Skip to main content

Rethinking RNN-Based Video Object Segmentation

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1691))

Abstract

Video Object Segmentation is a fundamental task in computer vision that aims at pixel-wise tracking of one or multiple foreground objects within a video sequence. This task is challenging due to real-world requirements such as handling unconstrained object and camera motion, occlusion, fast motion, and motion blur. Recently, methods utilizing RNNs have been successful in accurately and efficiently segmenting the target objects as RNNs can effectively memorize the object of interest and compute the spatiotemporal features which are useful in processing the visual sequential data. However, they have limitations such as lower segmentation accuracy in longer sequences. In this paper, we expand our previous work to develop a hybrid architecture that successfully eliminates some of these challenges by employing additional correspondence matching information, followed by extensively exploring the impact of various architectural designs. Our experiment results on YouTubeVOS dataset confirm the efficacy of our proposed architecture by obtaining an improvement of about 12pp on YoutTubeVOS compared to RNN-based baselines without a considerable increase in the computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azimi, F., Bischke, B., Palacio, S., Raue, F., Hees, J., Dengel, A.: Revisiting sequence-to-sequence video object segmentation with multi-task loss and skip-memory. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5376–5383. IEEE (2021). arXiv:2004.12170

  2. Azimi, F., Frolov, S., Raue, F., Hees, J., Dengel, A.: Hybrid-s2s: Video object segmentation with recurrent networks and correspondence matching. In: VISAPP, pp. 182–192 (2021). arXiv:2010.05069

  3. Azimi, F., Nies, J.F.J.N., Palacio, S., Raue, F., Hees, J., Dengel, A.: Spatial transformer networks for curriculum learning. arXiv preprint arXiv:2108.09696 (2021)

  4. Azimi, F., Palacio, S., Raue, F., Hees, J., Bertinetto, L., Dengel, A.: Self-supervised test-time adaptation on video data. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3439–3448 (2022)

    Google Scholar 

  5. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1171–1179 (2015)

    Google Scholar 

  6. Bhat, G., et al.: Learning what to learn for video object segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 777–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_46

    Chapter  Google Scholar 

  7. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: CVPR 2011, pp. 1273–1280. IEEE (2011)

    Google Scholar 

  8. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_21

    Chapter  Google Scholar 

  9. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 221–230 (2017)

    Google Scholar 

  10. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Faktor, A., Irani, M.: Video segmentation by non-local consensus voting. In: BMVC, p. 8 (2014)

    Google Scholar 

  13. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Heidelberg (2005). https://doi.org/10.1007/11550907_126

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. arXiv preprint arXiv:1912.12180 (2019)

  16. Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 656–671. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_43

    Chapter  Google Scholar 

  17. Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8953–8962 (2019)

    Google Scholar 

  18. Jonschkowski, R., Stone, A., Barron, J.T., Gordon, A., Konolige, K., Angelova, A.: What matters in unsupervised optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 557–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_33

    Chapter  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  21. Maninis, K.K., Caelles, S., Chen, Y., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: Video object segmentation without temporal information. IEEE Trans. Patt. Anal. Mach. Intell. (TPAMI) 41(6), 1515–1530 (2018)

    Google Scholar 

  22. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  23. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9226–9235 (2019)

    Google Scholar 

  24. Pang, B., Zha, K., Cao, H., Shi, C., Lu, C.: Deep rnn framework for visual sequential applications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 423–432 (2019)

    Google Scholar 

  25. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1777–1784 (2013)

    Google Scholar 

  26. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2017)

    Google Scholar 

  27. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  28. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2663–2672 (2017)

    Google Scholar 

  29. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)

    Google Scholar 

  30. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  32. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  33. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  35. Su, J., Byeon, W., Kossaifi, J., Huang, F., Kautz, J., Anandkumar, A.: Convolutional tensor-train lstm for spatio-temporal learning. arXiv preprint arXiv:2002.09131 (2020)

  36. Sundermeyer, M., Alkhouli, T., Wuebker, J., Ney, H.: Translation modeling with bidirectional recurrent neural networks. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 14–25 (2014)

    Google Scholar 

  37. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  38. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4481–4490 (2017)

    Google Scholar 

  39. Vazquez-Reina, A., Avidan, S., Pfister, H., Miller, E.: Multiple hypothesis video segmentation from superpixel flows. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 268–281. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_20

    Chapter  Google Scholar 

  40. Ventura, C., Bellver, M., Girbau, A., Salvador, A., Marques, F., Giro-i Nieto, X.: Rvos: End-to-end recurrent network for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5277–5286 (2019)

    Google Scholar 

  41. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: Feelvos: Fast end-to-end embedding learning for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9481–9490 (2019)

    Google Scholar 

  42. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv preprint arXiv:1706.09364 (2017)

  43. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  44. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  45. Wug Oh, S., Lee, J.Y., Sunkavalli, K., Joo Kim, S.: Fast video object segmentation by reference-guided mask propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7376–7385 (2018)

    Google Scholar 

  46. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  47. Xu, N., Yang, L., Fan, Y., Yue, D., Liang, Y., Yang, J., Huang, T.: Youtube-vos: A large-scale video object segmentation benchmark. arXiv preprint arXiv:1809.03327 (2018)

  48. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6499–6507 (2018)

    Google Scholar 

  49. Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 332–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_20

    Chapter  Google Scholar 

  50. Zhang, Y., Wu, Z., Peng, H., Lin, S.: A transductive approach for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6949–6958 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the TU Kaiserslautern CS PhD scholarship program, the BMBF project ExplAINN (01IS19074), and the NVIDIA AI Lab (NVAIL) program. Further, we thank Christiano Gava, Stanislav Frolov, Tewodros Habtegebrial and Mohammad Reza Yousefi for the many interesting discussions and proofreading of this paper. Finally, we thank all members of the Deep Learning Competence Center at the DFKI for their feedback and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Azimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azimi, F., Raue, F., Hees, J., Dengel, A. (2023). Rethinking RNN-Based Video Object Segmentation. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25477-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25476-5

  • Online ISBN: 978-3-031-25477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics