, Miyamoto T, Yamanaka O, Kato T, Ohnishi Y, Flanders KC, Ikeda K, Nakajima Y, Kao WW, Sato M, Muragaki Y, Ooshima A (2005) Therapeutic effect of topical administration of SN50, an inhibitor of nuclear factor-kappaB, in treatment of corneal alkali burns in mice. Am J Pathol 166(5):1393–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Su W, Wan Q, Huang J, Han L, Chen X, Chen G, Olsen N, Zheng SG, Liang D (2015b) Culture medium from TNF-alpha-stimulated mesenchymal stem cells attenuates allergic conjunctivitis through multiple antiallergic mechanisms. J Allergy ClinImmunol 136(2):423-432.e8

    CAS  Google Scholar 

  45. Lin KJ, Loi MX, Lien GS, Cheng CF, Pao HY, Chang YC, Ji AT, Ho JH (2013) Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Res Ther 4(3):72

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Myrna KE, Mendonsa R, Russell P, Pot SA, Liliensiek SJ, Jester JV, Nealey PF, Brown D, Murphy CJ (2012) Substratum topography modulates corneal fibroblast to myofibroblast transformation. Invest Ophthalmol Vis Sci 53(2):811–816

    CAS  PubMed  PubMed Central  Google Scholar 

  47. De Miguel MP, Alio J, Arnalich-Montiel F, Fuentes-Julian S, de Benito-Llopis L, Amparo F, Bataille L (2010) Cornea and ocular surface treatment. Curr Stem Cell Res Ther 5(2):195–204

    CAS  PubMed  Google Scholar 

  48. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118(2):330–338

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Qi Y, Jiang D, Sindrilaru A, Stegemann A, Schatz S, Treiber N, Rojewski M, Schrezenmeier H, Vander Beken S, Wlaschek M, Bohm M, Seitz A, Scholz N, Durselen L, Brinckmann J, Ignatius A, Scharffetter-Kochanek K (2014) TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol 134(2):526–537

    CAS  PubMed  Google Scholar 

  50. Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. MolTher 20(1):14–20

    CAS  Google Scholar 

  51. Torricelli AA, Wilson SE (2014) Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res (129): 151–160

  52. ME F (1999) Keratocyte and fibroblast phenotypes in the repairing cornea. ProgRetin Eye Res 18(4):529–551

    Google Scholar 

  53. Navas A, Magaña-Guerrero FS, Domínguez-López A, Chávez-García C, Partido G, Graue-Hernández EO, Sánchez-García FJ, Garfias Y (2018) Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair. STEM CELLS Translational Medicine 7(12):906–917

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mindrescu C, Le J, Wisniewski HG, Vilcek J (2005) Up-regulation of cyclooxygenase-2 expression by TSG-6 protein in macrophage cell line. BiochemBiophys Res Commun 330(3):737–745

    CAS  Google Scholar 

  55. Lee TH, Wisniewski HG, Vilcek J (1992) A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol 116(2):545–557

    CAS  PubMed  Google Scholar 

  56. Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, Rosa RH Jr, Prockop DJ (2011) Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-alpha stimulated gene/protein 6. Stem Cells 29(10):1572–1579

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from Technological Project Foundation of Guangdong Province (2014B020226003) and from the National Natural Science Foundation of China (81770892).

Author information

Authors and Affiliations

Authors

Contributions

Dan Liang, Wenru Su, Xiaohui Luo and Lingyi Liang designed the study; Nuan Zhang, Xiaohui Luo, Shiyao Zhang and Ren Liu conducted the study, collected, analyzed and interpreted data; Nuan Zhang preparation and writing the manuscript; Lingyi Liang, Wenru Su and Dan Liang review and approval of the manuscript.

Corresponding authors

Correspondence to Lingyi Liang, Wenru Su or Dan Liang.

Ethics declarations

Conflicts of interest/Competing interests

The authors report no potential conflicts of interest.

Research involving animals

This animal study was approved by the Institutional Animal Care and Use Committee (Ethics Number: 2016–013) of Zhongshan Ophthalmic Center, Sun Yat-sen University.

Consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Luo, X., Zhang, S. et al. Subconjunctival injection of tumor necrosis factor-α pre-stimulated bone marrow-derived mesenchymal stem cells enhances anti-inflammation and anti-fibrosis in ocular alkali burns. Graefes Arch Clin Exp Ophthalmol 259, 929–940 (2021). https://doi.org/10.1007/s00417-020-05017-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-05017-8

Keywords

Navigation