Skip to main content

Genetic Determinants of Type 2 Diabetes

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

The project of the 1000 genomes, evidenced the need to study the genetic variability of various populations of the world. The human genome has common or rare variations greater than 1% in the DNA sequence, which gives us different specific phenotypical characteristics among individuals or populations. The term used to name these variations is genetic polymorphism, which refers to the existence within a population of multiple alleles of a gene. Thanks to the genome-wide association study (GWAS), in the last few years, more than 80 signals associated with the phenotype of type 2 diabetes (T2D) have been identified and validated in various populations of the world. Currently, the use of technological tools, together with the sequencing of exomes, has identified a small panel of genetic markers associated with the phenotype for T2D, which can have certain clinical uses in the prevention, diagnosis, prognosis and pharmacological therapy. In conclusion, the GWAS has offered important knowledge of the genetic variants most associated with T2D in the world, highlighting TCFL2, ABCC8, CAPN10, PPAR, CDNKN2A/B, CDKAL1 and IGF2BP2 genes. Other markers are only found to be important in some ethnic groups, so it is a priority to analyze them in order to have answers for early diagnosis and treatment in specific populations. Pharmacogenomic and pharmacogenetic studies will generate more knowledge for personalized treatment in different populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some definitions are found on the page: https://ghr.nlm.nih.gov/.

References

  1. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  2. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

    Article  PubMed  Google Scholar 

  3. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  Google Scholar 

  5. Franks PW, Pare G. Putting the genome in context: gene-environment interactions in type 2 diabetes. Curr Diab Rep. 2016;16(7):57.

    Article  PubMed  Google Scholar 

  6. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234–44.

    Article  CAS  PubMed  Google Scholar 

  8. Parra EJ, Below JE, Krithika S, Valladares A, Barta JL, Cox NJ, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-Amerian sample from Starr County, Texas. Diabetologia. 2011;54:2038–46.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Marignac VL, Valladares A, Cameron E, Chan A, Perera A, Globus-Goldberg R, et al. Admixture in Mexico City: implications for admixture mapping of type 2 diabetes genetic risk factors. Hum Genet. 2007;120(6):807–19.

    Article  PubMed  Google Scholar 

  10. Martinez-Fierro ML, Beuten J, Leach RJ, Parra EJ, Cruz M, Rangel-Villalobos H, et al. Ancestry informative markers and admixture proportions in northeastern Mexico. J Hum Genet. 2009;54:504–9.

    Article  CAS  PubMed  Google Scholar 

  11. Villarreal-Molina MT, Flores-Dorantes MT, Arellano-Campos O, Villalobos-Comparan M, Rodriguez-Cruz M, Miliar-Garcia A, et al. Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population. Diabetes. 2008;57(2):509–13.

    Article  CAS  PubMed  Google Scholar 

  12. Cahua-Pablo JA, Cruz M, Tello-Almaguer PV, Alarcón-Romero L del C, Parra EJ, Villerías-Salinas S, Valladares-Salgado A, Tello-Flores VA, Méndez-Palacios A, Pérez-Macedonio CP, Flores-Alfaro E. Analysis of admixture proportions in seven geographical regions of the State of Guerrero, Mexico. Am J Hum Biol. 2017;29:e23032.

    Google Scholar 

  13. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–3.

    Article  CAS  PubMed  Google Scholar 

  15. Parra EJ, Cameron E, Simmonds L, Valladares A, McKeigue P, Shriver M, et al. Association of TCF7L2 polymorphisms with type 2 diabetes in Mexico City. Clin Genet. 2007;71(4):359–66.

    Article  CAS  PubMed  Google Scholar 

  16. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568–72.

    Article  CAS  PubMed  Google Scholar 

  17. Baier LJ, Muller YL, Remedi MS, Traurig M, Piaggi P, Wiessner G, et al. ABCC8 R1420H loss-of-function variant in a Southwest American Indian Community: association with increased birth weight and doubled risk of type 2 diabetes. Diabetes. 2015;64(12):4322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T, Holmkvist J, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes. 2004;53(5):1360–8.

    Article  CAS  PubMed  Google Scholar 

  19. Horikawa Y. Calpain-10 (NIDDM1) as a susceptibility gene for common type 2 diabetes. Endocr J. 2006;53(5):567–76.

    Article  CAS  PubMed  Google Scholar 

  20. Yan ST, Li CL, Tian H, Li J, Pei Y, Liu Y, et al. Association of calpain-10 rs2975760 polymorphism with type 2 diabetes mellitus: a meta-analysis. Int J Clin Exp Med. 2014;7(10):3800–7.

    PubMed  PubMed Central  Google Scholar 

  21. Orho-Melander M, Klannemark M, Svensson MK, Ridderstrale M, Lindgren CM, Groop L. Variants in the calpain-10 gene predispose to insulin resistance and elevated free fatty acid levels. Diabetes. 2002;51(8):2658–64.

    Article  CAS  PubMed  Google Scholar 

  22. Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JP. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010;171(6):645–55.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia. 2016;59(8):1579–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hribal ML, Presta I, Procopio T, Marini MA, Stancakova A, Kuusisto J, et al. Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B. Diabetologia. 2011;54(4):795–802.

    Article  CAS  PubMed  Google Scholar 

  25. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mejía-Benítez A, Klünder-Klünder M, Yengo L, Meyre D, Aradillas C, Cruz E, et al. Analysis of the contribution of FTO, NPC1, ENPP1, NEGR1, GNPDA2 and MC4R genes to obesity in Mexican children. BMC Med Genet. 2013;14:21.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sesti G. Insulin receptor substrate polymorphisms and type 2 diabetes mellitus. Pharmacogenomics. 2000;1(3):343–57.

    Article  CAS  PubMed  Google Scholar 

  28. Burguete-Garcia AI, Cruz M, Madrid-Marina V, Lopez-Ridaura R, Hernández-Avila M, Cortina B, et al. Association of Gly972Arg polymorphism of IRS1 gene with type 2 diabetes mellitus in lean participants of a national health survey in Mexico: a candidate gene study. Metabolism. 2010;59:38–45.

    Article  CAS  PubMed  Google Scholar 

  29. SIGMA Type 2 Diabetes Consortium, Estrada K, Aukrust I, Bjørkhaug L, Burtt NP, Mercader JM, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311(22):2305–14.

    Article  Google Scholar 

  30. Fan M, Li W, Wang L, Gu S, Dong S, Chen M, Yin H, Zheng J, Wu X, Jin J, Jiang X, Cai J, Liu P, Zheng C. Association of SLC30A8 gene polymorphism with type 2 diabetes, evidence from 46 studies: a meta-analysis. Endocrine. 2016;53(2):381–94.

    Article  CAS  PubMed  Google Scholar 

  31. Kulkarni H, Mamtani M, Peralta JM, Diego V, Dyer TD, Goring H, Almasy L, Mahaney MC, Williams-Blangero S, Duggirala R, Curran JE, Blangero J. Lack of association between SLC30A8 variants and type 2 diabetes in Mexican American Families. J Diabetes Res. 2016;2016:6463214.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Daimon M, Kido T, Baba M, Oizumi T, Jimbu Y, Kameda W, et al. Association of the ABCA1 gene polymorphisms with type 2 DM in a Japanese population. Biochem Biophys Res Commun. 2005;329(1):205–10.

    Article  CAS  PubMed  Google Scholar 

  33. Parra EJ, Below JE, Krithika S, Valladares A, Barta JL, Cox NJ, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia. 2011;54(8):2038–46.

    Article  CAS  PubMed  Google Scholar 

  34. Below JE, Gamazon ER, Morrison JV, Konkashbaev A, Pluzhnikov A, McKeigue PM, et al. Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals. Diabetologia. 2011;54(8):2047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Some definitions are found on the page: https://ghr.nlm.nih.gov/.

Ancestry

The term may refer to the geographical origin of populations, for example, “individuals of European ancestry”, or the line of heritage or descent of a group.

Diabetes

Diabetes is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of different organs, especially the eyes, kidneys, nerves, heart, and blood vessels (American Diabetes Association).

Genetic marker

A gene or (a fragment of) DNA sequence having a known location on a chromosome has an easily identifiable phenotype and an inheritance pattern that can be followed. Genetic markers act as chromosomal landmarks. They are used to trace or identify a specific region of a gene (especially one that is associated with an inherited disease) on a chromosome. They are also used to determine a linkage group or a recombination event.

Genome-Wide Association Study (GWAS)

GWAS is a relatively new way to identify genes involved in human disease. This method searches the genome for small variations, called single nucleotide polymorphisms, or SNPs (pronounced “snips”), that occur more frequently in people with a particular disease than in people without the disease. Each study can look at hundreds or thousands of SNPs at the same time. Researchers use data from this type of study to pinpoint genes that may contribute to a person’s risk of developing a certain disease.

Microarrays

A microarray is a hybridization of a nucleic acid sample (target) with a very large set of oligonucleotide probes, which are attached to a solid support, to determine sequence or to detect variations in a gene sequence or expression or for gene mapping.

Single nucleotide polymorphisms (SNPs)

SNPs are the most common type of genetic variation among people. Each SNP represents a difference in a single DNA building block, called a nucleotide. For example, an SNP may replace the nucleotide cytosine (C) with the nucleotide thymine (T) in a certain stretch of DNA.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruz, M., Salgado, A.V., Alfaro, E.F., de Jesús Peralta Romero, J., Rodriguez-Saldana, J. (2023). Genetic Determinants of Type 2 Diabetes. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics