Skip to main content

Emerging Lipoprotein-Related Therapeutics for Patients with Diabetes

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Abstract

Dyslipidemia manifesting as elevated LDL cholesterol and triglycerides, and low HDL cholesterol is the major hallmark of the factors leading to the development of atherosclerosis. Atherosclerosis develops over many years as a result of lipid deposition and inflammation in the walls of large arteries and its clinical manifestation is the rupture of plaques, interrupted blood flow, and consequential heart attacks and strokes. The metabolic milieu of diabetes, hyperglycemia, insulin resistance, and beyond accelerates the progression of atherosclerosis and enhances the occurrence of cardiovascular disease. It follows that those therapies which address dyslipidemia will have a favorable impact on the initiation and development of atherosclerosis. The HMGCoA reductase inhibitors (“statins”) have been the cornerstone of lipid-lowering therapy for several decades. However, these agents only lower cardiovascular events by 30%, so a considerable amount of disease occurs which is resistant to statins. Statins also have anti-inflammatory actions, and recent studies have shown that anti-inflammatory therapeutic strategies per se can reduce cardiovascular events even in people on statins. In this chapter, we address a multitude of new and some old but revitalized therapies, which target dyslipidemia and include a number of new biological based strategies which reflect the revolution occurring in the area of biological therapeutics as applied to this area of lipid-targeted strategies. There has been much recent progress and pharmaceutical development in this area. We describe recent changes in the conceptualization of atherosclerosis and present a number of new areas in which therapeutic agents are being developed to modulate plasma lipids and reduce atherosclerosis and cardiovascular disease. The specific agents presented are new and emerging agents acting on PCSK9, ATP citrate lyase inhibitors, omega-3 fatty acid products, and especially eicosapentaenoic ether and drugs targeting ApoC3 and angiopoietin-related protein 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev. 2020;159:4–33.

    Article  CAS  PubMed  Google Scholar 

  2. Brown MS, Goldstein JL. Heart attacks: gone with the century? Science. 1996;272(5262):629.

    Article  CAS  PubMed  Google Scholar 

  3. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.

    Article  CAS  PubMed  Google Scholar 

  4. Tabas I. Cholesterol in health and disease. J Clin Invest. 2002;110(5):583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duncan MS, Vasan RS, Xanthakis V. Trajectories of blood lipid concentrations over the adult life course and risk of cardiovascular disease and all-cause mortality: observations from the Framingham study over 35 years. J Am Heart Assoc. 2019;8(11):e011433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haffner SJ, Cassells H. Hyperglycemia as a cardiovascular risk factor. Am J Med. 2003;115(Suppl 8A):6S–11S.

    Article  CAS  PubMed  Google Scholar 

  7. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  8. Wei M, Haffner SM, Gaskill SP, Stern MP. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. Diabetes Care. 1998;21(7):1167–72.

    Article  CAS  PubMed  Google Scholar 

  9. Hunt KJ, Resendez RG, Williams K, Haffner SM, Stern MP. National cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation. 2004;110(10):1251–7.

    Article  PubMed  Google Scholar 

  10. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241(19):2035–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fagard RH. Smoking amplifies cardiovascular risk in patients with hypertension and diabetes. Diabetes Care. 2009;32(Suppl 2):S429–31.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens. 2001;14(5 Pt 1):475–86.

    Article  CAS  PubMed  Google Scholar 

  13. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  CAS  PubMed  Google Scholar 

  14. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  CAS  PubMed  Google Scholar 

  15. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  16. Little PJ, Chait A, Bobik A. Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis. Pharmacol Ther. 2011;131(3):255–68.

    Article  CAS  PubMed  Google Scholar 

  17. Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocr Rev. 2006;27(3):242–59.

    Article  CAS  PubMed  Google Scholar 

  18. Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol. 2003;91(3A):3A–6A.

    Article  CAS  PubMed  Google Scholar 

  19. Libby P. The biology of atherosclerosis comes full circle: lessons for conquering cardiovascular disease. Nat Rev Cardiol. 2021;18(10):683–4.

    Article  PubMed  Google Scholar 

  20. Falk E. Morphologic features of unstable atherothrombotic plaques underlying acute coronary syndromes. Am J Cardiol. 1989;63(10):114E–20E.

    Article  CAS  PubMed  Google Scholar 

  21. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.

    Article  CAS  PubMed  Google Scholar 

  22. Libby P, Pasterkamp G. Requiem for the 'vulnerable plaque'. Eur Heart J. 2015;36(43):2984–7.

    PubMed  Google Scholar 

  23. Arbab-Zadeh A, Fuster V. The myth of the "vulnerable plaque": transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65(8):846–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Boren J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2020;41(24):2313–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ballinger ML, Nigro J, Frontanilla KV, Dart AM, Little PJ. Regulation of glycosaminoglycan structure and atherogenesis. Cell Mol Life Sci. 2004;61(11):1296–306.

    Article  CAS  PubMed  Google Scholar 

  26. Little PJ, Osman N, O'Brien D, K. Hyperelongated biglycan: the surreptitious initiator of atherosclerosis. Curr Opin Lipidol. 2008;19(5):448–54.

    Article  CAS  PubMed  Google Scholar 

  27. Ballinger ML, Osman N, Hashimura K, de Hann J, Jandeleit-Dahm K, Allen TJ, et al. Imatinib inhibits vascular smooth muscle proteoglycan synthesis and reduces LDL binding in vitro and aortic lipid deposition in vivo. J Cell Mol Med. 2010;14:1408–18.

    Article  CAS  PubMed  Google Scholar 

  28. Ehrenstein MR, Jury EC, Mauri C. Statins for atherosclerosis—as good as it gets? N Engl J Med. 2005;352(1):73–5.

    Article  CAS  PubMed  Google Scholar 

  29. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;1:CD004816.

    Google Scholar 

  30. Melendez QM, Krishnaji ST, Wooten CJ, Lopez D. Hypercholesterolemia: the role of PCSK9. Arch Biochem Biophys. 2017;625-626:39–53.

    Article  CAS  PubMed  Google Scholar 

  31. Yadav K, Sharma M, Ferdinand KC. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: present perspectives and future horizons. Nutr Metab Cardiovasc Dis. 2016;26(10):853–62.

    Article  CAS  PubMed  Google Scholar 

  32. The BIP Study Group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate infarction prevention (BIP) study. Circulation. 2000;102(1):21–7.

    Article  Google Scholar 

  33. Komiya I, Yamamoto A, Sunakawa S, Wakugami T. Pemafibrate decreases triglycerides and small, dense LDL, but increases LDL-C depending on baseline triglycerides and LDL-C in type 2 diabetes patients with hypertriglyceridemia: an observational study. Lipids Health Dis. 2021;20(1):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Auerbach BJ, Cain W, Ansong M, Newton RS, Saxena U, Bisgaier CL. Lipoprotein lipase greatly enhances the retention of lipoprotein(a) to endothelial cell-matrix. Atherosclerosis. 1999;142(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996;37(4):693–707.

    Article  CAS  PubMed  Google Scholar 

  36. Kapur NK, Musunuru K. Clinical efficacy and safety of statins in managing cardiovascular risk. Vasc Health Risk Manag. 2008;4(2):341–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87.

    Article  CAS  PubMed  Google Scholar 

  38. Cheung BM, Lauder IJ, Lau CP, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004;57(5):640–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anitschkow N, Chalatow S. Ueber experimentelle cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg Pathol Pathol Anat. 1913;24:1–9.

    Google Scholar 

  40. Ignatowski AI. Ueber die Wirkung der tierschen Einweisse auf der Aorta. Virchow’s Arch Pathol Anat. 1909;198:248.

    Article  Google Scholar 

  41. Windas A. Ueber die Wirkung der tierschen Einweisse auf der Aorta. Virchow’s Arch Pathol Anat. 1910;67:174.

    Google Scholar 

  42. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham study. Am J Public Health Nations Health. 1957;47:4–24. https://doi.org/10.2105/ajph.47.4_pt_2.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alberts AW, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980;77:3957–61. https://doi.org/10.1073/pnas.77.7.3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krukemyer JJ, Talbert RL. Lovastatin: a new cholesterol-lowering agent. Pharmacotherapy. 1987;7:198–210. https://doi.org/10.1002/j.1875-9114.1987.tb03524.x.

    Article  CAS  PubMed  Google Scholar 

  45. Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J Antibiot (Tokyo). 1976;29:1346–8. https://doi.org/10.7164/antibiotics.29.1346.

    Article  CAS  PubMed  Google Scholar 

  46. Furberg CD, et al. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic carotid artery progression study (ACAPS) research group. Circulation. 1994;90:1679–87. https://doi.org/10.1161/01.cir.90.4.1679.

    Article  CAS  PubMed  Google Scholar 

  47. Sacks FM, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events Trial investigators. N Engl J Med. 1996;335:1001–9. https://doi.org/10.1056/NEJM199610033351401.

    Article  CAS  PubMed  Google Scholar 

  48. Cannon CP, Steinberg BA, Murphy SA, Mega JL, Braunwald E. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am Coll Cardiol. 2006;48:438–45. https://doi.org/10.1016/j.jacc.2006.04.070.

    Article  CAS  PubMed  Google Scholar 

  49. Shepherd J, et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the treating to new targets (TNT) study. Diabetes Care. 2006;29:1220–6. https://doi.org/10.2337/dc05-2465.

    Article  CAS  PubMed  Google Scholar 

  50. Chhibber A, Hansen S, Biskupiak J. Statin use and mortality in rheumatoid arthritis: an incident user cohort study. J Manag Care Spec Pharm. 2021;27:296–305. https://doi.org/10.18553/jmcp.2021.27.3.296.

    Article  PubMed  Google Scholar 

  51. Soulaidopoulos S, Nikiphorou E, Dimitroulas T, Kitas GD. The role of statins in disease modification and cardiovascular risk in rheumatoid arthritis. Front Med (Lausanne). 2018;5:24. https://doi.org/10.3389/fmed.2018.00024.

    Article  PubMed  Google Scholar 

  52. Fleg JL, et al. Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (stop atherosclerosis in native diabetics study) trial. J Am Coll Cardiol. 2008;52:2198–205. https://doi.org/10.1016/j.jacc.2008.10.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cannon CP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97. https://doi.org/10.1056/NEJMoa1410489.

    Article  CAS  PubMed  Google Scholar 

  54. Group, A. S, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74. https://doi.org/10.1056/NEJMoa1001282.

    Article  Google Scholar 

  55. Grundy SM, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation. 2004;110:227–39. https://doi.org/10.1161/01.CIR.0000133317.49796.0E.

    Article  PubMed  Google Scholar 

  56. Lansberg P, Lee A, Lee ZV, Subramaniam K, Setia S. Nonadherence to statins: individualized intervention strategies outside the pill box. Vasc Health Risk Manag. 2018;14:91–102. https://doi.org/10.2147/VHRM.S158641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Colantonio LD, et al. Adherence to statin therapy among US adults between 2007 and 2014. J Am Heart Assoc. 2019;8:e010376. https://doi.org/10.1161/JAHA.118.010376.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fitchett DH, Hegele RA, Verma S. Cardiology patient page. Statin intolerance. Circulation. 2015;131:e389–91. https://doi.org/10.1161/CIRCULATIONAHA.114.013189.

    Article  PubMed  Google Scholar 

  59. Bu DX, Griffin G, Lichtman AH. Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol. 2011;22:165–70. https://doi.org/10.1097/MOL.0b013e3283453e41.

    Article  CAS  PubMed  Google Scholar 

  60. Abifadel M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6. https://doi.org/10.1038/ng1161.

    Article  CAS  PubMed  Google Scholar 

  61. Cohen J, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5. https://doi.org/10.1038/ng1509.

    Article  CAS  PubMed  Google Scholar 

  62. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72. https://doi.org/10.1056/NEJMoa054013.

    Article  CAS  PubMed  Google Scholar 

  63. McNutt MC, Lagace TA, Horton JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem. 2007;282:20799–803. https://doi.org/10.1074/jbc.C700095200.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang DW, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282:18602–12. https://doi.org/10.1074/jbc.M702027200.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang DW, Garuti R, Tang WJ, Cohen JC, Hobbs HH. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci U S A. 2008;105:13045–50. https://doi.org/10.1073/pnas.0806312105.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gustafsen C, et al. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat Commun. 2017;8:503. https://doi.org/10.1038/s41467-017-00568-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jang HD, et al. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9. Eur Heart J. 2020;41:239–52. https://doi.org/10.1093/eurheartj/ehz566.

    Article  CAS  PubMed  Google Scholar 

  68. Poirier S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283:2363–72. https://doi.org/10.1074/jbc.M708098200.

    Article  CAS  PubMed  Google Scholar 

  69. Canuel M, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One. 2013;8:e64145. https://doi.org/10.1371/journal.pone.0064145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Demers A, et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 2015;35:2517–25. https://doi.org/10.1161/ATVBAHA.115.306032.

    Article  CAS  PubMed  Google Scholar 

  71. Jonas MC, Costantini C, Puglielli L. PCSK9 is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1. EMBO Rep. 2008;9:916–22. https://doi.org/10.1038/embor.2008.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Emmer BT, et al. The cargo receptor SURF4 promotes the efficient cellular secretion of PCSK9. Elife. 2018;7:e38839. https://doi.org/10.7554/eLife.38839.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem. 2006;281:30561–72. https://doi.org/10.1074/jbc.M606495200.

    Article  CAS  PubMed  Google Scholar 

  74. Lipari MT, et al. Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem. 2012;287:43482–91. https://doi.org/10.1074/jbc.M112.380618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Benjannet S, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279:48865–75. https://doi.org/10.1074/jbc.M409699200.

    Article  CAS  PubMed  Google Scholar 

  76. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol. 2014;25:387–93. https://doi.org/10.1097/MOL.0000000000000114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36. https://doi.org/10.1161/CIRCRESAHA.114.301621.

    Article  CAS  PubMed  Google Scholar 

  78. Dong B, et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res. 2010;51:1486–95. https://doi.org/10.1194/jlr.M003566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li H, Liu J. The novel function of HINFP as a co-activator in sterol-regulated transcription of PCSK9 in HepG2 cells. Biochem J. 2012;443:757–68. https://doi.org/10.1042/BJ20111645.

    Article  CAS  PubMed  Google Scholar 

  80. Ai D, et al. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest. 2012;122:1262–70. https://doi.org/10.1172/JCI61919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res. 2013;54:2745–53. https://doi.org/10.1194/jlr.M039339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu X, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature. 2020;588:693–8. https://doi.org/10.1038/s41586-020-2911-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waheed N, et al. Newly diagnosed cardiovascular disease in patients treated with immune checkpoint inhibitors: a retrospective analysis of patients at an academic tertiary care center. Cardiooncology. 2021;7:10. https://doi.org/10.1186/s40959-021-00097-9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Drobni ZD, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation. 2020;142:2299–311. https://doi.org/10.1161/CIRCULATIONAHA.120.049981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tavori H, et al. Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc Res. 2016;110:268–78. https://doi.org/10.1093/cvr/cvw053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bai XQ, et al. PCSK9: a potential regulator of apoE/apoER2 against inflammation in atherosclerosis? Clin Chim Acta. 2018;483:192–6. https://doi.org/10.1016/j.cca.2018.04.040.

    Article  CAS  PubMed  Google Scholar 

  87. Perisic L, et al. Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. Arterioscler Thromb Vasc Biol. 2013;33:2432–43. https://doi.org/10.1161/ATVBAHA.113.301743.

    Article  CAS  PubMed  Google Scholar 

  88. Ferri N, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220:381–6. https://doi.org/10.1016/j.atherosclerosis.2011.11.026.

    Article  CAS  PubMed  Google Scholar 

  89. Adorni MP, et al. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017;256:1–6. https://doi.org/10.1016/j.atherosclerosis.2016.11.019.

    Article  CAS  PubMed  Google Scholar 

  90. Ricci C, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018;8:2267. https://doi.org/10.1038/s41598-018-20425-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu A, Frostegard J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Intern Med. 2018;284:193. https://doi.org/10.1111/joim.12758.

    Article  CAS  Google Scholar 

  92. Wu CY, et al. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012;359:347–58. https://doi.org/10.1007/s11010-011-1028-6.

    Article  CAS  PubMed  Google Scholar 

  93. Kim YU, Kee P, Danila D, Teng BB. A critical role of PCSK9 in mediating IL-17-producing T cell responses in hyperlipidemia. Immune Netw. 2019;19:e41. https://doi.org/10.4110/in.2019.19.e41.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yuan J, et al. Potentiating CD8(+) T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell. 2021;12:240–60. https://doi.org/10.1007/s13238-021-00821-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kyaw T, et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation. 2013;127:1028–39. https://doi.org/10.1161/CIRCULATIONAHA.112.001347.

    Article  CAS  PubMed  Google Scholar 

  96. Frostegard J, Ahmed S, Hafstrom I, Ajeganova S, Rahman M. Low levels of PCSK9 are associated with remission in patients with rheumatoid arthritis treated with anti-TNF-alpha: potential underlying mechanisms. Arthritis Res Ther. 2021;23:32. https://doi.org/10.1186/s13075-020-02386-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Krahel JA, Baran A, Kaminski TW, Maciaszek M, Flisiak I. Methotrexate decreases the level of PCSK9-A novel indicator of the risk of proatherogenic lipid profile in psoriasis. The preliminary data. J Clin Med. 2020;9:910. https://doi.org/10.3390/jcm9040910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ridker PM, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380:752–62. https://doi.org/10.1056/NEJMoa1809798.

    Article  CAS  PubMed  Google Scholar 

  99. Vohnout B, Lisicanova J, Havranova A. PCSK9 inhibitors and diabetes mellitus. Vnitr Lek. 2019;64:1186–9.

    Article  PubMed  Google Scholar 

  100. Chan JC, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009;106:9820–5. https://doi.org/10.1073/pnas.0903849106.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Robinson JG, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99. https://doi.org/10.1056/NEJMoa1501031.

    Article  CAS  PubMed  Google Scholar 

  102. Schwartz GG, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107. https://doi.org/10.1056/NEJMoa1801174.

    Article  CAS  PubMed  Google Scholar 

  103. Sabatine MS, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  PubMed  Google Scholar 

  104. Schmidt AF, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5:97–105. https://doi.org/10.1016/S2213-8587(16)30396-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Da Dalt L, et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J. 2019;40:357–68. https://doi.org/10.1093/eurheartj/ehy357.

    Article  CAS  PubMed  Google Scholar 

  106. Paneni F, Costantino S. PCSK9 in diabetes: sweet, bitter or sour? Eur Heart J. 2019;40:369–71. https://doi.org/10.1093/eurheartj/ehy432.

    Article  PubMed  Google Scholar 

  107. Sabatine MS, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50. https://doi.org/10.1016/S2213-8587(17)30313-3.

    Article  CAS  PubMed  Google Scholar 

  108. Deedwania P, et al. Efficacy and safety of PCSK9 inhibition with Evolocumab in reducing cardiovascular events in patients with metabolic syndrome receiving statin therapy: secondary analysis from the FOURIER randomized clinical trial. JAMA Cardiol. 2021;6:139–47. https://doi.org/10.1001/jamacardio.2020.3151.

    Article  PubMed  Google Scholar 

  109. Chaparro-Riggers J, et al. Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem. 2012;287:11090–7. https://doi.org/10.1074/jbc.M111.319764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pyzik M, et al. The neonatal fc receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540. https://doi.org/10.3389/fimmu.2019.01540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ridker PM, et al. Cardiovascular efficacy and safety of Bococizumab in high-risk patients. N Engl J Med. 2017;376:1527–39. https://doi.org/10.1056/NEJMoa1701488.

    Article  CAS  PubMed  Google Scholar 

  112. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Sahebkar A. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis. 2019;283:69–78. https://doi.org/10.1016/j.atherosclerosis.2019.02.001.

    Article  CAS  PubMed  Google Scholar 

  113. Schneeberger A, et al. Development of AFFITOPE vaccines for Alzheimer's disease (AD)—from concept to clinical testing. J Nutr Health Aging. 2009;13:264–7. https://doi.org/10.1007/s12603-009-0070-5.

    Article  CAS  PubMed  Google Scholar 

  114. Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res. 2017;2017:2680160. https://doi.org/10.1155/2017/2680160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223. https://doi.org/10.1186/s12916-019-1457-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Momtazi-Borojeni AA, et al. Pre-clinical evaluation of the nanoliposomal antiPCSK9 vaccine in healthy non-human primates. Vaccines (Basel). 2021;9:749. https://doi.org/10.3390/vaccines9070749.

    Article  CAS  PubMed  Google Scholar 

  117. Galabova G, et al. Peptide-based anti-PCSK9 vaccines—an approach for long-term LDLc management. PLoS One. 2014;9:e114469. https://doi.org/10.1371/journal.pone.0114469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Landlinger C, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017;38:2499–507. https://doi.org/10.1093/eurheartj/ehx260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pan Y, et al. A therapeutic peptide vaccine against PCSK9. Sci Rep. 2017;7:12534. https://doi.org/10.1038/s41598-017-13069-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bernards R. Exploring the uses of RNAi—gene knockdown and the Nobel Prize. N Engl J Med. 2006;355:2391–3. https://doi.org/10.1056/NEJMp068242.

    Article  CAS  PubMed  Google Scholar 

  121. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55. https://doi.org/10.1016/j.cell.2009.01.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schlee M, Hornung V, Hartmann G. siRNA and isRNA: two edges of one sword. Mol Ther. 2006;14:463–70. https://doi.org/10.1016/j.ymthe.2006.06.001.

    Article  CAS  PubMed  Google Scholar 

  123. Hornung V, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11:263–70. https://doi.org/10.1038/nm1191.

    Article  CAS  PubMed  Google Scholar 

  124. Akinc A, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26:561–9. https://doi.org/10.1038/nbt1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Frank-Kamenetsky M, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915–20. https://doi.org/10.1073/pnas.0805434105.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mishra N, et al. Efficient hepatic delivery of drugs: novel strategies and their significance. Biomed Res Int. 2013;2013:382184. https://doi.org/10.1155/2013/382184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. D'Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. J Control Release. 2015;203:126–39. https://doi.org/10.1016/j.jconrel.2015.02.022.

    Article  CAS  PubMed  Google Scholar 

  128. Nair JK, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61. https://doi.org/10.1021/ja505986a.

    Article  CAS  PubMed  Google Scholar 

  129. Harris RL, van den Berg CW, Bowen DJ. ASGR1 and ASGR2, the genes that encode the Asialoglycoprotein receptor (Ashwell receptor), are expressed in peripheral blood monocytes and show interindividual differences in transcript profile. Mol Biol Int. 2012;2012:283974. https://doi.org/10.1155/2012/283974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fitzgerald K, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51. https://doi.org/10.1056/NEJMoa1609243.

    Article  CAS  PubMed  Google Scholar 

  131. Ray KK, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40. https://doi.org/10.1056/NEJMoa1615758.

    Article  CAS  PubMed  Google Scholar 

  132. Cupido AJ, Kastelein JJP. Inclisiran for the treatment of hypercholesterolaemia: implications and unanswered questions from the ORION trials. Cardiovasc Res. 2020;116:e136–9. https://doi.org/10.1093/cvr/cvaa212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Warden BA, Duell PB. Inclisiran: a novel agent for lowering apolipoprotein B-containing lipoproteins. J Cardiovasc Pharmacol. 2021;78:e157–74. https://doi.org/10.1097/FJC.0000000000001053.

    Article  CAS  PubMed  Google Scholar 

  134. Kosmas CE, et al. Inclisiran for the treatment of cardiovascular disease: a short review on the emerging data and therapeutic potential. Ther Clin Risk Manag. 2020;16:1031–7. https://doi.org/10.2147/TCRM.S230592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li Q, et al. In vivo PCSK9 gene editing using an all-in-one self-cleavage AAV-CRISPR system. Mol Ther Methods Clin Dev. 2021;20:652–9. https://doi.org/10.1016/j.omtm.2021.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Musunuru K, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593:429–34. https://doi.org/10.1038/s41586-021-03534-y.

    Article  CAS  PubMed  Google Scholar 

  137. Zetsche B, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–71. https://doi.org/10.1016/j.cell.2015.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Strecker J, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun. 2019;10:212. https://doi.org/10.1038/s41467-018-08224-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gaudelli NM, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71. https://doi.org/10.1038/nature24644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387. https://doi.org/10.3389/fonc.2020.01387.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Charlesworth CT, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25:249–54. https://doi.org/10.1038/s41591-018-0326-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang Y, et al. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem. 2014;289:942–55. https://doi.org/10.1074/jbc.M113.514067.

    Article  CAS  PubMed  Google Scholar 

  144. Schroeder CI, et al. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem Biol. 2014;21:284–94. https://doi.org/10.1016/j.chembiol.2013.11.014.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang Y, et al. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat Struct Mol Biol. 2017;24:848–56. https://doi.org/10.1038/nsmb.3453.

    Article  CAS  PubMed  Google Scholar 

  146. Evison BJ, et al. A small molecule inhibitor of PCSK9 that antagonizes LDL receptor binding via interaction with a cryptic PCSK9 binding groove. Bioorg Med Chem. 2020;28:115344. https://doi.org/10.1016/j.bmc.2020.115344.

    Article  CAS  PubMed  Google Scholar 

  147. Walker RG, Thompson TB. Fibronectin-based scaffold domain proteins that bind myostatin: a patent evaluation of WO2014043344. Expert Opin Ther Pat. 2015;25:619–24. https://doi.org/10.1517/13543776.2015.1007954.

    Article  CAS  PubMed  Google Scholar 

  148. Mitchell T, et al. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther. 2014;350:412–24. https://doi.org/10.1124/jpet.114.214221.

    Article  CAS  PubMed  Google Scholar 

  149. Stein EA, et al. LDL cholesterol reduction with BMS-962476, an adnectin inhibitor of PCSK9: results of a single ascending dose study. J Am Coll Cardiol. 2014;63:A1372. https://doi.org/10.1016/S0735-1097(14)61372-3.

    Article  Google Scholar 

  150. Guarnieri F, Kulp JL Jr, Kulp JL 3rd, Cloudsdale IS. Fragment-based design of small molecule PCSK9 inhibitors using simulated annealing of chemical potential simulations. PLoS One. 2019;14:e0225780. https://doi.org/10.1371/journal.pone.0225780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang X, et al. A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation of FoxO1/3 and HNF1alpha. EBioMedicine. 2020;52:102650. https://doi.org/10.1016/j.ebiom.2020.102650.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ference BA, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–53. https://doi.org/10.1056/NEJMoa1604304.

    Article  CAS  PubMed  Google Scholar 

  153. Lotta LA, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316:1383–91. https://doi.org/10.1001/jama.2016.14568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Blom DJ, et al. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome. Diabetes Obes Metab. 2017;19:98–107. https://doi.org/10.1111/dom.12788.

    Article  CAS  PubMed  Google Scholar 

  155. Colhoun HM, et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY phase 3 studies. Eur Heart J. 2016;37:2981–9. https://doi.org/10.1093/eurheartj/ehw292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis—from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20:589–610. https://doi.org/10.1038/s41573-021-00198-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ridker PM, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  158. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39:12. https://doi.org/10.1186/s41232-019-0101-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nidorf SM, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47. https://doi.org/10.1056/NEJMoa2021372.

    Article  CAS  PubMed  Google Scholar 

  160. Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. Clin Ther. 2014;36:1465–79. https://doi.org/10.1016/j.clinthera.2014.07.017.

    Article  CAS  PubMed  Google Scholar 

  161. Weng JH, et al. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat Metab. 2021;3:513–22. https://doi.org/10.1038/s42255-021-00366-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rohm I, et al. Decreased regulatory T cells in vulnerable atherosclerotic lesions: imbalance between pro- and anti-inflammatory cells in atherosclerosis. Mediators Inflamm. 2015;2015:364710. https://doi.org/10.1155/2015/364710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87. https://doi.org/10.1016/j.cell.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  164. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32. https://doi.org/10.1038/nri2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Spangler JB, et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity. 2015;42:815–25. https://doi.org/10.1016/j.immuni.2015.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dinh TN, et al. Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation. 2012;126:1256–66. https://doi.org/10.1161/CIRCULATIONAHA.112.099044.

    Article  CAS  PubMed  Google Scholar 

  167. Ou HX, et al. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin. 2018;39:1249–58. https://doi.org/10.1038/aps.2017.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang X, Rickert M, Garcia KC. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science. 2005;310:1159–63. https://doi.org/10.1126/science.1117893.

    Article  CAS  PubMed  Google Scholar 

  169. Schlothauer T, et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29:457–66. https://doi.org/10.1093/protein/gzw040.

    Article  CAS  PubMed  Google Scholar 

  170. Peterson LB, et al. A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J Autoimmun. 2018;95:1–14. https://doi.org/10.1016/j.jaut.2018.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ward NC, et al. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J Immunol. 2018;201:2579–92. https://doi.org/10.4049/jimmunol.1800907.

    Article  CAS  PubMed  Google Scholar 

  172. Cully M. T cell-regulating therapies for autoimmune diseases take FDA rejection in stride. Nat Rev Drug Discov. 2021;20:655–7. https://doi.org/10.1038/d41573-021-00137-0.

    Article  CAS  PubMed  Google Scholar 

  173. Tchao N, et al. Efavaleukin alfa, a novel IL-2 Mutein, selectively expands regulatory T cells in patients with SLE: interim results of a phase 1b multiple ascending dose study [abstract]. Arthritis Rheumatol. 2021;73:1343.3.

    Google Scholar 

  174. Khoryati L, et al. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci Immunol. 2020;5:eaba5264. https://doi.org/10.1126/sciimmunol.aba5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Glassman CR, et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. Elife. 2021;10:e65777. https://doi.org/10.7554/eLife.65777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Visweswaraiah J, et al. OP0023 generation of PT101, A highly selective IL-2 MUTEIN for treatment of autoimmune diseases. Ann Rheum Dis. 2021;80:13. https://doi.org/10.1136/annrheumdis-2021-eular.2097.

    Article  Google Scholar 

  177. Zhao TX, et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open. 2018;8:e022452. https://doi.org/10.1136/bmjopen-2018-022452.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Qiao YC, et al. Changes of regulatory T cells and of proinflammatory and immunosuppressive cytokines in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Diabetes Res. 2016;2016:3694957. https://doi.org/10.1155/2016/3694957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Eller K, et al. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes. 2011;60:2954–62. https://doi.org/10.2337/db11-0358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Porter DL, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139. https://doi.org/10.1126/scitranslmed.aac5415.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Liu J, Zhou G, Zhang L, Zhao Q. Building potent chimeric antigen receptor T cells with CRISPR genome editing. Front Immunol. 2019;10:456. https://doi.org/10.3389/fimmu.2019.00456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Imura Y, Ando M, Kondo T, Ito M, Yoshimura A. CD19-targeted CAR regulatory T cells suppress B cell pathology without GvHD. JCI Insight. 2020;5:e136185. https://doi.org/10.1172/jci.insight.136185.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tay C, et al. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc Res. 2016;111:385–97. https://doi.org/10.1093/cvr/cvw186.

    Article  CAS  PubMed  Google Scholar 

  184. Tay C, et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler Thromb Vasc Biol. 2018;38:e71–84. https://doi.org/10.1161/ATVBAHA.117.310678.

    Article  CAS  PubMed  Google Scholar 

  185. Lucas AD, et al. Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1). Circulation. 2003;108:2498–504. https://doi.org/10.1161/01.CIR.0000097119.57756.EF.

    Article  CAS  PubMed  Google Scholar 

  186. Fritsche E, Volk HD, Reinke P, Abou-El-Enein M. Toward an optimized process for clinical manufacturing of CAR-Treg cell therapy. Trends Biotechnol. 2020;38:1099–112. https://doi.org/10.1016/j.tibtech.2019.12.009.

    Article  CAS  PubMed  Google Scholar 

  187. MacDonald KG, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016;126:1413–24. https://doi.org/10.1172/JCI82771.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Dawson NAJ, et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci Transl Med. 2020;12:eaaz3866. https://doi.org/10.1126/scitranslmed.aaz3866.

    Article  CAS  PubMed  Google Scholar 

  189. Sangamo poised for CAR-Treg race. Nat Biotechnol. 2018;36:783. https://doi.org/10.1038/nbt0918-783b.

  190. Rosado-Sanchez I, Levings MK. Building a CAR-Treg: going from the basic to the luxury model. Cell Immunol. 2020;358:104220. https://doi.org/10.1016/j.cellimm.2020.104220.

    Article  CAS  PubMed  Google Scholar 

  191. Bonacina F, et al. Adoptive transfer of CX3CR1 transduced-T regulatory cells improves homing to the atherosclerotic plaques and dampens atherosclerosis progression. Cardiovasc Res. 2021;117:2069–82. https://doi.org/10.1093/cvr/cvaa264.

    Article  CAS  PubMed  Google Scholar 

  192. Rolfe BE, Muddiman JD, Smith NJ, Campbell GR, Campbell JH. ICAM-1 expression by vascular smooth muscle cells is phenotype-dependent. Atherosclerosis. 2000;149:99–110. https://doi.org/10.1016/s0021-9150(99)00322-6.

    Article  CAS  PubMed  Google Scholar 

  193. Paine R 3rd, Morris SB, Jin H, Baleeiro CE, Wilcoxen SE. ICAM-1 facilitates alveolar macrophage phagocytic activity through effects on migration over the AEC surface. Am J Physiol Lung Cell Mol Physiol. 2002;283:L180–94. https://doi.org/10.1152/ajplung.00430.2001.

    Article  CAS  PubMed  Google Scholar 

  194. Dong G, et al. FOXO1 regulates dendritic cell activity through ICAM-1 and CCR7. J Immunol. 2015;194:3745–55. https://doi.org/10.4049/jimmunol.1401754.

    Article  CAS  PubMed  Google Scholar 

  195. Zumwalde NA, Domae E, Mescher MF, Shimizu Y. ICAM-1-dependent homotypic aggregates regulate CD8 T cell effector function and differentiation during T cell activation. J Immunol. 2013;191:3681–93. https://doi.org/10.4049/jimmunol.1201954.

    Article  CAS  PubMed  Google Scholar 

  196. Wang Y, et al. The role of OX40L and ICAM-1 in the stability of coronary atherosclerotic plaques and their relationship with sudden coronary death. BMC Cardiovasc Disord. 2019;19:272. https://doi.org/10.1186/s12872-019-1251-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chancey CJ, et al. Lactobacilli-expressed single-chain variable fragment (scFv) specific for intercellular adhesion molecule 1 (ICAM-1) blocks cell-associated HIV-1 transmission across a cervical epithelial monolayer. J Immunol. 2006;176:5627–36. https://doi.org/10.4049/jimmunol.176.9.5627.

    Article  CAS  PubMed  Google Scholar 

  198. Ruscica M, Ferri N, Santos RD, Sirtori CR, Corsini A. Lipid lowering drugs: present status and future developments. Curr Atheroscler Rep. 2021;23(5):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pinkosky SL, Newton RS, Day EA, Ford RJ, Lhotak S, Austin RC, et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun. 2016;7:13457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nguyen D, Du N, Sulaica EM, Wanat MA. Bempedoic acid: a new drug for an old problem. Ann Pharmacother. 2021;55(2):246–51.

    Article  CAS  PubMed  Google Scholar 

  201. Delevry D, Gupta EK. Bempedoic acid: review of a novel therapy in lipid management. Am J Health Syst Pharm. 2021;78(2):95–104.

    Article  PubMed  Google Scholar 

  202. Bilen O, Ballantyne CM. Bempedoic acid (ETC-1002): an investigational inhibitor of ATP citrate lyase. Curr Atheroscler Rep. 2016;18(10):61.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Banach M, Duell PB, Gotto AM Jr, Laufs U, Leiter LA, Mancini GBJ, et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol. 2020;5:1124.

    Article  PubMed  Google Scholar 

  204. Ballantyne CM, Laufs U, Ray KK, Leiter LA, Bays HE, Goldberg AC, et al. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol. 2020;27(6):593–603.

    Article  PubMed  Google Scholar 

  205. Laufs U, Banach M, Mancini GBJ, Gaudet D, Bloedon LT, Sterling LR, Kelly S, Stroes ESG. Efficacy and safety of Bempedoic acid in patients with hypercholesterolemia and statin intolerance. J Am Heart Assoc. 2019;8(7):e011662.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Ray KK, Bays HE, Catapano AL, Lalwani ND, Bloedon LT, Sterling LR, Robinson PL, Ballantyne CM, CLEAR Harmony Trial. Safety and efficacy of Bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380(11):1022–32.

    Article  CAS  PubMed  Google Scholar 

  207. Goldberg AC, Leiter LA, Stroes ESG, Baum SJ, Hanselman JC, Bloedon LAT, et al. Effect of bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease: the CLEAR Wisdom randomized clinical trial. JAMA. 2019;322(18):1780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Nicholls S, Lincoff AM, Bays HE, Cho L, Grobbee DE, Kastelein JJ, Libby P, Moriarty PM, Plutzky J, Ray KK, Thompson PD, Sasiela W, Mason D, McCluskey J, Davey D, Wolski K, Nissen SE. Rationale and design of the CLEAR-outcomes trial: evaluating the effect of bempedoic acid on cardiovascular events in patients with statin intolerance. Am Heart J. 2021 May;235:104–12.

    Article  CAS  PubMed  Google Scholar 

  209. Goldberg AC, Leiter LA, Stroes ESG, Baum SJ, Hanselman JC, Bloedon LT, Lalwani ND, Patel PM, Zhao X, Duell PB. Effect of Bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease: the CLEAR Wisdom randomized clinical trial. JAMA. 2019;322(18):1780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ference BA, Ray KK, Catapano AL, Ference TB, Burgess S, Neff DR, et al. Mendelian randomization study of ACLY and cardiovascular disease. N Engl J Med. 2019;380(11):1033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Khan MU, Khan MZ, Munir MB, Balla S, Khan SU. Meta-analysis of the safety and efficacy of bempedoic acid. Am J Cardiol. 2020;131:130–2.

    Article  CAS  PubMed  Google Scholar 

  212. Gutierrez MJ, Rosenberg NL, Macdougall DE, Hanselman JC, Margulies JR, Strange P, Milad MA, McBride SJ, Newton RS. Efficacy and safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34(3):676–83.

    Article  CAS  PubMed  Google Scholar 

  213. Bays HE, Baum SJ, Brinton EA, Plutzky J, Hanselman JC, Teng R, Ballantyne CM. Effect of bempedoic acid plus ezetimibe fixed-dose combination vs ezetimibe or placebo on low-density lipoprotein cholesterol in patients with type 2 diabetes and hypercholesterolemia not treated with statins. Am J Prev Cardiol. 2021;8:100278.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Tummala R, Gupta M, Devanabanda AR, Bandyopadhyay D, Aronow WS, Ray KK, Mamas M, Ghosh RK. Bempedoic acid and its role in contemporary management of hyperlipidemia in atherosclerosis. Ann Med. 2022;54(1):1287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bays HE, Banach M, Catapano AL, Duell PB, Gotto AM Jr, Laufs U, et al. Bempedoic acid safety analysis: pooled data from four phase 3 clinical trials. J Clin Lipidol. 2020;14:649–659.e6.

    Article  PubMed  Google Scholar 

  216. Ballantyne CM, Banach M, Bays HE, Catapano AL, Laufs U, Stroes ESG, Robinson P, Lei L, Ray KK. Long-term safety and efficacy of Bempedoic acid in patients with atherosclerotic cardiovascular disease and/or heterozygous familial hypercholesterolemia (from the CLEAR Harmony open-label extension study). Am J Cardiol. 2022;174:1–11.

    Article  CAS  PubMed  Google Scholar 

  217. Zhao X, Ma X, Luo X, Shi Z, Deng Z, Jin Y, Xiao Z, Tan L, Liu P, Jiang S, Shu Y, Tang B, Qiu C. Efficacy and safety of bempedoic acid alone or combining with other lipid-lowering therapies in hypercholesterolemic patients: a meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol. 2020;21(1):86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fodor JG, Helis E, Yazdekhasti N, Vohnout B. "Fishing" for the origins of the "Eskimos and heart disease" story: facts or wishful thinking? Can J Cardiol. 2014;30(8):864–8.

    Article  PubMed  Google Scholar 

  219. Tummala R, Ghosh RK, Jain V, Devanabanda AR, Bandyopadhyay D, Deedwania P, et al. Fish oil and cardiometabolic diseases: recent updates and controversies. Am J Med. 2019;132(10):1153–9.

    Article  CAS  PubMed  Google Scholar 

  220. Liao J, Xiong Q, Yin Y, Ling Z, Chen S. The effects of fish oil on cardiovascular diseases: systematical evaluation and recent advance. Front Cardiovasc Med. 2021;8:802306.

    Article  CAS  PubMed  Google Scholar 

  221. Mason RP, Eckel RH. Mechanistic insights from REDUCE-IT STRENGTHen the case against triglyceride lowering as a strategy for cardiovascular disease risk reduction. Am J Med. 2021;134(9):1085–90.

    Article  CAS  PubMed  Google Scholar 

  222. Koo BK, Park S, Han KD, Moon MK. Hypertriglyceridemia is an independent risk factor for cardiovascular diseases in Korean adults aged 30-49 years: a Nationwide population-based study. J Lipid Atheroscler. 2021;10(1):88–98.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Bang HO, Dyerberg J, Hjoorne N. The composition of food consumed by Greenland Eskimos. Acta Med Scand. 1976;200(1–2):69–73.

    CAS  PubMed  Google Scholar 

  224. Cholewski M, Tomczykowa M, Tomczyk M. A comprehensive review of chemistry, sources and bioavailability of Omega-3 fatty acids. Nutrients. 2018;10(11):1662.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Watanabe Y, Tatsuno I. Prevention of cardiovascular events with Omega-3 polyunsaturated fatty acids and the mechanism involved. J Atheroscler Thromb. 2020;27(3):183–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: a review of the state-of-the-art. Expert Rev Clin Pharmacol. 2021;14(1):79–93.

    Article  CAS  PubMed  Google Scholar 

  227. Schulze MB, Minihane AM, Saleh RNM, Riserus U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol. 2020;8(11):915–30.

    Article  CAS  PubMed  Google Scholar 

  228. Borges MC, Schmidt AF, Jefferis B, Wannamethee SG, Lawlor DA, Kivimaki M, et al. Circulating fatty acids and risk of coronary heart disease and stroke: individual participant data meta-analysis in up to 16 126 participants. J Am Heart Assoc. 2020;9(5):e013131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sun CJ, Brisson D, Gaudet D, Ooi TC. Relative effect of hypertriglyceridemia on non-HDLC and apolipoprotein B as cardiovascular disease risk markers. J Clin Lipidol. 2020;14(6):825–36.

    Article  PubMed  Google Scholar 

  230. Toth PP, Shah PK, Lepor NE. Targeting hypertriglyceridemia to mitigate cardiovascular risk: a review. Am J Prev Cardiol. 2020;3:100086.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Arca M, Veronesi C, D'Erasmo L, Borghi C, Colivicchi F, De Ferrari GM, et al. Association of hypertriglyceridemia with all-cause mortality and atherosclerotic cardiovascular events in a low-risk Italian population: the TG-REAL retrospective cohort analysis. J Am Heart Assoc. 2020;9(19):e015801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Trivedi K, Le V, Nelson JR. The case for adding eicosapentaenoic acid (icosapent ethyl) to the ABCs of cardiovascular disease prevention. Postgrad Med. 2021;133(1):28–41.

    Article  CAS  PubMed  Google Scholar 

  233. Bhatt DL, Miller M, Brinton EA, Jacobson TA, Steg PG, Ketchum SB, et al. REDUCE-IT USA: results from the 3146 patients randomized in the United States. Circulation. 2020;141(5):367–75.

    Article  PubMed  Google Scholar 

  234. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with Icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  235. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Effects of Icosapent ethyl on Total ischemic events: from REDUCE-IT. J Am Coll Cardiol. 2019;73(22):2791–802.

    Article  CAS  PubMed  Google Scholar 

  236. Curfman G, Shehada E. Icosapent ethyl: scientific and legal controversies. Open Heart. 2021;8(1):e001616.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Strandberg TE, Libby P, Kovanen PT. A tale of two therapies lipid-lowering vs. anti-inflammatory therapy: a false dichotomy? Eur Heart J Cardiovasc Pharmacother. 2021;7(3):238–41.

    Article  PubMed  Google Scholar 

  238. Verma S, Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, et al. Icosapent ethyl reduces ischemic events in patients with a history of previous coronary artery bypass grafting: REDUCE-IT CABG. Circulation. 2021;144(23):1845–55.

    Article  CAS  PubMed  Google Scholar 

  239. Boden WE, Bhatt DL, Toth PP, Ray KK, Chapman MJ, Luscher TF. Profound reductions in first and total cardiovascular events with icosapent ethyl in the REDUCE-IT trial: why these results usher in a new era in dyslipidaemia therapeutics. Eur Heart J. 2020;41(24):2304–12.

    Article  CAS  PubMed  Google Scholar 

  240. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8.

    Article  CAS  PubMed  Google Scholar 

  241. Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, et al. Effect of high-dose Omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical Trial. JAMA. 2020;324(22):2268–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Investigators A-H, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.

    Article  Google Scholar 

  243. Elam M, Lovato LC, Ginsberg H. Role of fibrates in cardiovascular disease prevention, the ACCORD-lipid perspective. Curr Opin Lipidol. 2011;22(1):55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kastelein JJP, Stroes ESG. FISHing for the miracle of Eicosapentaenoic acid. N Engl J Med. 2019;380(1):89–90.

    Article  PubMed  Google Scholar 

  245. Flachs P, Rossmeisl M, Bryhn M, Kopecky J. Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin Sci (Lond). 2009;116(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  246. Surette ME. The science behind dietary omega-3 fatty acids. CMAJ. 2008;178(2):177–80.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Elinder F, Liin SI. Actions and mechanisms of polyunsaturated fatty acids on voltage-gated ion channels. Front Physiol. 2017;8:43.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Norata GD, Tsimikas S, Pirillo A, Catapano AL. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol Sci. 2015;36:675–87. https://doi.org/10.1016/j.tips.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  249. Ginsberg HN, et al. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest. 1986;78:1287–95. https://doi.org/10.1172/jci112713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sehayek E, Eisenberg S. Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem. 1991;266:18259–67.

    Article  CAS  PubMed  Google Scholar 

  251. Crosby J, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. https://doi.org/10.1056/NEJMoa1307095.

    Article  CAS  PubMed  Google Scholar 

  252. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41. https://doi.org/10.1056/NEJMoa1308027.

    Article  CAS  PubMed  Google Scholar 

  253. Reyes-Soffer G, et al. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2019;39:63–72. https://doi.org/10.1161/atvbaha.118.311476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Pullinger CR, et al. A novel apolipoprotein C-III variant, apoC-III(Gln38-->Lys), associated with moderate hypertriglyceridemia in a large kindred of Mexican origin. J Lipid Res. 1997;38:1833–40.

    Article  CAS  PubMed  Google Scholar 

  255. Sundaram M, et al. The apolipoprotein C-III (Gln38Lys) variant associated with human hypertriglyceridemia is a gain-of-function mutation. J Lipid Res. 2017;58:2188–96. https://doi.org/10.1194/jlr.M077313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Guo M, et al. Inactivation of ApoC3 by CRISPR/Cas9 protects against atherosclerosis in hamsters. Circ Res. 2020;127:1456–8. https://doi.org/10.1161/circresaha.120.317686.

    Article  CAS  PubMed  Google Scholar 

  257. Saleheen D, et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017;544:235–9. https://doi.org/10.1038/nature22034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zewinger S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30–41. https://doi.org/10.1038/s41590-019-0548-1.

    Article  CAS  PubMed  Google Scholar 

  259. Liu YZ, et al. Effect of hypertriglyceridemia on beta cell mass and function in ApoC3 transgenic mice. J Biol Chem. 2016;291:14695–705. https://doi.org/10.1074/jbc.M115.707885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Lee HY, et al. Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology. 2011;54:1650–60. https://doi.org/10.1002/hep.24571.

    Article  CAS  PubMed  Google Scholar 

  261. Masucci-Magoulas L, et al. A mouse model with features of familial combined hyperlipidemia. Science. 1997;275:391–4. https://doi.org/10.1126/science.275.5298.391.

    Article  CAS  PubMed  Google Scholar 

  262. Yao Z. Human apolipoprotein C-III—a new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins. Cardiovasc Hematol Disord Drug Targets. 2012;12:133–40. https://doi.org/10.2174/1871529x11202020133.

    Article  CAS  PubMed  Google Scholar 

  263. Gordts PL, et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest. 2016;126:2855–66. https://doi.org/10.1172/jci86610.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Luo M, Peng D. The emerging role of apolipoprotein C-III: beyond effects on triglyceride metabolism. Lipids Health Dis. 2016;15:184. https://doi.org/10.1186/s12944-016-0352-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kawakami A, et al. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation. Arterioscler Thromb Vasc Biol. 2007;27:219–25. https://doi.org/10.1161/01.ATV.0000249620.68705.0d.

    Article  CAS  PubMed  Google Scholar 

  266. Kawakami A, et al. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation. 2006;114:681–7. https://doi.org/10.1161/circulationaha.106.622514.

    Article  CAS  PubMed  Google Scholar 

  267. Pechlaner R, et al. Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-III. J Am Coll Cardiol. 2017;69:789–800. https://doi.org/10.1016/j.jacc.2016.11.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Graham MJ, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479–90. https://doi.org/10.1161/circresaha.111.300367.

    Article  CAS  PubMed  Google Scholar 

  269. Digenio A, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by Volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care. 2016;39:1408–15. https://doi.org/10.2337/dc16-0126.

    Article  CAS  PubMed  Google Scholar 

  270. Gaudet D, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373:438–47. https://doi.org/10.1056/NEJMoa1400283.

    Article  CAS  PubMed  Google Scholar 

  271. Yang X, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res. 2016;57:706–13. https://doi.org/10.1194/jlr.M066399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Witztum JL, et al. Volanesorsen and triglyceride levels in familial Chylomicronemia syndrome. N Engl J Med. 2019;381:531–42. https://doi.org/10.1056/NEJMoa1715944.

    Article  CAS  PubMed  Google Scholar 

  273. Gouni-Berthold I, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): a randomized, double-blind, placebo-controlled trial. Atheroscler Suppl. 2017;28:e1–2. https://doi.org/10.1016/j.atherosclerosissup.2017.08.003.

    Article  Google Scholar 

  274. Alexander VJ, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40:2785–96. https://doi.org/10.1093/eurheartj/ehz209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Akoumianakis I, Zvintzou E, Kypreos K, Filippatos TD. ANGPTL3 and apolipoprotein C-III as novel lipid-lowering targets. Curr Atheroscler Rep. 2021;23:20. https://doi.org/10.1007/s11883-021-00914-7.

    Article  CAS  PubMed  Google Scholar 

  276. Khetarpal SA, et al. A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nat Med. 2017;23:1086–94. https://doi.org/10.1038/nm.4390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Hegele RA, Tsimikas S. Lipid-lowering agents. Circ Res. 2019;124:386–404. https://doi.org/10.1161/circresaha.118.313171.

    Article  CAS  PubMed  Google Scholar 

  278. Haller JF, Mintah IJ, Shihanian LM, et al. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance [S]. J Lipid Res. 2017;58:1166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Kersten S. ANGPTL3 as therapeutic target. Curr Opin Lipidol. 2021;32:335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Chen YQ, Pottanat TG, Siegel RW, et al. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids [S]. J Lipid Res. 2020;61:1203–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Watts G, Gladding P, Schwabe C, et al. Reduced expression of angiopoietin-like protein 3 via RNA interference with ARO-ANG3 produces prolonged reductions in LDL-C and triglycerides in Dyslipidemic patients. J Clin Lipidol. 2020;14:599.

    Article  Google Scholar 

  282. Raal FJ, Rosenson RS, Reeskamp LF, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–20.

    Article  CAS  PubMed  Google Scholar 

  283. Shimamura M, Matsuda M, Yasumo H, et al. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler Thromb Vasc Biol. 2007;27:366–72.

    Article  CAS  PubMed  Google Scholar 

  284. Koishi R, Ando Y, Ono M, et al. Angptl3 regulates lipid metabolism in mice. Nat Genet. 2002;30:151–7.

    Article  CAS  PubMed  Google Scholar 

  285. Tarugi P, Bertolini S, Calandra S. Angiopoietin-like protein 3 (ANGPTL3) deficiency and familial combined hypolipidemia. J Biomed Res. 2019;33:73.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Dugi K, Amar M, Haudenschild C, et al. In vivo evidence for both lipolytic and nonlipolytic function of hepatic lipase in the metabolism of HDL. Arterioscler Thromb Vasc Biol. 2000;20:793–800.

    Article  CAS  PubMed  Google Scholar 

  287. Reeskamp LF, Millar JS, Wu L, et al. ANGPTL3 inhibition with evinacumab results in faster clearance of IDL and LDL apoB in patients with homozygous familial hypercholesterolemia—brief report. Arterioscler Thromb Vasc Biol. 2021;41:1753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Reeskamp LF, Nurmohamed NS, Bom MJ, et al. Marked plaque regression in homozygous familial hypercholesterolemia. Atherosclerosis. 2021;327:13–7.

    Article  CAS  PubMed  Google Scholar 

  289. Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Graham MJ, Lee RG, Brandt TA, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–32.

    Article  CAS  PubMed  Google Scholar 

  291. Garces MF, Franco-Vega R, Maldonado-Acosta LM, et al. ANGPTL3 levels in healthy and mild Preeclamptic pregnant women. J Endocrine Soc. 2021;5:A747-A.

    Article  Google Scholar 

  292. Gaudet D, Gipe DA, Pordy R, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017;377:296–7.

    Article  PubMed  Google Scholar 

  293. Keech AC, Mitchell P, Summanen PA, O'Day J, Davis TM, Moffitt MS, Taskinen MR, Simes RJ, Tse D, Williamson E, Merrifield A, Laatikainen LT, d'Emden MC, Crimet DC, O'Connell RL, Colman PG, FIELD study investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97.

    Article  CAS  PubMed  Google Scholar 

  294. ACCORD Study Group; ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, Hubbard L, Esser BA, Lovato JF, Perdue LH, Goff DC Jr, Cushman WC, Ginsberg HN, Elam MB, Genuth S, Gerstein HC, Schubart U, Fine LJ. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.

    Article  Google Scholar 

  295. Lin YC, Chen YC, Horng JT, Chen JM. Association of fenofibrate and diabetic retinopathy in type 2 diabetic patients: a population-based retrospective cohort study in Taiwan. Medicina (Kaunas). 2020;56(8):385.

    Article  PubMed  Google Scholar 

  296. Preiss D, Spata E, Holman RR, Coleman RL, Lovato L, Ginsberg HN, Armitage J. Effect of fenofibrate therapy on laser treatment for diabetic retinopathy: a meta-analysis of randomized controlled trials. Diabetes Care. 2022;45(1):e1–2.

    Article  PubMed  Google Scholar 

  297. Jenkins AJ, Grant MB, Busik JV. Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies. Diabetologia. 2022;65(4):587–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Cholesterol Treatment Trialists' (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J, Baigent C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Little .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bobik, A. et al. (2023). Emerging Lipoprotein-Related Therapeutics for Patients with Diabetes. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_30

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics