Skip to main content
Log in

Development of AFFITOPE vaccines for Alzheimer’s disease (AD) — From concept to clinical testing

  • Second Generation AD Vaccines
  • Published:
JNHA - The Journal of Nutrition, Health and Aging

Abstract

Based on the notion that cerebral accumulation of certain Aβ species is central to AD pathogenesis and endowed with the knowledge that emerged during clinical testing of the first human Alzheimer vaccine, AN1792, we designed a new generation of Alzheimer vaccines. Rather than relying on full-length Aβ itself or fragments thereof, AFFITOPE vaccines use short peptides, mimicking parts of the native Aβ sequence, as their antigenic component. The technology created to identify these peptides, termed AFFITOPE-technology, at the same time provides the basis for the multi-component safety concept realized in AFFITOPE vaccines. First, as they are non-self, AFFITOPES don’t need to break tolerance typically established against self proteins. This allows us to use aluminium hydroxide, the agent first approved as immunological adjuvant for human use and, thus, exhibiting an excellent safety profile. Second, AFFITOPES employed in Alzheimer vaccines are only 6 amino acids in length, which precludes the activation of Aβ-specific autoreactive T cells. Third, and above all, the AFFITOPE technology allows for controlling the specificity of the vaccine-induced antibody response focusing it exclusively on Aβ and preventing crossreactivity with APP. In a program based on two AFFITOPES allowing neoepitope targeting of Aβ (free N-terminus), this approach was taken all the way from concept to clinical application. Early clinical data support the safety concept inherent to AFFITOPE Alzheimer vaccines. Further clinical testing will focus on the identification of the optimal vaccine dose and immunization schedule. Together, result of these trials will provide a solid basis for clinical POC studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aa:

amino acid

Aβ:

amyloid β

Ab:

antibody

AD:

Alzheimer’s disease

AD:

adverse event

APP:

Amyloid Precursor Protein

BBB:

blood brain barrier

CMI:

cell mediated immunity

FDA:

Federal Drug Agency

IFN:

Interferon

ME:

meningoencephalitis

NINCDS/ADRDA:

National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association criteria

POC:

Proof of concept

SUSAR:

suspected unexpected serious adverse reaction

References

  1. Schenk, D., R. Barbour, W. Dunn, G. Gordon, H. Grajeda, T. Guido, K. Hu, J. Huang, K. Johnson-Wood, K. Khan, D. Kholodenko, M. Lee, Z. Liao, I. Lieberburg, R. Motter, L. Mutter, F. Soriano, G. Shopp, N. Vasquez, C. Vandevert, S. Walker, M. Wogulis, T. Yednock, D. Games, and P. Seubert. 1999. Immunization with amyloidbeta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177.

    Article  PubMed  CAS  Google Scholar 

  2. Janus, C., J. Pearson, J. McLaurin, P. M. Mathews, Y. Jiang, S. D. Schmidt, M. A. Chishti, P. Horne, D. Heslin, J. French, H. T. Mount, R. A. Nixon, M. Mercken, C. Bergeron, P. E. Fraser, P. St George-Hyslop, and D. Westaway. 2000. A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982.

    Article  PubMed  CAS  Google Scholar 

  3. Sigurdsson, E. M., H. Scholtzova, P. D. Mehta, B. Frangione, and T. Wisniewski. 2001. Immunization with a nontoxic/nonfibrillar amyloid-beta homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. Am J Pathol 159:439–447.

    PubMed  CAS  Google Scholar 

  4. Wilcock, D. M., G. DiCarlo, D. Henderson, J. Jackson, K. Clarke, K. E. Ugen, M. N. Gordon, and D. Morgan. 2003. Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci 23:3745–3751.

    PubMed  CAS  Google Scholar 

  5. Morgan, D., D. M. Diamond, P. E. Gottschall, K. E. Ugen, C. Dickey, J. Hardy, K. Duff, P. Jantzen, G. DiCarlo, D. Wilcock, K. Connor, J. Hatcher, C. Hope, M. Gordon, and G. W. Arendash. 2000. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985.

    Article  PubMed  CAS  Google Scholar 

  6. Orgogozo, J. M., S. Gilman, J. F. Dartigues, B. Laurent, M. Puel, L. C. Kirby, P. Jouanny, B. Dubois, L. Eisner, S. Flitman, B. F. Michel, M. Boada, A. Frank, and C. Hock. 2003. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54.

    PubMed  CAS  Google Scholar 

  7. Vitaliani, R., M. Zoccarato, M. Vianello, and B. Giometto. 2008. Clinical, immunological and therapeutic aspects of autoimmune encephalitis. Recent Patents CNS Drug Discov 3:16–22.

    Article  CAS  Google Scholar 

  8. Gilman, S., M. Koller, R. S. Black, L. Jenkins, S. G. Griffith, N. C. Fox, L. Eisner, L. Kirby, M. B. Rovira, F. Forette, and J. M. Orgogozo. 2005. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562.

    Article  PubMed  CAS  Google Scholar 

  9. Grundman, M. 2008. 10th International Springfield Symposium, Hong Kong.

  10. Nicoll, J. A., D. Wilkinson, C. Holmes, P. Steart, H. Markham, and R. O. Weller. 2003. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452.

    Article  PubMed  CAS  Google Scholar 

  11. Ferrer, I., M. Boada Rovira, M. L. Sanchez Guerra, M. J. Rey, and F. Costa-Jussa. 2004. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20.

    PubMed  CAS  Google Scholar 

  12. Masliah, E., L. Hansen, A. Adame, L. Crews, F. Bard, C. Lee, P. Seubert, D. Games, L. Kirby, and D. Schenk. 2005. Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131.

    PubMed  CAS  Google Scholar 

  13. Holmes, C., D. Boche, D. Wilkinson, G. Yadegarfar, V. Hopkins, A. Bayer, R. W. Jones, R. Bullock, S. Love, J. W. Neal, E. Zotova, and J. A. Nicoll. 2008. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223.

    Article  PubMed  CAS  Google Scholar 

  14. Le Poole, I. C., and R. M. Luiten. 2008. Autoimmune etiology of generalized vitiligo. Curr Dir Autoimmun 10:227–243.

    Article  PubMed  Google Scholar 

  15. Rudolph. 2006. How TCRs bind MHCs, peptides and coreceptors. Ann Review Immunol 24:419–466.

    Article  CAS  Google Scholar 

  16. Sakaguchi, S., T. Yamaguchi, T. Nomura, and M. Ono. 2008. Regulatory T cells and immune tolerance. Cell 133:775–787.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schneeberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneeberger, A., Mandler, M., Otava, O. et al. Development of AFFITOPE vaccines for Alzheimer’s disease (AD) — From concept to clinical testing. J Nutr Health Aging 13, 264–267 (2009). https://doi.org/10.1007/s12603-009-0070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-009-0070-5

Key words

Navigation