Skip to main content

Principles of Clinical Oncology and Systemic Treatments

  • Chapter
  • First Online:
Oncodermatology

Abstract

Clinical oncology is a specialty that currently holds a central role in the management of skin cancer patients, with rising importance in a broad range of settings not limited to metastatic disease, as in the past. Recent advances in the vast therapeutic arsenal comprising cytotoxic agents, small kinase inhibitors, monoclonal antibodies, and immunotherapy have drastically changed the natural of history of several hard-to-treat conditions, adding more complexity to the multidisciplinary approach of skin malignancies. A basic knowledge of the most frequently employed systemic agents is certainly useful to healthcare professionals interested in improving quality of care. The purpose of this chapter is to provide a brief overview of historical background, rationale, and toxicities of some of the most important categories of drugs employed in clinical oncology.

Beatriz Mendes Awni and Marcello Moro Queiroz are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papac RJ. Origins of cancer therapy. Yale J Biol Med. 2001;74:391–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. DeVita VT. The evolution of therapeutic research in cancer. N Engl J Med. 1978;298:907–10. https://doi.org/10.1056/NEJM197804202981610.

    Article  PubMed  Google Scholar 

  3. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68:8643–53. https://doi.org/10.1158/0008-5472.CAN-07-6611.

    Article  CAS  PubMed  Google Scholar 

  4. Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72. https://doi.org/10.1038/nrc1529.

    Article  CAS  PubMed  Google Scholar 

  5. Goldin A, Schepartz SA, Venditti JM, DeVita VT. Historical development and current strategy of the National Cancer Institute Drug Development Program. In: Busch H, DeVita VT, editors. Methods in cancer research, vol. 16. New York: Academic Press; 1979. p. 165–245.

    Google Scholar 

  6. Zubrod CG, Schepartz S, Leiter J, Endicott KM, Carrese LM, Baker CG. The chemotherapy program of the National Cancer Institute: history, analysis and plans. Cancer Chemother Rep. 1966;50:349–540.

    Google Scholar 

  7. Marshall EK. Historical perspectives in chemotherapy. Adv Chemother. 1964;13:1–8. https://doi.org/10.1016/B978-1-4831-9929-0.50006-1.

    Article  PubMed  Google Scholar 

  8. Krumbhaar EB, Krumbhaar HD. The blood and bone marrow in Yelloe Cross gas (mustard gas) poisoning: changes produced in the bone marrow of fatal cases. J Med Res. 1919;40:497–508.3.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilman A. Symposium on advances in pharmacology resulting from war research: therapeutic applications of chemical warfare agents. Fed Proc. 1966;1946(5):285–92.

    Google Scholar 

  10. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT. Landmark article Sept. 21, 1946: Nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA. 1984;251:2255–61. https://doi.org/10.1001/jama.251.17.2255.

    Article  CAS  PubMed  Google Scholar 

  11. Gilman A, Philips FS. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science. 1946;103:409–15.

    Article  CAS  PubMed  Google Scholar 

  12. Gilman A. The initial clinical trial of nitrogen mustard. Am J Surg. 1963;105:574–8. https://doi.org/10.1016/0002-9610(63)90232-0.

    Article  CAS  PubMed  Google Scholar 

  13. Wills L, Clutterbuck PW, Evans BD. A new factor in the production and cure of macrocytic anaemias and its relation to other haemopoietic principles curative in pernicious anaemia. Biochem J. 1937;31:2136–47. https://doi.org/10.1042/bj0312136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farber S. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood. 1949;4:160–7.

    Article  CAS  PubMed  Google Scholar 

  15. Farber S, Diamond LK, Mercer RD, Sylvester RF, Wolff JA. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med. 1948;238:787–93. https://doi.org/10.1056/NEJM194806032382301.

    Article  CAS  PubMed  Google Scholar 

  16. Li MC, Hertz R, Bergenstal DM. Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N Engl J Med. 1958;259:66–74. https://doi.org/10.1056/NEJM195807102590204.

    Article  CAS  PubMed  Google Scholar 

  17. Jaffe N, Frei E, Traggis D, Bishop Y. Adjuvant methotrexate and citrovorum-factor treatment of osteogenic sarcoma. N Engl J Med. 1974;291:994–7. https://doi.org/10.1056/NEJM197411072911902.

    Article  CAS  PubMed  Google Scholar 

  18. Jaffe N, Link MP, Cohen D, Traggis D, Frei E, Watts H, et al. High-dose methotrexate in osteogenic sarcoma. Natl Cancer Inst Monogr. 1981;56:201–6.

    Google Scholar 

  19. Frei E. The National Cancer Chemotherapy program. Science. 1982;217:600–6. https://doi.org/10.1126/science.7046055.

    Article  PubMed  Google Scholar 

  20. Driscoll JS. The preclinical new drug research program of the National Cancer Institute. Cancer Treat Rep. 1984;68:63–76.

    CAS  PubMed  Google Scholar 

  21. Grever MR, Schepartz SA, Chabner BA. The National Cancer Institute: cancer drug discovery and development program. Semin Oncol. 1992;19:622–38.

    CAS  PubMed  Google Scholar 

  22. Johnson IS, Armstrong JG, Gorman M, Burnett JP. The vinca alkaloids: a new class of oncolytic agents. Cancer Res. 1963;23:1390–427.

    CAS  PubMed  Google Scholar 

  23. Brunner KW. A methylhydrazine derivative in Hodgkin’s disease and other malignant neoplasms: therapeutic and toxic effects studied in 51 patients. Ann Intern Med. 1965;63:69. https://doi.org/10.7326/0003-4819-63-1-69.

    Article  CAS  PubMed  Google Scholar 

  24. DeVita VT, Serpick A, Carbone PP. Preliminary clinical studies with ibenzmethyzin. Clin Pharmacol Ther. 1966;7:542–6. https://doi.org/10.1002/cpt196674542.

    Article  CAS  PubMed  Google Scholar 

  25. Moxley JH, De Vita VT, Brace K, Frei E. Intensive combination chemotherapy and X-irradiation in Hodgkin’s disease. Cancer Res. 1967;27:1258–63.

    PubMed  Google Scholar 

  26. Devita VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73:881–95. https://doi.org/10.7326/0003-4819-73-6-881.

    Article  PubMed  Google Scholar 

  27. Tew KH. Alkylating agents. In: De Vita VTH, Rosenberg S, editors. Cancer principles & practice of oncology. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 408–19.

    Google Scholar 

  28. Doroshow JH. Princípios de oncologia médica. In: Pollock RED, Khayat JH, Nakao D, et al., editors. Manual de oncologia clínica da UICC. Hoboken: John Wiley & Sons; 2004. p. 243–60.

    Google Scholar 

  29. Bastos DA, Jardim DLF. Agentes Alquilantes. In: Hoff PMG, Katz A, et al., editors. Tratado de Oncologia. Editora Atheneu; 2006. p. 707–21.

    Google Scholar 

  30. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7:573–84. https://doi.org/10.1038/nrc2167.

    Article  CAS  PubMed  Google Scholar 

  31. Chabner BA. Barnett Rosenberg: in Memoriam (1924–2009). Cancer Res. 2010;70:428–9. https://doi.org/10.1158/0008-5472.CAN-09-4146.

    Article  CAS  Google Scholar 

  32. Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–9. https://doi.org/10.1038/205698a0.

    Article  CAS  PubMed  Google Scholar 

  33. Rosenberg B, Vancamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222:385–6. https://doi.org/10.1038/222385a0.

    Article  CAS  PubMed  Google Scholar 

  34. Williams CJ, Whitehouse JM. Cis-platinum: a new anticancer agent. Br Med J. 1979;1:1689–91. https://doi.org/10.1136/bmj.1.6179.1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Capdevila J, Elez E, Peralta S, Macarulla T, Ramos FJ, Tabernero J. Oxaliplatin-based chemotherapy in the management of colorectal cancer. Expert Rev Anticancer Ther. 2008;8:1223–36. https://doi.org/10.1586/14737140.8.8.1223.

    Article  CAS  PubMed  Google Scholar 

  36. Reed E. Cisplatin, carboplatin, and oxaliplatin. In: Chabner BA, Longo DL, editors. Cancer chemotherapy & biotherapy: principles & practices. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 332–43.

    Google Scholar 

  37. De Vita VT Jr, Hellman S, Rosenberg SA. Cancer: principles and practice of oncology. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  38. Bastos DA, Jardim DLF. Cisplatina e Seus Análogos. In: Hoff PMG, Katz A, et al., editors. Tratado de Oncologia. Editora Atheneu; 2006. p. 723–31.

    Google Scholar 

  39. BC cancer drug manual. Drug name: Cisplatin. 1994.

    Google Scholar 

  40. BC cancer drug manual. Drug name: Carboplatin. 1994.

    Google Scholar 

  41. BC cancer drug manual. Drug name: Oxaliplatin. 2001.

    Google Scholar 

  42. Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature. 1957;179:663–6. https://doi.org/10.1038/179663a0.

    Article  CAS  PubMed  Google Scholar 

  43. Grem JL. 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Investig New Drugs. 2000;18:299–313. https://doi.org/10.1023/a:1006416410198.

    Article  CAS  Google Scholar 

  44. Ezzeldin H, Diasio R. Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration. Clin Colorectal Cancer. 2004;4:181–9. https://doi.org/10.3816/ccc.2004.n.018.

    Article  CAS  PubMed  Google Scholar 

  45. McEvoy GK, Snow EK, Kester L. AHFS 2006 drug information. Bethesda: American Society of Health-System Pharmacists; 2006.

    Google Scholar 

  46. Rubenstein EB, Peterson DE, Schubert M, Keefe D, McGuire D, Epstein J, et al. Clinical practice guidelines for the prevention and treatment of cancer therapy-induced oral and gastrointestinal mucositis. Cancer. 2004;100:2026–46. https://doi.org/10.1002/cncr.20163.

    Article  PubMed  Google Scholar 

  47. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005;23:7685–96. https://doi.org/10.1200/JCO.2005.08.789.

    Article  CAS  PubMed  Google Scholar 

  48. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34:1274–81. https://doi.org/10.1016/s0959-8049(98)00058-6.

    Article  CAS  PubMed  Google Scholar 

  49. Meyer LM, Miller FR, Rowen MJ, Bock G, Rutzky J. Treatment of acute leukemia with amethopterin (4-amino, 10-methyl pteroyl glutamic acid). Acta Haematol. 1950;4:157–67. https://doi.org/10.1159/000203749.

    Article  CAS  PubMed  Google Scholar 

  50. Longo-Sorbello GS, Bertino JR. Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica. 2001;86:121–7.

    CAS  PubMed  Google Scholar 

  51. Mayne Pharma (Canada) Inc. Methotrexate injection product monograph. Montreal, Quebec; 2003.

    Google Scholar 

  52. Berger JM, Fass D, Wang JC, Harrison SC. Structural similarities between topoisomerases that cleave one or both DNA strands. Proc Natl Acad Sci. 1998;95:7876–81. https://doi.org/10.1073/pnas.95.14.7876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruiz-Ruiz C, Robledo G, Cano E, Redondo JM, Lopez-Rivas A. Characterization of p53-mediated up-regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J Biol Chem. 2003;278:31667–75. https://doi.org/10.1074/jbc.M304397200.

    Article  CAS  PubMed  Google Scholar 

  54. Chanan-Khan A, Srinivasan S, Czuczman MS. Prevention and management of cardiotoxicity from antineoplastic therapy. J Support Oncol. 2004;2:251–6; discussion 259–61, 264–6.

    PubMed  Google Scholar 

  55. Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154–71. https://doi.org/10.1016/s1734-1140(09)70018-0.

    Article  PubMed  Google Scholar 

  56. Cvetković RS, Scott LJ. Dexrazoxane : a review of its use for cardioprotection during anthracycline chemotherapy. Drugs. 2005;65:1005–24. https://doi.org/10.2165/00003495-200565070-00008.

    Article  PubMed  Google Scholar 

  57. van Dalen EC, Caron HN, Dickinson HO, Kremer LCM. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2008:CD003917. https://doi.org/10.1002/14651858.CD003917.pub3.

  58. Dahlstrøm KK, Chenoufi HL, Daugaard S. Fluorescence microscopic demonstration and demarcation of doxorubicin extravasation. Experimental and clinical studies. Cancer. 1990;65:1722–6. https://doi.org/10.1002/1097-0142(19900415)65:8<1722::aid-cncr2820650810>3.0.co;2-e.

    Article  PubMed  Google Scholar 

  59. Andersson AP, Dahlstrøm KK. Clinical results after doxorubicin extravasation treated with excision guided by fluorescence microscopy. Eur J Cancer. 1993;29A:1712–4. https://doi.org/10.1016/0959-8049(93)90110-2.

    Article  CAS  PubMed  Google Scholar 

  60. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65. https://doi.org/10.1038/nrc1317.

    Article  CAS  PubMed  Google Scholar 

  61. Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res. 1991;51:2212–22.

    CAS  PubMed  Google Scholar 

  62. Lobert S, Fahy J, Hill BT, Duflos A, Etievant C, Correia JJ. Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line. Biochemistry. 2000;39:12053–62. https://doi.org/10.1021/bi001038r.

    Article  CAS  PubMed  Google Scholar 

  63. Machado KK, Braghirolli MI, Rêgo JFM, Hoff PMG. Agentes Antimicrotúbulos. In: Hoff PMG, Katz A, et al., editors. Tratado de Oncologia. Editora Atheneu; 2006. p. 767–77.

    Google Scholar 

  64. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–7. https://doi.org/10.1038/277665a0.

    Article  CAS  PubMed  Google Scholar 

  65. Ganansia-Leymarie V, Bischoff P, Bergerat J-P, Holl V. Signal transduction pathways of taxanes-induced apoptosis. Curr Med Chem Anticancer Agents. 2003;3:291–306. https://doi.org/10.2174/1568011033482422.

    Article  CAS  PubMed  Google Scholar 

  66. Medeiros RB, Nebuloni DR, Toloi DA. Outros Agentes Quimioterápicos. In: Hoff PMG, Katz A, et al., editors. Tratado de Oncologia. Editora Atheneu; 2006. p. 779–89.

    Google Scholar 

  67. Huang L, Jiang S, Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J Hematol Oncol. 2020;13:143. https://doi.org/10.1186/s13045-020-00977-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov. 2018;17:353–77. https://doi.org/10.1038/nrd.2018.21.

    Article  CAS  PubMed  Google Scholar 

  69. Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20:551–69. https://doi.org/10.1038/s41573-021-00195-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int J Mol Med. 2017;40:271–80. https://doi.org/10.3892/ijmm.2017.3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Metibemu DS, Akinloye OA, Akamo AJ, Ojo DA, Okeowo OT, Omotuyi IO. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt J Med Hum Genet. 2019;20:35. https://doi.org/10.1186/s43042-019-0035-0.

    Article  Google Scholar 

  72. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6:201. https://doi.org/10.1038/s41392-021-00572-w.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol. 2016;13:209–27. https://doi.org/10.1038/nrclinonc.2015.213.

    Article  CAS  PubMed  Google Scholar 

  74. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15:731–47. https://doi.org/10.1038/s41571-018-0113-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ling Y, Liu J, Qian J, Meng C, Guo J, Gao W, et al. Recent advances in multi-target drugs targeting protein kinases and histone deacetylases in cancer therapy. CMC. 2020;27:7264–88. https://doi.org/10.2174/0929867327666200102115720.

    Article  CAS  Google Scholar 

  76. Giordano S, Petrelli A. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. CMC. 2008;15:422–32. https://doi.org/10.2174/092986708783503212.

    Article  Google Scholar 

  77. Trikha M, Yan L, Nakada MT. Monoclonal antibodies as therapeutics in oncology. Curr Opin Biotechnol. 2002;13:609–14. https://doi.org/10.1016/S0958-1669(02)00348-8.

    Article  CAS  PubMed  Google Scholar 

  78. Chang JC. HER2 inhibition: from discovery to clinical practice: Fig. 1. Clin Cancer Res. 2007;13:1–3. https://doi.org/10.1158/1078-0432.CCR-06-2405.

    Article  PubMed  Google Scholar 

  79. Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang Y. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer. 2018;17:36. https://doi.org/10.1186/s12943-018-0801-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005;315:971–9. https://doi.org/10.1124/jpet.105.084145.

    Article  CAS  PubMed  Google Scholar 

  81. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:1–9. https://doi.org/10.1155/2014/357027.

    Article  CAS  Google Scholar 

  82. Nowell PC. Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest. 2007;117:2033–5. https://doi.org/10.1172/JCI31771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kang Z-J, Liu Y-F, Xu L-Z, Long Z-J, Huang D, Yang Y, et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35:48. https://doi.org/10.1186/s40880-016-0108-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Agrawal M, Garg RJ, Cortes J, Quintás-Cardama A. Tyrosine kinase inhibitors: the first decade. Curr Hematol Malig Rep. 2010;5:70–80. https://doi.org/10.1007/s11899-010-0045-y.

    Article  PubMed  Google Scholar 

  85. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7. https://doi.org/10.1056/NEJM200104053441401.

    Article  CAS  PubMed  Google Scholar 

  86. Kim A, Cohen MS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin Drug Discovery. 2016;11:907–16. https://doi.org/10.1080/17460441.2016.1201057.

    Article  CAS  Google Scholar 

  87. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11:873–86. https://doi.org/10.1038/nrd3847.

    Article  CAS  PubMed  Google Scholar 

  88. Popescu A, Anghel RM. Tyrosine-kinase inhibitors treatment in advanced malignant melanoma. Maedica (Bucur). 2017;12:293–6.

    PubMed  Google Scholar 

  89. Cheng L, Lopez-Beltran A, Massari F, MacLennan GT, Montironi R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol. 2018;31:24–38. https://doi.org/10.1038/modpathol.2017.104.

    Article  CAS  PubMed  Google Scholar 

  90. Smalley KSM, Sondak VK. Targeted therapy for melanoma: is double hitting a home run? Nat Rev Clin Oncol. 2013;10:5–6. https://doi.org/10.1038/nrclinonc.2012.215.

    Article  CAS  PubMed  Google Scholar 

  91. Ribas A, Flaherty KT. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol. 2011;8:426–33. https://doi.org/10.1038/nrclinonc.2011.69.

    Article  CAS  PubMed  Google Scholar 

  92. Tanese K, Nakamura Y, Hirai I, Funakoshi T. Updates on the systemic treatment of advanced non-melanoma skin cancer. Front Med. 2019;6:160. https://doi.org/10.3389/fmed.2019.00160.

    Article  Google Scholar 

  93. Spallone G, Botti E, Costanzo A. Targeted therapy in nonmelanoma skin cancers. Cancers. 2011;3:2255–73. https://doi.org/10.3390/cancers3022255.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sell S. Cancer immunotherapy: breakthrough or “deja vu, all over again”? Tumour Biol. 2017;39(6):1010428317707764. https://doi.org/10.1177/1010428317707764.

    Article  CAS  PubMed  Google Scholar 

  95. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  96. Clark JI, Curti B, Davis EJ, Kaufman H, Amin A, Alva A, et al. Long-term progression-free survival of patients with metastatic melanoma or renal cell carcinoma following high-dose interleukin-2. J Investig Med. 2021;69:888. https://doi.org/10.1136/jim-2020-001650.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Onco Targets Ther. 2016;5(6):e1163462. https://doi.org/10.1080/2162402X.2016.1163462.

    Article  CAS  Google Scholar 

  98. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24. https://doi.org/10.1056/NEJMoa065044.

    Article  CAS  PubMed  Google Scholar 

  99. Ives NJ, Suciu S, Eggermont AMM, Kirkwood J, Lorigan P, Markovic SN, et al. Adjuvant interferon-alpha for the treatment of high-risk melanoma: an individual patient data meta-analysis. Eur J Cancer. 2017;82:171–83. https://doi.org/10.1016/j.ejca.2017.06.006.

    Article  CAS  PubMed  Google Scholar 

  100. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26. https://doi.org/10.1056/NEJMoa1104621.

    Article  CAS  PubMed  Google Scholar 

  101. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. https://doi.org/10.1056/NEJMc1509660.

    Article  PubMed  Google Scholar 

  102. Oliveira LJC, Gongora ABL, Jardim DLF. Spectrum and clinical activity of PD-1/PD-L1 inhibitors: regulatory approval and under development. Curr Oncol Rep. 2020;22(7):70. https://doi.org/10.1007/s11912-020-00928-5.

    Article  PubMed  Google Scholar 

  103. Puhr HC, Ilhan-Mutlu A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open. 2019;4(2):e000482. https://doi.org/10.1136/esmoopen-2018-000482.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lipson EJ, Tawbi HA-H, Schadendorf D, Ascierto PA, Matamala L, Gutiérrez EC, et al. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase III results from RELATIVITY-047 (CA224-047). J Clin Oncol. 2021;39(15_Suppl):9503. https://doi.org/10.1200/JCO.2021.39.15_suppl.9503.

    Article  Google Scholar 

  105. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18(1):155. https://doi.org/10.1186/s12943-019-1091-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46. https://doi.org/10.1056/NEJMoa1910836.

    Article  CAS  PubMed  Google Scholar 

  107. Kirtane K, Elmariah H, Chung CH, Abate-Daga D. Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. J Immunother Cancer. 2021;9(7):e002723. https://doi.org/10.1136/jitc-2021-002723.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer. 2021;124(11):1759–76. https://doi.org/10.1038/s41416-021-01353-6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Larkin J, Sarnaik A, Chesney JA, Khushalani NI, Kirkwood JM, Weber JS, et al. Lifileucel (LN-144), a cryopreserved autologous tumor infiltrating lymphocyte (TIL) therapy in patients with advanced melanoma: evaluation of impact of prior anti-PD-1 therapy. J Clin Oncol. 2021;39(15_Suppl):9505. https://doi.org/10.1200/JCO.2021.39.15_suppl.9505.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Fernando Silva Almeida Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awni, B.M., Queiroz, M.M., dos Santos Fernandes, G., Ribeiro, M.F.S.A. (2023). Principles of Clinical Oncology and Systemic Treatments. In: Abdalla, C.M.Z., Sanches, J.A., Munhoz, R.R., Belfort, F.A. (eds) Oncodermatology. Springer, Cham. https://doi.org/10.1007/978-3-031-29277-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29277-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29276-7

  • Online ISBN: 978-3-031-29277-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics