Skip to main content

Recent Trends in Biomining Microorganisms for Solid Waste Management

  • Chapter
  • First Online:
Microbial Technology for Sustainable E-waste Management

Abstract

Today, the world is severely afflicted by boundless waste generated by different categorical anthropogenic activities unlike mining, industrial waste, e-waste, etc. Its improper handling may cause deleterious effects on the environment. The constituents of the waste generated contain harmful toxic polycyclic aromatics which pose a direct threat to the environment as well as the human race. Heavy metal discharge from the solid waste accumulated in the dumping site gets cumulated in the soil and gets absorbed by the plants leading to biomagnifications in the food chain and substantially reaching the human body, leading to compromised health. An environmentally sound, economic and cost-effective approach ‘microbial biomining’ can be a powerful strategy for solid waste management. They transform toxic solid waste into nontoxic form and are sufficiently capable of catalyzing mineral dissolution. It can be an absolute solution for mineral beneficiation to overcome environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bir T, Banerjee S, Dutta A (2022). Legacy waste characterization: bio-mining solution for landfills and resource recovery towards circularity. In: International conference on chemical, bio and environmental engineering. Springer, Cham, pp 635–650

    Google Scholar 

  • Caicedo JC, Villamizar S, Orlandoni G (2022) The use of synthetic agonists of quorum sensing N-acyl homoserine lactone pathway improves the bioleaching ability in Acidithiobacillus and Pseudomonas bacteria. PeerJ 9(10):e13801

    Article  Google Scholar 

  • Carmona-Gutierrez D, Kainz K, Zimmermann A et al (2022) A hundred spotlights on microbiology: how microorganisms shape our lives. Microbial Cell 9(4):72

    Google Scholar 

  • Chakraborty SC, Zaman M, Uz W et al (2022) Metals extraction processes from electronic waste: constraints and opportunities. Environ Sci Pollut Res 27:1–9

    Google Scholar 

  • Chen J, Liu Y, Diep P et al (2022) Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: progress and perspectives. J Hazard Mater 26:129456

    Article  Google Scholar 

  • Choudhury AR, Boyina LP, Kumar DL et al (2022) Biomined and fresh municipal solid waste as sources of refuse derived fuel. In: Circular economy in municipal solid waste landfilling: biomining & leachate treatment. Springer, Cham, pp 235–252

    Google Scholar 

  • Christel S, Herold M, Bellenberg S et al (2018) Multi-omics reveals the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum T. Appl Environ Microbiol 84(3):e02091–17

    Google Scholar 

  • Coram NJ, Rawlings DE (2002). Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68(2):838–845

    Google Scholar 

  • Das AP, Ghosh S (2022) Role of microorganisms in extenuation of mining and industrial wastes. Geomicrobiol J 39(3–5):173–175

    Google Scholar 

  • Donati ER, Castro C, Urbieta MS (2016) Thermophilic microorganisms in biomining. World J Microbiol Biotechnol 32(11):1–8

    Article  CAS  Google Scholar 

  • Gao X, Jiang L, Mao Y et al (2021) Progress, challenges, and perspectives of bioleaching for recovering heavy metals from mine tailings. Adsorpt Sci Technol 7:2021

    Google Scholar 

  • García-Balboa C, Martínez-Alesón García P, López-Rodas V et al (2022) Microbial biominers: sequential bioleaching and biouptake of metals from electronic scraps. MicrobiologyOpen 11(1):e1265

    Article  Google Scholar 

  • Guzman MS, Reed D, Fujita Y et al (2022) Complete genome sequence of Acidithiobacillus ferriphilus GT2, isolated from gold mill tailings. Microbiol Resour Announc 11(2):e01089–21

    Google Scholar 

  • Hallberg KB, Lindström EB (1994) Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140(12):3451–3456

    Google Scholar 

  • Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14(1):9–19

    Google Scholar 

  • Hoque ME, Philip OJ (2011) Biotechnological recovery of heavy metals from secondary sources—an overview. Mater Sci Eng C 31(2):57–66

    Google Scholar 

  • Jeong SW, Choi YJ (2020) Extremophilic microorganisms for the treatment of toxic pollutants in the environment. Molecules 25(21):4916

    Google Scholar 

  • Jerez CA (2012) The use of extremophilic microorganisms in the industrial recovery of metals. In: Extremophiles: sustainable resources and biotechnological implications, vol 2, pp 319–334

    Google Scholar 

  • Ji X, Yang M, Wan A et al (2022) Bioleaching of typical electronic waste—printed circuit boards (WPCBs): a short review. Int J Environ Res Public Health 19(12):7508

    Article  CAS  Google Scholar 

  • Jiménez-Paredes AE, Alfaro-Saldaña EF, Hernández-Sánchez A et al (2021) An autochthonous Acidithiobacillus ferrooxidans metapopulation exploited for two-step pyrite biooxidation improves Au/Ag particle release from mining waste. Mining 1(3):335–350

    Google Scholar 

  • Johnson DB (2018) The evolution, current status, and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors. Minerals 8(8):343

    Google Scholar 

  • Kanekar PP, Kanekar SP (2022) Acidophilic microorganisms. In: Diversity and biotechnology of extremophilic microorganisms from India. Springer, Singapore, pp 155–185

    Google Scholar 

  • Kaur R, Goyal D (2018) Heavy metal accumulation from coal fly ash by cyanobacterial biofertilizers. Part Sci Technol 36(4):513–516

    Google Scholar 

  • Kölbl D, Memic A, Schnideritsch H et al (2022) Thermoacidophilic bioleaching of industrial metallic steel waste product. Front Microbiol 13:864411

    Google Scholar 

  • Kucera J, Lochman J, Bouchal P, Pakostova E, Mikulasek K, Hedrich S, Janiczek O, Mandl M, Johnson DB et al (2020) A model of aerobic and anaerobic metabolism of hydrogen in the extremophile Acidithiobacillus ferrooxidans. Front Microbiol 11:610836

    Google Scholar 

  • Kumar M, Kochhar N, Kavya IK et al (2022) Perspectives on the microorganism of extreme environments and their applications. Curr Res Microbial Sci 21:100134

    Google Scholar 

  • Lam EJ, Bernardo-Sánchez A, Sokoła-Szewioła V (2022) Editorial for special issue “risk assessment, management and control of mining contamination”. Minerals 12(8):992

    Google Scholar 

  • Liu R, Zhou H (2022) Growth in ever-increasing acidity condition enhanced the adaptation and bioleaching ability of Leptospirillum ferriphilum. Int Microbiol 17:1

    Google Scholar 

  • Liu M, Li Z, Chen Z et al (2022) Simultaneous biodetection and bioremediation of Cu2+ from industrial wastewater by bacterial cell surface display system. Int Biodeterior Biodegradation 1(173):105467

    Article  Google Scholar 

  • Martínez-Bellange P, von Bernath D, Navarro CA et al (2022) Biomining of metals: new challenges for the next 15 years. Microb Biotechnol 15(1):186–188

    Article  Google Scholar 

  • Mohan S, Joseph CP (2020) Biomining: an innovative and practical solution for reclamation of open dumpsite. In: Recent developments in waste management: select proceedings of recycle 2018. Springer, Singapore, pp 167–178

    Google Scholar 

  • Natarajan KA (2018) Biotechnology of metals: principles, recovery methods and environmental concerns. Elsevier

    Google Scholar 

  • Navarrete JU, Borrok DM, Viveros M et al (2011) Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochim Cosmochim Acta 75(3):784–799

    Google Scholar 

  • Nayak NP (2022) Microorganisms and their application in mining and allied industries. Mater Today Proc 72:2886–2891

    Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B. Appl Microbiol Biotechnol 63(3):249–257

    Google Scholar 

  • Omokawa H, Kurosawa N, Sakai HD (2022) Complete genome sequence of Acidianus sp. strain HS-5, isolated from the Unzen hot spring in Japan. Microbiol Resour Announc 11(2):e01159-21

    Google Scholar 

  • Panyushkina A, Muravyov M, Fomchenko N (2022). A case of predominance of Alicyclobacillus tolerans in microbial community during bioleaching of pentlandite-chalcopyrite concentrate. Minerals 12(4):396

    Google Scholar 

  • Park S, Liang Y (2019) Bioleaching of trace elements and rare earth elements from coal fly ash. Int J Coal Sci Technol 6(1):74–83

    Article  CAS  Google Scholar 

  • Pattanaik A, Samal DP, Sukla LB, Pradhan D (2020) Advancements and use of OMIC technologies in the field of bioleaching: a review

    Google Scholar 

  • Peng T, Ma L, Feng X et al (2017) Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS ONE 12(5):e0178008

    Google Scholar 

  • Peter D, Shruti Arputha Sakayaraj L, Ranganathan TV (2022) Recovery of precious metals from electronic and other secondary solid waste by bioleaching approach. Biotechnol Zero Waste Emerg Waste Manage Tech 7:207–218

    Article  Google Scholar 

  • Qi Y, Shangguan X, He J, Chen L, Jin J, Liu Y, Qiu G, Yu R, Li J, Zeng W, Shen L et al (2022) Expression, purification, characterization and direct electrochemistry of two HiPIPs from Acidithiobacillus caldus SM-1. Anal Biochem 650:114724

    Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4(1):1–5

    Article  Google Scholar 

  • Saavedra A, Aguirre P, Gentina JC (2020) Biooxidation of iron by Acidithiobacillus ferrooxidans in the presence of D-galactose: understanding its influence on the production of EPS and cell tolerance to high concentrations of iron. Front Microbiol 23(11):759

    Article  Google Scholar 

  • Sana S, Neelam D, Gupta V et al (2021) An overview: application of microorganisms in bio-mining of metals (review article). Int J Pharm Biol Sci 11(1):01–08. https://doi.org/10.21276/ijpbs.2021.11.1.1

    Article  CAS  Google Scholar 

  • Sand W, Gerke T, Hallmann R et al (1995) Sulfur chemistry, biofilm, and the (in) direct attack mechanism—a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43(6):961–966

    Article  CAS  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Microbial processing of metal sulfides. Springer, Dordrecht, pp 3–33

    Google Scholar 

  • Shah SS, Palmieri MC, Sponchiado SR et al (2022) A sustainable approach on biomining of low-grade bauxite by P. simplicissimum using molasses medium. Braz J Microbiol 53(2):831–843

    Google Scholar 

  • Sikander A, Kelly S, Kuchta K et al (2022) Chemical and microbial leaching of valuable metals from PCBs and tantalum capacitors of spent mobile phones. Int J Environ Res Public Health 19(16):10006

    Article  CAS  Google Scholar 

  • Tavakoli HZ, Bahrami-Bavani M, Miyanmahaleh Y et al (2021) Identification and characterization of a metal-resistant Acidithiobacillus ferrooxidans as important potential application for bioleaching. Biologia 76(4):1327–1337

    Article  CAS  Google Scholar 

  • Urbina J, Patil A, Fujishima K, Paulino-Lima IG, Saltikov C, Rothschild LJ et al (2019) A new approach to biomining: bioengineering surfaces for metal recovery from aqueous solutions. Sci Rep 9(1):1

    Google Scholar 

  • Valdés J, Pedroso I, Quatrini R et al (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genom 9(1):1–24

    Article  Google Scholar 

  • Valdez-Nuñez LF, Ayala-Muñoz D, Sánchez-España J, Sánchez-Andrea I et al (2022) Microbial communities in peruvian acid mine drainages: low-abundance sulfate-reducing bacteria with high metabolic activity. Geomicrobiol J 24:1–7

    Google Scholar 

  • Vyas S, Prajapati P, Shah AV et al (2022) Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: a special focus on anaerobic digestion. Fuel 1(311):122625

    Article  Google Scholar 

  • Wadden D, Gallant A (1985) The in-place leaching of uranium at Denison Mines. Can Metall Quart 24(2):127–134

    Google Scholar 

  • Wang P, Li LZ, Qin YL et al (2020) Comparative genomic analysis reveals the metabolism and evolution of the thermophilic archaeal genus Metallosphaera. Front Microbiol 11:1192

    Article  Google Scholar 

  • Watling HR (2014) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5(1):1–60

    Google Scholar 

  • Xavier LH, Giese EC, Ribeiro-Duthie AC, Lins FA et al (2021) Sustainability and the circular economy: a theoretical approach focused on e-waste urban mining. Resour Policy 74:101467

    Google Scholar 

  • Zhang X, She S, Dong W et al (2016) Comparative genomics unravels metabolic differences at the species and/or strain level and extremely acidic environmental adaptation of ten bacteria belonging to the genus Acidithiobacillus. Syst Appl Microbiol 39(8):493–502

    Google Scholar 

  • Zhang S, Yan L, Xing W et al (2018) Acidithiobacillus ferrooxidans and its potential application. Extremophiles 22(4):563–579

    Article  CAS  Google Scholar 

  • Zoungrana A, Hasnine MD, Yuan Q (2022) Landfill mining: significance, operation and global perspectives. In: Circular economy in municipal solid waste landfilling: biomining & leachate treatment. Springer, Cham, pp 25–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragati Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, P. (2023). Recent Trends in Biomining Microorganisms for Solid Waste Management. In: Debbarma, P., Kumar, S., Suyal, D.C., Soni, R. (eds) Microbial Technology for Sustainable E-waste Management. Springer, Cham. https://doi.org/10.1007/978-3-031-25678-3_17

Download citation

Publish with us

Policies and ethics