Skip to main content

Learning What to Learn for Video Object Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12347))

Included in the following conference series:

Abstract

Video object segmentation (VOS) is a highly challenging problem, since the target object is only defined by a first-frame reference mask during inference. The problem of how to capture and utilize this limited information to accurately segment the target remains a fundamental research question. We address this by introducing an end-to-end trainable VOS architecture that integrates a differentiable few-shot learner. Our learner is designed to predict a powerful parametric model of the target by minimizing a segmentation error in the first frame. We further go beyond the standard few-shot learning paradigm by learning what our target model should learn in order to maximize segmentation accuracy. We perform extensive experiments on standard benchmarks. Our approach sets a new state-of-the-art on the large-scale YouTube-VOS 2018 dataset by achieving an overall score of 81.5, corresponding to a \(2.6\%\) relative improvement over the previous best result. The code and models are available at https://github.com/visionml/pytracking.

G. Bhat and F. J. Lawin—Both authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behl, H.S., Najafi, M., Arnab, A., Torr, P.H.S.: Meta learning deep visual words for fast video object segmentation. In: NeurIPS 2019 Workshop on Machine Learning for Autonomous Driving (2018)

    Google Scholar 

  2. Berman, M., Rannen Triki, A., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  3. Bertinetto, L., Henriques, J.F., Torr, P., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. In: International Conference on Learning Representations (2019)

    Google Scholar 

  4. Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6182–6191 (2019)

    Google Scholar 

  5. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5320–5329. IEEE (2017)

    Google Scholar 

  6. Choi, J., Kwon, J., Lee, K.M.: Deep meta learning for real-time target-aware visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 911–920 (2019)

    Google Scholar 

  7. Cohen, I., Medioni, G.: Detecting and tracking moving objects for video surveillance. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 2, pp. 319–325. IEEE (1999)

    Google Scholar 

  8. Danelljan, M., Van Gool, L., Timofte, R.: Probabilistic regression for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  9. Erdélyi, A., Barát, T., Valet, P., Winkler, T., Rinner, B.: Adaptive cartooning for privacy protection in camera networks. In: 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 44–49. IEEE (2014)

    Google Scholar 

  10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1126–1135. JMLR. org (2017)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask r-cnn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV (2015)

    Google Scholar 

  13. Hu, P., Wang, G., Kong, X., Kuen, J., Tan, Y.P.: Motion-guided cascaded refinement network for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1400–1409 (2018)

    Google Scholar 

  14. Hu, Y.-T., Huang, J.-B., Schwing, A.G.: VideoMatch: matching based video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 56–73. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_4

    Chapter  Google Scholar 

  15. Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  16. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, December 2014

    Google Scholar 

  17. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR (2019)

    Google Scholar 

  18. Lin, H., Qi, X., Jia, J.: Agss-vos: attention guided single-shot video object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3949–3957 (2019)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, Y., Liu, L., Zhang, H., Rezatofighi, H., Reid, I.: Meta learning with differentiable closed-form solver for fast video object segmentation. arXiv preprint arXiv:1909.13046 (2019)

  21. Luiten, J., Voigtlaender, P., Leibe, B.: PReMVOS: proposal-generation, refinement and merging for video object segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 565–580. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_35

    Chapter  Google Scholar 

  22. Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 41(6), 1515–1530 (2018)

    Article  Google Scholar 

  23. Massa, F., Girshick, R.: maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark (2018). Accessed 04 Sep 2019

  24. Oh, S.W., Lee, J.Y., Sunkavalli, K., Kim, S.J.: Fast video object segmentation by reference-guided mask propagation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7376–7385. IEEE (2018)

    Google Scholar 

  25. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  26. Park, E., Berg, A.C.: Meta-tracker: fast and robust online adaptation for visual object trackers. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 569–585 (2018)

    Google Scholar 

  27. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  28. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2663–2672 (2017)

    Google Scholar 

  29. Robinson, A., Lawin, F.J., Danelljan, M., Khan, F.S., Felsberg, M.: Learning fast and robust target models for video object segmentation (2020)

    Google Scholar 

  30. Ros, G., Ramos, S., Granados, M., Bakhtiary, A., Vazquez, D., Lopez, A.M.: Vision-based offline-online perception paradigm for autonomous driving. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 231–238. IEEE (2015)

    Google Scholar 

  31. Saleh, K., Hossny, M., Nahavandi, S.: Kangaroo vehicle collision detection using deep semantic segmentation convolutional neural network. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2016)

    Google Scholar 

  32. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. In: BMVC (2017)

    Google Scholar 

  33. Voigtlaender, P., Leibe, B.: Feelvos: fast end-to-end embedding learning for video object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  34. Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: visual tracking by re-detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  35. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking emerges by colorizing videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 402–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_24

    Chapter  Google Scholar 

  36. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)

    Google Scholar 

  37. Wang, Z., Xu, J., Liu, L., Zhu, F., Shao, L.: Ranet: ranking attention network for fast video object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3978–3987 (2019)

    Google Scholar 

  38. Xu, N., et al.: YouTube-VOS: sequence-to-sequence video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 603–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_36

    Chapter  Google Scholar 

  39. Xu, N., et al.: Youtube-vos: A large-scale video object segmentation benchmark. arXiv preprint arXiv:1809.03327 (2018)

  40. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. Algorithms 29, 15 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the ETH Zürich Fund (OK), a Huawei Technologies Oy (Finland) project, an Amazon AWS grant, Nvidia, ELLIIT Excellence Center, the Wallenberg AI, Autonomous Systems and Software Program (WASP) and the SSF project Symbicloud.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Bhat .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 18627 KB)

Supplementary material 1 (pdf 5901 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhat, G. et al. (2020). Learning What to Learn for Video Object Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics