Abstract
This first chapter puts forward the potential and arguably necessity of employing topological methods when studying nonlinear dynamical control systems. This potential is further emphasized by highlighting the historical development of Poincaré’s qualitative work until the 1980s. Furthermore, we introduce a running example and discuss related work and the contents of this monograph
You have full access to this open access chapter, Download chapter PDF
1.1 Impetus
From climate models to walking robots and from black holes to the economy; many objects of science are studied by means of dynamical systems evolving on manifolds [40, 105, 151, 156]. As models are not perfect and explicit solutions are rare, ever since the time of Poincaré the interest shifted from studying the quantitative to studying the qualitative behaviour of a dynamical systems at hand. Not only the description of a system, but in particular, the prescription of the dynamics of a system became of increasing importance. Naturally, one must ask if the desirable dynamics are admissible in the first place. Topology provides for a rich set of answers relying on a minimal set of assumptions, as surveyed in this work.
Given some space \(\textsf{M}\) and some subset A of \(\textsf{M}\). We will be mostly concerned with studying if \(\textsf{M}\) admits a dynamical system such that the set A, e.g., some configuration of a robot, is (uniformly) globally asymptotically stable. This stability notion is captured by: (i) Lyapunov stability: that is, for each neighbourhood U of A there is another neighbourhood \(V\subseteq U\) of A such that when the system starts from a state within V, the state of the system will stay in U; and (ii) attractivity: that is, there is a neighbourhood W of A such that when the system is started from a state within W, the state of the system converges asymptotically to A. When \(W=\textsf{M}\), we speak of global asymptotic stability. We also remark that Lyapunov stability is sometimes referred to as simply stability, consequently, a set that fails to be stable, with respect to some dynamical system, is said to be unstable. For formal definitions, see Chap. 5.
Example 1
(Admissible flows on the circle) Let one be tasked with finding a continuous flow, i.e., a map that defines state propagation as a continuous function of the time to propagate and the instantaneous state, such that some point \(p^{\star }\) on the circle \(\mathbb {S}^1\) is globally asymptotically stable, e.g., see Fig. 1.1(i). The flow in any small neighbourhood around \(p^{\star }\) is welldefined, but one eventually runs into problems, see Fig. 1.1(ii), and cutting the circle (allowing for discontinuities) seems the only solution, see Fig. 1.1(iii). Although, relaxing the task, e.g., by allowing for almost surely global asymptotic stability, local asymptotic stability or merely global attractivitiy (no Lyapunov stability), also belongs to the possibilities, see Fig. 1.1(iv)–(vi). In fact, by studying Fig. 1.1 one might observe some patterns, e.g., stable and unstable equilibrium points necessarily come in pairs. The key observation, however, is that for compact nonlinear spaces, the study of global behaviour should take the global topology into account.
Example 1 illustrates the fact that merely the underlying topology of a space can obstruct the existence of certain qualitative behaviour.
Next, going one step beyond the circle, we consider the mathematical pendulum, cf. [142, 145], which displays a myriad of topological phenomena [97, 126] and captures the dynamics integral to the study of robotics, aerial vehicles and more.
Example 2
(The mathematical pendulum) The singlelink pendulum displays intricate nonlinear behaviour by having the circle \(\mathbb {S}^1\) as its configuration space. As a pendulum is a secondorder system, the state space, however, becomes the cylinder \(\mathbb {S}^1\times \mathbb {R}\), parametrizing the angle and rotational velocity, or as will be discussed, the trivial vector bundle \(\pi :\mathbb {S}^1\times \mathbb {R}\rightarrow \mathbb {S}^1\). We assume that one can control the pendulum by means of a torque applied to its axis and that this torque is chosen as a continuous function of the state. Moreover, we assume that this feedback, i.e., the torque as a function of the state, gives rise to a continuous flow on \(\mathbb {S}^1\times \mathbb {R}\) and that there are isolated fixed points of the flow, e.g., we assume there is some form of friction. Now we ask a similar question as before, can the pendulum be globally asymptotically stabilized in the upright (\(\theta =0\)) position by such a feedback? This is a stabilization problem. For example, Fig. 1.2 displays trajectories analogous to Fig. 1.1(iv)–(v). The reader is invited to construct the phase portrait akin to Fig. 1.1(vi) and recover what is called the unwinding phenomenon. One observes that generalizing the circle to the noncompact cylinder did not improve the situation, topological obstructions prevail. Simultaneously, this example shows the power of this line of study in that the results are general; we did not yet make any explicit modelling assumptions, e.g., regarding friction and inertia.
Example 2 sketches the practical value of studying topological obstructions; when explicit models are unknown or too uncertain, the underlying topology can already provide insights in admissible qualitative behaviour. In fact, one can argue that topology is the natural language to study these kind of dynamical problems [83].
The previous examples focus on equilibrium points, however, in many applications one might be interested in stabilizing nontrivial periodic orbits or other sets. The intuition from before can be generalized, for example, consider globally asymptotically stabilizing the circle \(\mathbb {S}^1\) in the plane \(\mathbb {R}^2\). Again, obstructions of this kind are purely topological.
Although results of this nature go back to the 1800s, we feel there is a need to survey existing material: the evergrowing field of applied dynamical systems theory, including, but not limited to, motion planning, numerical optimal control, system identification and reinforcement learning. The aforementioned observations have particularly important ramifications in those areas, as frequently, one needs to specify a space of models or policies to optimize over, a priori.
As stressed in a recent article by Schoukens and Ljung [136], nonlinear system identification poses challenges beyond linear system identification, in particular, the nonlinear structure prohibits straightforward extrapolation, that is, inferring global information from local data is inherently difficult in the nonlinear regime. However, knowledge of the underlying topological space is occasionally present, as such it is worthwhile to study ramifications of just the topological data at hand.
Regarding policies, it is important to highlight that controllability merely implies the existence of some admissible input “steering point A to point B”. As stressed by Sussmann [146, p. 41], only when the admissible inputs are precisely detailed, one can study if some control objective can be satisfied by selecting the input as some kind of feedback controller. In practice, when numerically optimizing over policies, one is for example drawn to employing some form of function approximators [29]. It might be tempting to believe that the space of continuous functions is sufficiently rich, however, as we already saw for the most elementary nonlinear manifolds, when stability is desired, this is not necessarily true. A similar argument can be made when searching for controlLyapunov functions (CLF) or control barrier functions [88]. This work sets out to bring results of this kind further to the attention and spur more future work towards understanding and overcoming these topological obstructions.
We will focus on continuous asymptotic stabilization of nonlinear systems. Here, nonlinear should be read as not necessarily linear. In particular, we look at dynamical systems defined on nonlinear spaces, e.g., as in Fig. 1.1, local linearizations can fail to capture topological impossibilities. The consideration of dynamical systems is largely an attractive mathematical assumption, but one that is believed to be quintessential to better understand larger classes of physical systems. The focus on continuity is historically based on implementation and robustness considerations and seems at first a general assumption. Enforcing continuity allows for a better understanding of how general this assumption really is. The focus on continuity also puts work on neural networks in perspective as common architectures result in maps which are at least continuous. The desire of (uniform) asymptotic stabilization is a natural one from the classical mechanics point of view and enviable with respect to robustness, but also here one will observe that this demand can be too strong.
1.2 Historical Remarks
The study of topological obstructions in the context of dynamical control systems is at its core the investigation of what kind of—qualitative speaking—dynamical systems a space admits. Philosophically, this is in line with the early work on topology and dynamical systems as pioneered by Poincaré. To put the material in perspective, the next section briefly covers this history at large.
1.2.1 Topology
The fourth axiom of Euclid states “Things which coincide with one another are equal to one another” [4, p. 6]. Although Euclid was a geometer and no topologist, this axiom is broadly stating what topology would be all about. Yet, “things” and “equivalence” had to come a long way since the time of Euclid.
In the early 1900s, Cantor started the development of set theory and contributed to the initial work on topology [31]. When Cantor his onetoone map from the interval to the hypercube revealed the intricacies of defining dimension,^{Footnote 1} it was Dedekind to point out that perhaps something is missing: continuity [112]. Peano’s spacefilling curve showed that even when continuity is satisfied (but injectivity is lost), counterintuitive phenomena can still be observed [115]. These counterexamples revealed a lack of understanding when it comes to classifying objects as being “equivalent”.
Poincaré was amongst the first to define, in for example his 1895 “Analysis situs”, what this equivalence could be: a continuous onetoone transformation, called a homeomorphism [121]. It took, however, a while before a homeomorphism meant what it does today. Poincaré described analysis situs (the predecessor of topology, attributed to Listing) as “This geometry is purely qualitative; its theorems would remain true if the figures, instead of being exact, were roughly imitated by a child.” [123]. A weaker invariant that plays a substantial role in this work is that of homotopy. It can be argued that homotopies, albeit with fixed endpoints, originated in the work of Lagrange on the calculus of variations [41]. Although homotopies (described as continuous deformations), the fundamental group and initial homology theory appeared in the work of Poincaré [121], the formal description of what this “continuous deformation” is supposed to be, was missing. By building upon Schönflies, the concept of dimension that bothered Cantor, was eventually put on a theoretical footing by Urysohn [152] and most notably by Brouwer [25, 26] around 1910, see also [72, Chap. 1]. This work by Brouwer also formalized homotopies and their equivalence classes as we know them today [27]. Besides, it brought forward the concept of degree, a notion of importance in this work, yet, a notion that was to some extent already known to Cauchy, Picard and in particular Kronecker [43, 114, 137]. Hurewicz added to this line of work by defining when spaces are homotopic [68] and a related theory, that of retractions was pioneered by Borsuk [16] in the late 1920s. A concept intimately related to the degree of a map is that of an index of a vector field, as arguably introduced by Poincaré and further developed by Hopf [66, 67]. An important elaboration and formalization is due to Brouwer [42, p. 168], Poincaré often assumed differentiability or even analyticity of objects under consideration [72, p. 57], while Brouwer relaxed this to mere continuity and was able to formally apply index theory to continuous vector fields on the sphere [26].
In the meantime topology branched out. Although the “Euler characteristic” was known, it can be argued that Riemann founded algebraic topology [17, pp. 162–164], as, amongst other things, he evoked, what would be called Betti numbers, in the late 1800s with his study into connectedness [130], [72, Chap. 2]. Generalizations required work from Betti [9], Poincaré [121] and most importantly, formalizations by Noether^{Footnote 2} [111] and later Eilenberg [45].
Formalizing the abstract study of sets relied on early work by Hilbert [61], Fréchet [46], Riesz [131] and in particular Hausdorff, whom in 1914 published Grundzüge der Mengenlehre [56]. This was the first axiomatic work on abstract topological spaces and can be seen as the start of general topology known today. Hausdorff laid down the foundation of (general) topology and provided the neighbourhood generalization of the Bolzano–Cauchy \(\varepsilon \delta \) continuity definition, although the neighbourhood concept was already known to some extent.
Concurrently, the notion of a (linear) manifold was already known to Gauss, but, amongst others, it were Möbius [106], Jordan [74] and in particular Riemann [129] and Poincaré [121] that initiated the classification of manifolds. The theory of differentiable manifolds, however, and thereby differential topology was largely developed by Weyl [72, Chap. 2], Veblen and Whitehead (J.H.C.) [154] and Whitney [157, 158], e.g., this includes formalizations of coordinate charts, tangent spaces and embeddings. The initial work by Cartan (Élie) on fiber bundles was further developed by Seifert, Whitney and Ehresmann [72, Chap. 22]. A later, but instrumental contribution for this work is the notion of transversality as developed largely by Thom [149]. The most important development for this work, and perhaps one of the most important series of results in the intersection of topology and dynamical systems in general, is the Poincaré–Hopf theorem, with contributions by Gauss, Kronecker, Bonnet, Dyck, Brouwer, Poincaré and in particular Lefschetz [93, 94] and Hopf [67], see also [48].
For these and more examples, see [42, 72, 137, 148, 155], the historical notes in [17, 43, 114, 163] and [124] for the English translation of [121]. Also, as highlighted, topology thrived on counterexamples, which remained an active area [143].
1.2.2 Dynamical Systems
Starting with Newton, the study of dynamical systems was dominated in the early days by the quantitative study of stability in the context of celestial mechanics. The complications that arise when trying to explicitly solve differential equations were early understood and amongst others, Laplace, Lagrange, Poisson and Dirichlet all claimed to have proven that the solar system was stable by means of analyzing series expansions, e.g., see the introduction in [1]. Motivated in part by a competition in the late 1880s hosted by Oscar II, the king of Sweden & Norway, it was Poincaré who pointed out that the series expansion approach of that time was flawed. As he puts it, “There is a sort of misunderstanding between geometers [mathematicians] and astronomers about the meaning of the word convergence.” “...take a simple example, consider the two series,
“geometers would say the first series converges, ...but they will regard the second as divergent. “Astronomers, on the contrary, will regard the first series as divergent as the first 1000 terms are increasing and the second as convergent as the first 1000 terms are decreasing” [120, pp. 1–2]. Poincaré emphasized throughout his work that divergent series could have practical value, but to prove anything meaningful about the stability of the solar system required a rigorous mathematical justification [120, p. 2]. It was during this time that Poincaré developed his qualitative methods for mechanics and dynamical systems, e.g., [118,119,120, 122]. Amongst other things, in this work he started the classification of qualitative dynamical systems, introduced the notion of the vector field index and advocated the use of transversality (Poincaré sections), topics we return to below. Ironically, the original version of the award winning^{Footnote 3} 1890 paper [118] did not contain the most celebrated parts of the work, e.g., work on homoclinic solutions (initially called doubly asymptotic solutions), only the corrected version did. Upon fixing the errors in the initial version of [118], Poincaré was puzzled by the chaos he created (found) and wrote to MittagLeffler “...I can do no more than to confess my confusion to a friend as loyal as you. I will write to you at length when I can see things more clearly.” [5, Sect. 5.8]. Almost ten years later, the situation was far from clarified, regarding homoclinic solutions to the threebody problem, Poincaré writes “One is struck by the complexity of this figure that I am not even attempting to draw.” [122, p. 389]. It would take more than half a century before Smale would clarify the situation.
As remarked previously, one of the main topics of study has always been that of stability. Around the same time as the early work of Poincaré, Lyapunov (Liapunov)—who was inspired by Poincaré [102, pp. 531–532]—published his thesis on qualitative stability theory in the early 1890s [99]. Although Lyapunov was the first to lay down the foundations, similar notions appeared in the work of Lagrange [90] and Dirichlet [44]. In this work, Lyapunov devised two lines of attack to reason about (local) stability. The first method (indirect) relies on linearizing the dynamics, whereas the second method (direct) is in the spirit of the work by Lagrange and looks for an “energy” function (Lyapunov function), which is strictly positive, yet decreasing along the dynamics. Attributed to Poission, Poincaré, however, spoke of stability of a point when a trajectory returned infinitely often to points arbitrarily close to where the point started from. Lyapunov spoke of stability of a point when for each open neighbourhood U around a point there is an open set \(V\subseteq U\) such that each trajectory starting in V remains in U. Lyapunov’s approach to stability (the second, direct method) had an intuitive and almost direct link to modelling paradigms in mechanics (energy) and it grew out to be one of the most celebrated tools in the study of dynamical systems cf. [10, 81, 89].
Concurrently, after proving Poincaré’s “last geometric theorem” in 1913 [11], it was in particular Birkhoff who propelled the qualitative study of dynamical systems [12]. This qualitative viewpoint brought the general notion of stability more to the forefront, not only stability of a system, but also the stability of its description, called structural stability. Structural stability for 2dimensional systems was introduced by Andronov and Pontryagin [2] and extended to 2dimensional manifolds by Peixoto [116]. Smale is largely responsible for further abstractions and continuation of this line of work [139]. In particular, his creation of the horseshoemap clarified what Poincaré was having trouble with in his work on the threebody problem: the intricate dynamics close to a homoclinic equilibrium point. Interestingly, Smale also made a significant contribution to another, yet topological, open problem by Poincaré, he proved the (generalized) Poincaré conjecture^{Footnote 4} for \(n\ge 5\) [138].
In passing, we highlight a few other influential works, contributing to (the early development of) the qualitative theory of dynamical systems. The work by Hadamard [53, 54]—who was, interestingly, in close contact with Brouwer, Lefschetz [95], LaSalle (La Salle) [91] and Hartman [55]. Early contributions to stability theory by Hermite, Routh and Hurwitz, e.g., see [69, 77]. The initial work on centermanifold theory by Pliss [117] and Kelly [80]. Catastrophe theory by Thom [150]. Converse Lyapunov theorems and its topological ramifications due to Kurzweil [87], Bhatia and Szegö [10] and Wilson [159, 160]. The concept of a region of attraction due to Aĭzermann, Barbašin, Krasovskiĭ, Nemyckiĭ and Stepanov, e.g., see [10, 86]. The work by Kolmogorov, Arnol’d and Moser, e.g., see [24]. The work by Hirsch et al. [63]. The topological criticalpoint theory by Morse [107] and the work on chaos theory by Takens and Ruelle [132].
For more information, see [34, 48, 62, 65], or the historical notes in [1, 10, 50]. In particular, see [5] for an exposition of the competition organized by MittagLeffler, the initial error in the work submitted by Poincaré, how this was resolved and how the mathematical community responded. For more on the history of stability, see [77, 96]. See [125], for the English translation of [118].
1.2.3 Modern Control Theory
In the late 1700s, the field of control theory emerged due to a growing practical interest in improving the performance of mechanical systems. As discussed above, the 1800s gave rise to a lot of theoretical work on describing the dynamics of a system and in particular studying its stability. Nevertheless, motivated by the needs of war and after original work on telecommunication, filtering and circuit design in the frequencydomain, modern control theory, however, was only born in the mid 1900s out of the pioneering work by Kalman^{Footnote 5} [78, 79], Bellman [6], Pontryagin [47, 127] and their coworkers. This line of work emphasized some benefits of the state space approach (the timedomain) and essentially reconnected control theory to the early work of Poincaré and Lyapunov. The state space approach to linear control theory also brought linear algebra more to the forefront, which opened the door for a rigorous approach to nonlinear control, not merely by approximation, but also by appealing to differential geometric tools, cf. [21, 70, 110, 161]. Perhaps the central topic of study in (deterministic) control theory in the late 1900s was that of controllability, i.e., all questions related to the possibility of steering a system “from A to B”. Naturally, these questions relate to the aforementioned work on dynamical systems, e.g., if a space does not admit a dynamical system with a certain property, then clearly no input exists that can enforce it. Building upon the work of Chow^{Footnote 6} in 1940 [33], it can be argued that work on nonlinear controllability started in the 1960s—just after Kalman published his work on linear controllability—with influential contributions by Hermann [58], Lobry [100, 101], Haynes and Hermes [57], Sussmann and Jurdjevic [147], Brockett [20] and most notably Hermann and Krener [59].
In 1978, Jurdjevic and Quinn constructed a controllable system on \(\mathbb {R}^2\) that cannot be stabilized via differentiable feedback [75]. Then, against to what was a common belief at the time, by constructing an example on \(\mathbb {R}^2\), Sussmann showed in 1979 that controllability does, however, also not implies that a stabilizing continuous feedback exists [146]. A year later, Sontag and Sussmann developed theory underpinning scalar examples along these lines [140]. These examples were not unparalleled as in 1983 Brockett gave an explicit necessary (topological) condition for stabilizing differentiable feedback laws to exist [23]. Brockett’s condition gave rise to many examples, as a lot of controllable systems failed to adhere to this condition. This, and earlier work by Kurzweil [87], Wilson [160] and Bhatia and Szegö [10] can be seen as a start of the work on topological obstructions to stability and stabilization.
For more on the development of nonlinear controllability and related tools see [32, 71, 98, 153]. For more on the history of control theory, see [13] and for a historical account by Brockett himself, see [19]. See also [22, 60] for early works by Brockett and Hermann & Martin, respectively, highlighting the use of a topological and geometrical viewpoint in the context of system and control theory.
At last, we emphasize two additional schools. First, in the East, Krasnosel’skiĭ and coworkers elaborated during the second half of the 20th century on a blend of most of the aforementioned material in their study of topological methods in nonlinear analysis [84, 85]. As will be discussed below, the monograph by Krasnosel’skiĭ and Zabreĭko contains a variety of results related to arguably the most influential controltheoretic topological result produced in the West—known as “Brockett’s condition”, as discussed in detail in Chap. 6 cf. [84, Chaps. 7–8], [23]. As also pointed out in [113], although the translated version of their monograph appeared in 1984, the original Russian version appeared in 1975, well before that particular work by Brockett. Moreover, Krasnosel’skiĭ’s earlier monograph from 1968 [85] and a 1974 paper by Bobylev and Krasnosel’skiĭ [15] contain work instrumental to [84, Chaps. 7–8]. See [103] for more on the work of Krasnosel’skiĭ and [163] for an historical account by Zabreĭko. Secondly, Conley and coworkers developed their generalization of Morse and Lyapunov theory in the late 1970s [35, 36], a topic we will only briefly touch on as it has been covered before.
What these works have in common is that they look for (algebraic) topological invariants that capture certain qualitative properties of spaces, maps, dynamical systems, and so forth. This viewpoint is at the core of this work.
Summarizing, the study into dimension and equivalences resulted in the development of a host of topological tools. Building on these tools and in part due to the inherent difficulty of solving differential equations brought about the qualitative theory of dynamical systems and control.
This brief historical overview leaves us in the 1980s. The upcoming chapters will discuss how the control, topology and dynamical systems communities responded over the last 40 years and what can be learned from that body of work.
1.3 Case Study: Optimal Control on Lie Groups
To illustrate the developments we consider a problem simple enough to do explicit computations, but rich enough to be of importance. Specifically, we work with Lie groups, objects ubiquitous in engineering and physics [3, 14, 28, 109, 135].
A pair \((\textsf{G},\cdot )\), with \(\textsf{G}\) a set and \(\cdot \) a binary operation, is a Lie group when

(i)
the set \(\textsf{G}\) is a group under \(\cdot \), that is, \(g\cdot h\in \textsf{G}\) for all \(g,h\in \textsf{G}\), there is an identity element \(e\in \textsf{G}\) such that \(e\cdot g= g\cdot e = e\) for any \(g\in \textsf{G}\), for all \(g\in \textsf{G}\) there is an inverse element \(g^{1}\in \textsf{G}\) such that \(g\cdot g^{1}=g^{1}\cdot g = e\) and the \(\cdot \) operation is associative;

(ii)
the set \(\textsf{G}\) is a smooth manifold (informally, a set that is locally Euclidean and possesses a structure to make sense of derivations, see Chap. 23 for the details) and both multiplication and inversion are smooth maps.
When it clear from the context, the operator \(\cdot \) is dropped, i.e., one writes gh instead of \(g\cdot h\). For example, a Lie group of importance is the special orthogonal group \(\textsf{SO}(n,\mathbb {R})=\{A\in \mathbb {R}^{n\times n}:A^{\textsf{T}}A=I_n,\,\textrm{det}(A)=1\}\). Here the group operation \(\cdot \) is matrix multiplication and for any \(Q\in \textsf{SO}(n,\mathbb {R})\), the corresponding inverse element is \(Q^{\textsf{T}}\) with the identity element being \(e=I_n\), for \(I_n\) the identity matrix in \(\mathbb {R}^{n\times n}\).
To every Lie group \(\textsf{G}\) corresponds a Lie algebra, denoted \(\mathfrak {g}\), being a vector space identified with the tangent space of \(\textsf{G}\) at e (a vector space to be made precise in Chap. 3), denoted \(\mathfrak {g}=T_e\textsf{G}\). For example, \(\mathfrak {so}(n,\mathbb {R})=T_{I_n}\textsf{SO}(n,\mathbb {R})=\{X\in \mathbb {R}^{n\times n}:X^{\textsf{T}}+X=0\}\). Lie algebras are powerful for us in that they parametrize the tangent space of \(\textsf{G}\) at any \(g\in \textsf{G}\). To see this, pick any differentiable curve \(t\mapsto \gamma (t)\in \textsf{G}\) such that \(\gamma (0)=e\). As we work with an abstract binary operator on \(\textsf{G}\), it is convenient to define the lefttranslation map \(L_g\) by \(h\mapsto L_g(h)=gh\) for any \(g,h\in \textsf{G}\). Now, define the curve \(t\mapsto c(t)=L_{g}(\gamma (t))\in \textsf{G}\). Then, as \(c(0)=g\), the derivative of c with respect to t satisfies \(\dot{c}(t)_{t=0}=DL_{g}(h)_{h=e}\dot{\gamma }(t)_{t=0}\in T_g\textsf{G}\) such that we have the (tangent space) isomorphism \(D(L_{g})_e:T_e\textsf{G}\rightarrow T_g\textsf{G}\) for all \(g\in \textsf{G}\).
Now, let \(\textsf{G}\) be a compact connected Lie group and let \(\langle \cdot , \cdot \rangle \) denote an \(\textrm{Ad}\)invariant innerproduct on \(\mathfrak {g}\) (the adjective “\(\textrm{Ad}\)invariant” can be ignored if unrecognized), which always exists as \(\textsf{G}\) is compact [82, Proposition 4.24]. A vector field X on \(\textsf{G}\) is said to be leftinvariant when \(D(L_g)_e X(e) = X(g) \in T_g\textsf{G}\) for all \(g\in \textsf{G}\), differently put, the evaluation of the vector field at \(e\in \textsf{G}\), defines the vector field on all of \(\textsf{G}\). The set of leftinvariant vector fields is denoted by \(\textsf{Lie}(\textsf{G})\) and is isomorphic to \(\mathfrak {g}\). For a visualization of the aforementioned concepts, see Fig. 1.3.
Consider for a set \(\{X_0,\dots ,X_m\}\subset \textsf{Lie}(\textsf{G})\) the inputaffine control system on \(\textsf{G}\)
with \(\textrm{span}\{X_1,\dots ,X_m\}=\textsf{Lie}(\textsf{G})\) and the input vector \(u\in \mathbb {R}^m\). As such, (1.1a) is controllable for controls \(t\mapsto \mu (t)\in \mathbb {R}^m\) that are locally bounded and measurable [76, Theorem 7.1] (informally, one speaks of controllability of (1.1a) when for any \(g_0,g_1\in \textsf{G}\), there is a \(T\ge 0\) and a map \(\mu :[0,T]\rightarrow \mathbb {R}^m\) such that a solution \(\varphi :[0,T]\times \textsf{G}\rightarrow \textsf{G}\) to (1.1a) under \(\mu \) satisfies \(\varphi (0,g_0)=g_0\) and \(\varphi (T,g_0)=g_1\), for the precise definition see Chap. 5). Under these assumptions, one can study without loss of generality, the leftinvariant control system
where \(\mu (t)=\sum \nolimits ^m_{i=1}E_i \mu _i(t)\) and \(\textrm{span}\{E_1,\dots ,E_m\}=\mathfrak {g}\). Then, given a discount factor \(\beta > 0\), and with abuse of notation the exponential function \(e^{\beta t}\), define the infinitehorizon optimal control problem
where the distance function \(d(e,g)^2=\langle \log (g),\log (g)\rangle \) between e and any \(g\in \textsf{G}\) is defined with the aim of finding a feedback via (1.2) that stabilizes e in some sense. This construction is intended to generalize Linearquadratic regulation (LQR) to nonlinear systems and spaces, cf. [7, 8]. Note that \(\log :\textsf{G}\rightarrow \mathfrak {g}\) is only welldefined over the subset of \(\textsf{G}\) where \(\textrm{exp}:\mathfrak {g}\rightarrow \textsf{G}\) is injective. Now, one can show that by construction of (1.2), one can appeal to Hamilton–Jacobi–Bellman (HJB) theory which provides necessary optimality conditions for (1.2), e.g., see [18, Theorem 10.2]. Then, it can be shown that the optimal controller in (1.2) is given by \(\mu ^{\star }(g(t))=p \log (g(t))\) for \(p> 0\) satisfying \(\beta p p^2 +1 =0\), under the assumption that the controlled trajectory does not pass through the singularity of \(\textrm{exp}:\mathfrak {g}\rightarrow \textsf{G}\), see [52, Theorem 4]. In fact, as \(\mu ^{\star }(e)=0\), under the aforementioned assumption, the feedback \(\mu ^{\star }\) renders e (locally) asymptotically stable [52, Theorem 5].
On the basis of this example we will further illustrate various concepts, including, but not limited to: (i) the relation, or lack thereof, between controllability and the existence of continuous feedback; (ii) the source and (in)surmountability of discontinuous controllers; and (iii) the relation between the shape of the attractor and the domain of the dynamical system.
1.4 Content and Structure
This work surveys the inception, development and future of topological obstructions in the context of dynamical control systems. The aim is to present a unified and general treatment. As such, highly specialized results, as are known for surfaces, do not belong to the core of this work. Also, we largely focus on manifolds but indicate when results hold for more general topological spaces. Besides providing a review, a secondary goal of this work is to function as an invitation to the nonspecialist.
In the past, a small number of reviews appeared, for example, on low dimensional systems by Dayawansa [39]. Close to us is the work by SánchezGabites [133] and Sanjurjo [134], albeit mostly focused on shape and Conley theory. The work by Byrnes [30] and later by Kvalheim and Koditschek [88] also contain overviews, but mostly focused on generalizations of Brockett’s condition. Topological obstructions are also briefly discussed in for example [141, Sect. 6], [19, Sect. 8], the monograph by Coron [37, Part 3], the monograph by Sontag [142, Sect. 5.9], the monograph by Zabczyk [162, Sect. 7.6] and the extensive survey by Vakhrameev [153] on the development of geometric methods in the study of controllability and optimal control. See also the introductions to [38, 108] and the voluminous work by Jonckheere [73] on algebraic topology and robust control. At last we highlight the thesis by Mayhew [104], containing hybrid obstructions and solutions.
Regarding the exposition, we follow the philosophy as set forth in [51] and provide mostly arguments from differential topology with the aim of having an audience as large as possible that can follow and appreciate the complete development. Wherever insightful we do indicate how results can also be shown using arguments from algebraic topology. To further help the reader we provide ample examples, illustrations and references. Most of the results presented in this survey are already published and we systematically add a reference to which the reader can refer for more details. Some new results are added to complete those published and in this case we add a complete proof. Known proofs are occasionally presented to precisely show where assumptions are used and how to possibly relax them.
Although we will impose a smooth structure on our objects we stay in the topological realm and rarely assume knowledge of a metric on our spaces. The price to pay for this generality is that few things can be quantified.
We start by introducing a substantial amount of preliminary concepts from topology, dynamical systems and control theory. The benefit being that the core of this work can be described without technical clutter and in a somewhat selfcontained manner. After presenting the topological obstructions, we also highlight how one might deal with these obstructions and what is considered future work. In particular, Chap. 2 introduces notions from general topology, e.g., homotopies and retraction theory whereas Chap. 3 introduces the prerequisite machinery for the Poincaré–Hopf theorem and the Bobylev–Krasnosel’skiĭ index theorem, that is, notions from differential topology like transversality, tubular neighbourhoods and index theory are discussed in detail. Then, Chap. 4 briefly presents material from algebraic topology and states how the Euler characteristic can be seen through different lenses, e.g., via selfintersections, combinatorially, or via homology theory. Chapter 5 introduces notions from dynamical systems theory like flows, vector fields and Lyapunov stability. Moreover, the dynamical control systems under consideration are defined. Chapter 6—the core of this work—is devoted to discussing topological obstructions to stability and stabilization. First, for equilibrium points, then for submanifolds and subsequently for generic sets. In particular, this section aims to show that just a few viewpoints allow for generalizing a wealth of results. Chapter 7 presents an overview of how to work with these obstructions, e.g., by allowing for singularities, timedependent feedback or by employing techniques from hybrid control theory. Elaborating on some of the aforementioned tools, Chap. 8 offers a few generalizations and concludes with a list of future work.
Notation: We largely follow standard textbook notation, e.g., [51, 92, 142], but we state already that \(p\in \textsf{M}^n\) denotes an element of a ndimensional manifold \(\textsf{M}^n\) with the variable x being reserved for the state of a dynamical system. The symbols f and F are reserved to describe those dynamical systems, whereas g and G are used for general maps. When working with differential equations we use \(\textrm{d}\xi (t)/\textrm{d}t\), \(\dot{\xi }(t)\) or simply \(\dot{\xi }\) to denote the “time”derivative. Also, \(F_{*}\) will denote the pushforward of a map, whereas \(G_{\star }\) denotes the induced homomorphism between groups. Any subtle difference in notation will always be accompanied by clarifying text.
Notes
 1.
Cantor famously wrote “I see it, but I don’t believe it” to Dedekind. See [49] for more context.
 2.
For more context on Noether her contributions, e.g., in relation to pioneering work by Vietoris and Alexandroff & Hopf, see [64].
 3.
With Hermite, MittagLeffler and Weierstrass in the jury.
 4.
This conjecture states (in the category of topological manifolds): every closed ndimensional manifold homotopy equivalent to \(\mathbb {S}^{n}\) is homeomorphic to \(\mathbb {S}^{n}\). This conjecture was partially open until 2003, when Perelman filled in the gap for \(n=3\), see [144] for more on this program.
 5.
Lefschetz came out of retirement in the late 1950s to start a group in Baltimore on nonlinear differential equations and no other than Kalman started his professional career in this group.
 6.
Although Rashevskii published similar work slightly earlier [128].
References
Abraham R, Marsden JE (2008) Foundations of mechanics. American Mathematical Society, Providence
Andronov AA, Pontryagin L (1937) Systèmes grossieres. Dokl Akad Nauk SSSR 14(5):247–251
Arnold VI (1988) Mathematical methods of classical mechanics. Springer, Heidelberg
Barrow I, Haselden T (2015) Euclide’s elements: the whole fifteen books compendiously demonstrated. FB & c Ltd, London
BarrowGreen J (1997) Poincaré and the three body problem. American Mathematical Society, Providence
Bellman R (1954) The theory of dynamic programming. B Am Math Soc 60(6):503–515
Bertsekas DP (2005) Dynamic programming and optimal control, vol 1. Athena Scientific, Belmont
Bertsekas DP (2007) Dynamic programming and optimal control, vol 2, 3rd edn. Athena Scientific, Belmont
Betti E (1871) Sopra gli spazi di un numero qualunque di dimensioni. Ann Mat Pur Appl 4(1):140–158
Bhatia NP, Szegö GP (1970) Stability theory of dynamical systems. Springer, Berlin
Birkhoff GD (1913) Proof of Poincaré’s geometric theorem. T Am Math Soc 14–22
Birkhoff GD (1927) Dynamical systems. American Mathematical Society, Providence
Bissell C (2009) A history of automatic control. Springer, Berlin, pp 53–69
Bloch A (2015) Nonholonomic mechanics and control. Springer, New York
Bobylev N, Krasnosel’skiĭ M (1974) Deformation of a system into an asymptotically stable system. Autom Remote Control 35(7):1041–1044
Borsuk K (1931) Sur les rétractes. Fund Math 17:152–170
Bourbaki N (1989) General topology: chapters 1–4. Springer, Berlin
Bressan A (2011) Viscosity solutions of hamiltonjacobi equations and optimal control problems. Lecture notes
Brockett R (2014) The early days of geometric nonlinear control. Automatica 50(9):2203–2224
Brockett RW (1972) System theory on group manifolds and coset spaces. SIAM J Control 10(2):265–284
Brockett RW (1973) Lie algebras and Lie groups in control theory. In: Geometric methods in system theory. Springer, Dordrecht, pp 43–82
Brockett RW (1976) Some geometric questions in the theory of linear systems. IEEE T Automat Contr 21(4):449–455
Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Differential geometric control theory. Birkhäuser, Boston, pp 181–191
Broer H (2004) KAM theory: the legacy of Kolmogorov’s 1954 paper. B Am Math Soc 41(4):507–521
Brouwer LE (1911) Beweis der invarianz der dimensionenzahl. Math Ann 70(2):161–165
Brouwer LEJ (1911) Über abbildung von mannigfaltigkeiten. Math Ann 71(1):97–115
Brouwer LEJ (1912) Continuous oneone transformations of surfaces in themselves (5th communication). In: Proceedings of K Ned Akad BPh, vol 15, pp 352–361
Bullo F, Lewis AD (2004) Geometric control of mechanical systems. Springer, New York
Busoniu L, Babuska R, de Schutter B, Ernst D (2017) Reinforcement learning and dynamic programming using function approximators. CRC Press, Boca Raton
Byrnes CI (2008) On Brockett’s necessary condition for stabilizability and the topology of Liapunov functions on \(\mathbb{R} ^n\). Commun Inf Syst 8(4):333–352
Cantor G (1932) Gesammelte Abhandlungen. Springer, Berlin
Casti JL (1982) Recent developments and future perspectives in nonlinear system theory. SIAM Rev 24(3):301–331
Chow WL (1940) Über systeme von liearren partiellen differentialgleichungen erster ordnung. Math Ann 117(1):98–105
Ciesielski K (2012) The PoincaréBendixson theorem: from Poincaré to the XXIst century. Cent Eur J Math 10(6):2110–2128
Conley C, Zehnder E (1984) Morsetype index theory for flows and periodic solutions for Hamiltonian equations. Commun Pur Appl Math 37(2):207–253
Conley CC (1978) Isolated invariant sets and the Morse index. American Mathematical Society, Providence
Coron JM (2007) Control and nonlinearity. American Mathematical Society, Providence
Coron JM, Praly L, Teel A (1995) Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and inputoutput techniques. Springer, London, pp 293–348
Dayawansa W (1993) Recent advances in the stabilization problem for low dimensional systems. In: Nonlinear control systems design 1992. Pergamon, Oxford, pp 1–8
Díaz JID, del Castillo LT (1999) A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology. Collect Math 50(1):19–51
Dieudonné J (1978) Abrégé d’histoire des mathématiques: Fonctions elliptiques, analyse fonctionnelle, topologie, géométrie différentielle, probabilités, logique mathématique. Hermann, Paris
Dieudonné J (1989) A history of algebraic and differential topology, 1900–1960. Birkhäuser, Boston
Dinca G, Mawhin J (2021) Brouwer degree. Birkhäuser, Cham
Dirichlet GL (1946) Über die stabilität des gleichgewichts. J Reine Angew Math 32:85–88
Eilenberg S (1944) Singular homology theory. Ann Math 45(3):407–447
Fréchet MM (1906) Sur quelques points du calcul fonctionnel. Rend Circ Mat Palermo 22(1):1–74
Gamkrelidze RV (1999) Discovery of the maximum principle. J Dyn Control Syst 5(4):437–451
Gottlieb DH (1996) All the way with GaussBonnet and the sociology of mathematics. Am Math Mon 103(6):457–469
Gouvêa FQ (2012) Was Cantor surprised? In: The best writing on mathematics 2012. Princeton University Press, Princeton, pp 216–233
Guckenheimer J, Holmes P (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science & Business Media, New York
Guillemin V, Pollack A (2010) Differential topology. American Mathematical Society, Providence
Gupta R, Kalabić UV, Bloch AM, Kolmanovsky IV (2018) Solution to the HJB equation for LQRtype problems on compact connected Lie groups. Automatica 95:525–528
Hadamard J (1897) Sur certaines propriétés des trajectoires en dynamique. J Math 5(3):331–387
Hadamard J (1898) Les surfaces à courbures opposées et leurs lignes géodesiques. J Math 5(3):27–73
Hartman P (1960) On local homeomorphisms of Euclidean spaces. Bol Soc Mat Mex 5(2):220–241
Hausdorff F (1914) Grundzüge der Mengenlehre. Veit, Leipzig
Haynes GW, Hermes H (1970) Nonlinear controllability via lie theory. SIAM J Control 8(4):450–460
Hermann R (1963) On the accessibility problem in control theory. In: International symposium on nonlinear differential equations and nonlinear mechanics. Academic Press, Cambridge, pp 325–332
Hermann R, Krener A (1977) Nonlinear controllability and observability. IEEE T Automat Contr 22(5):728–740
Hermann R, Martin CF (1977) Applications of algebraic geometry to systems theory—part I. IEEE T Automat Contr 22(1):19–25
Hilbert D (1930) Grundlagen der Geometrie. Teubner, Leipzig
Hirsch MW (1984) The dynamical systems approach to differential equations. B Am Math Soc 11(1):1–64
Hirsch MW, Pugh CC, Shub M (2006) Invariant manifolds. Springer, Berlin
Hirzebruch F (1999) Emmy Noether and topology
Holmes P (2005) Ninety plus thirty years of nonlinear dynamics: less is more and more is different. Int J Bifurcat Chaos 15(09):2703–2716
Hopf H (1925) Über die curvatura integra geschlossener hyperflächen. Math Ann 95(1):340–367
Hopf H (1926) Vektorfelder in ndimensionalenmannigfaltigkeiten. Math Ann 96:225–250
Hurewicz W (1935) Homotopie und homologiegruppen. P K Akad WetAmsterd. 38:521–528
Hurwitz A (1895) Über die bedingungen, unter welchen eine gleichung nur wurzeln mit negativen reellen theilen besitzt. Math Ann 46(2):273–284
Isidori A (1985) Nonlinear control systems: an introduction. Springer, Berlin
Isidori A (2013) The zero dynamics of a nonlinear system: from the origin to the latest progresses of a long successful story. Eur J Control 19(5):369–378
James IM (1999) History of topology. Elsevier, Amsterdam
Jonckheere EA (1997) Algebraic and differential topology of robust stability. Oxford University Press, Oxford
Jordan C (1866) Sur la déformation des surfaces. J Math Pure Appl 105–109
Jurdjevic V, Quinn JP (1978) Controllability and stability. J Differ Equ 28(3):381–389
Jurdjevic V, Sussmann HJ (1972) Control systems on lie groups. J Differ Equ 12(2):313–329
Jury EI (1996) Remembering four stability theory pioneers of the nineteenth century. IEEE T Automat Contr 41(9):1242
Kalman R (1960) Contributions to the theory of optimal control. Bol Soc Mat Mex 102–119
Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Basic EngT ASME 83(1):95–108
Kelley A (1967) The stable, centerstable, center, centerunstable, unstable manifolds. J Differ Equ 3(4):546–570
Khalil HK (2002) Nonlinear systems. Prentice Hall
Knapp AW (2002) Lie groups beyond an introduction. Birkhäuser, Boston
Koditschek DE (2021) What is robotics? Why do we need it and how can we get it? Annu Rev Control 4:1–33
Krasnosel’skiĭ A, Zabreiko PP (1984) Geometrical methods of nonlinear analysis. Springer, Berlin
Krasnosel’skiĭ MA (1968) The operator of translation along the trajectories of differential equations. American Mathematical Society, Providence
Krasovskiĭ N (1963) Stability of motion. Stanford University Press, Palo Alto
Kurzweil J (1963) On the inversion of Ljapunov’s second theorem on stability of motion. AMS Transl Ser 2(24):19–77
Kvalheim MD, Koditschek DE (2022) Necessary conditions for feedback stabilization and safety. J Geom Mech
La Salle J, Lefschetz S (1961) Stability by Liapunov’s direct method with applications. Academic Press, New York
Lagrange JL (1788) Mécanique Analytique. La Veuve Desaint, Paris
LaSalle J (1960) Some extensions of Liapunov’s second method. IRE T Circuit Theor 7(4):520–527
Lee JM (2011) Introduction to topological manifolds. Springer, New York
Lefschetz S (1926) Intersections and transformations of complexes and manifolds. T Am Math Soc 28(1):1–49
Lefschetz S (1937) On the fixed point formula. Ann Math 819–822
Lefschetz S (1957) Differential equations: geometric theory. Interscience Publishers, New York
Leine RI (2010) The historical development of classical stability concepts: Lagrange. Poisson and Lyapunov stability. Nonlinear Dyn 59(1):173–182
Levi M (1988) Stability of the inverted pendulum’a topological explanation. SIAM Rev 30(4):639–644
Lewis AD (2001) A brief on controllability of nonlinear systems
Liapunov A (1892) A general task about the stability of motion. Dissertation, University of Kharkov
Lobry C (1970) Contrôlabilité des systèmes non linéaires. SIAM J Control 8(4):573–605
Lobry C (1974) Controllability of nonlinear systems on compact manifolds. SIAM J Control 12(1):1–4
Lyapunov A (1992) The general problem of the stability of motion. Int J Control 55(3):531–773
Mawhin J (2000) Mark A. Krasnosel’skii and nonlinear analysis: a fruitful love story. In: Coll Mark Aleksandrovich Krasnose’skii. To the 80th anniversary of his birth. Digest of articles, IITP RAS, pp 80–97
Mayhew CG (2010) Hybrid control for topologically constrained systems. PhD thesis, University of California, Santa Barbara
McLennan A (2018) Advanced fixed point theory for economics. Springer, Singapore
Möbius AF (1863) Theorie der elementaren verwandtschaft. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematischphysikalische Klasse 15:19–57
Morse M (1925) Relations between the critical points of a real function of \(n\) independent variables. T Am Math Soc 27(3):345–396
Moulay E, Hui Q (2011) Conley index condition for asymptotic stability. Nonlinear AnalTheor 74(13):4503–4510
Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton
Nijmeijer H, van der Schaft A (1990) Nonlinear dynamical control systems. Springer, New York
Noether E (1926) Ableitung der elementarteilertheorie aus der gruppentheorie, nachrichten der 27 januar 1925. Jahresbericht der Deutschen MathematikerVereinigung 34:104
Noether E, Cavailles J (1937) Briefwechsel CantorDedekind. Hermann, Paris
Orsi R, Praly L, Mareels I (2003) Necessary conditions for stability and attractivity of continuous systems. Int J Control 76(11):1070–1077
Outerelo E, Ruiz JM (2009) Mapping degree theory. American Mathematical Society, Providence
Peano G (1890) Sur une courbe, qui remplit toute une aire plane. Math Ann 36(1):157–160
Peixoto MM (1962) Structural stability on twodimensional manifolds. Topology 1(2):101–120
Pliss VA (1964) A reduction principle in the theory of stability of motion. Izv Akad Nauk SSSR Ser Mat 28(6):1297–1324
Poincaré H (1890) Sur le problème des trois corps et les équations de la dynamique. Acta Math 13(1):1–270
Poincaré H (1892) Les Méthodes Nouvelles de la Mécanique Céleste, vol 1. GauthierVillars, Paris
Poincaré H (1893) Les Méthodes Nouvelles de la Mécanique Céleste, vol 2. GauthierVillars, Paris
Poincaré H (1895) Analysis situs. J Ec PolytechMath 1:1–121
Poincaré H (1899) Les Méthodes Nouvelles de la Mécanique Céleste, vol 3. GauthierVillars, Paris
Poincaré H (1910) The future of mathematics. Monist 20(1):76–92
Poincaré H (2010) Papers on topology: analysis situs and its five supplements. American Mathematical Society, Providence
Poincaré H (2017) The threebody problem and the equations of dynamics: Poincar’s foundational work on dynamical systems theory. Springer, Cham
Polekhin I (2018) On topological obstructions to global stabilization of an inverted pendulum. Syst Control Lett 113:31–35
Pontryagin L, Boltyansky V, Gamkrelidze R, Mishchenko E (1962) The mathematical theory of optimal processes. Wiley, New York
Rashevskii P (1938) Joinability of any two points of a completely nonholonomic space by an admissible line. Uch Zapiski Ped Inst Libknexta Ser FizMat (2), 83:94
Riemann B (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen
Riemann B (1892) Gesammelte Mathematische Werke. Teubner, Leipzig
Riesz F (1908) Stetigkeitsbegriff und abstrakte mengenlehre. Atti del IV congresso internazionale dei matematici, Bologna 2:18–24
Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys 20:167–192
SánchezGabites J (2008) Dynamical systems and shapes. RACSAM REV R Acad A 102(1):127–159
Sanjurjo JMR (2008) Shape and Conley index of attractors and isolated invariant sets. In: Differential equations, chaos and variational problems. Birkhäuser, Basel, pp 393–406
Sastry S (1999) Nonlinear systems. Springer, New York
Schoukens J, Ljung L (2019) Nonlinear system identification: a useroriented road map. IEEE Contr Syst Mag 39(6):28–99
Siegberg HW (1981) Some historical remarks concerning degree theory. Am Math Mon 88(2):125–139
Smale S (1961) Generalized Poincare’s conjecture in dimensions greater than four. Ann Math 74(2):391–406
Smale S (1967) Differentiable dynamical systems. B Am Math Soc 73(6):747–817
Sontag E, Sussmann H (1980) Remarks on continuous feedback. In: Proceedings of IEEE conference on decision control, pp 916–921
Sontag ED (1990) Feedback stabilization of nonlinear systems. Birkhäuser, Boston, pp 61–81
Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems. Springer, New York
Steen LA, Seebach JA (1978) Counterexamples in topology. Springer, New York
Stillwell J (2012) Poincaré and the early history of 3manifolds. B Am Math Soc 49(4):555–576
Strogatz SH (2014) Nonlinear dynamics and chaos. Westview Press, Boulder
Sussmann HJ (1979) Subanalytic sets and feedback control. J Differ Equ 31(1):31–52
Sussmann HJ, Jurdjevic V (1972) Controllability of nonlinear systems. J Differ Equ 12(1):95–116
Tabak J (2011) Beyond geometry: a new mathematics of space and form. Facts on File, New York
Thom R (1954) Quelques propriétés globales des variétés différentiables. Comment Math Helv 28(1):17–86
Thom R (2018) Structural stability and morphogenesis. CRC Press, Boca Raton
Thorne KS, Misner CW, Wheeler JA (1973) Gravitation. Freeman, Reading
Urysohn P (1925) Mémoir on cantorian multiplicities. Fund Math 1(7):30–137
Vakhrameev S (1995) Geometrical and topological methods in optimal control theory. J Math Sci 76(5):2555–2719
Veblen O, Whitehead JHC (1932) The foundations of differential geometry. Cambridge University Press, Cambridge
Verhulst F (2012) Henri Poincaré: impatient genius. Springer Science & Business Media, New York
Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B (2018) Feedback control of dynamic bipedal robot locomotion. CRC Press, Boca Raton
Whitney H (1936) Differentiable manifolds. Ann Math 37(3):645–680
Whitney H (1937) Topological properties of differentiable manifolds. B Am Math Soc 43(12):785–805
Wilson FW (1969) Smoothing derivatives of functions and applications. T Am Math Soc 139:413–428
Wilson FW Jr (1967) The structure of the level surfaces of a Lyapunov function. J Differ Equ 3(3):323–329
Wonham WM (1979) Linear multivariable control. Springer, New York
Zabczyk J (2020) Mathematical control theory. Birkhäuser, Cham
Zabrejko P (1997) Rotation of vector fields: definition, basic properties, and calculation. In: Topological nonlinear analysis II. Birkhäuser, Boston, pp 445–601
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2023 The Author(s)
About this chapter
Cite this chapter
Jongeneel, W., Moulay, E. (2023). Introduction. In: Topological Obstructions to Stability and Stabilization. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/9783031301339_1
Download citation
DOI: https://doi.org/10.1007/9783031301339_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 9783031301322
Online ISBN: 9783031301339
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)