Skip to main content

What Matters in Unsupervised Optical Flow

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12347))

Included in the following conference series:

Abstract

We systematically compare and analyze a set of key components in unsupervised optical flow to identify which photometric loss, occlusion handling, and smoothness regularization is most effective. Alongside this investigation we construct a number of novel improvements to unsupervised flow models, such as cost volume normalization, stopping the gradient at the occlusion mask, encouraging smoothness before upsampling the flow field, and continual self-supervision with image resizing. By combining the results of our investigation with our improved model components, we are able to present a new unsupervised flow technique that significantly outperforms the previous unsupervised state-of-the-art and performs on par with supervised FlowNet2 on the KITTI 2015 dataset, while also being significantly simpler than related approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92, 1–31 (2011)

    Article  Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. IJCV 12, 43–77 (1994)

    Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  4. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  5. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? In: CVPR. The KITTI Vision Benchmark Suite (2012)

    Google Scholar 

  7. Gibson, J.J.: The Perception of the Visual World. Houghton Mifflin, Boston (1950)

    Google Scholar 

  8. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV (2019)

    Google Scholar 

  9. Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild: unsupervised monocular depth learning from unknown cameras. In: ICCV (2019)

    Google Scholar 

  10. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. (1981)

    Google Scholar 

  11. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  12. Janai, J., Güney, F., Ranjan, A., Black, M.J., Geiger, A.: Unsupervised learning of multi-frame optical flow with occlusions. In: ECCV (2018)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  14. Liu, P., King, I., Lyu, M.R., Xu, J.: DDFlow: learning optical flow with unlabeled data distillation. In: AAAI (2019)

    Google Scholar 

  15. Liu, P., Lyu, M.R., King, I., Xu, J.: Selflow: self-supervised learning of optical flow. In: CVPR (2019)

    Google Scholar 

  16. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: DARPA Image Understanding Workshop (1981)

    Google Scholar 

  17. Mayer, N., et al.: What makes good synthetic training data for learning disparity and optical flow estimation? IJCV 126, 942–960 (2018)

    Article  Google Scholar 

  18. Meister, S., Hur, J., Roth, S.: Unflow: unsupervised learning of optical flow with a bidirectional census loss. In: AAAI (2018)

    Google Scholar 

  19. Menze, M., Heipke, C., Geiger, A.: Joint 3d estimation of vehicles and scene flow. In: ISPRS Workshop on Image Sequence Analysis (2015)

    Google Scholar 

  20. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: CVPR (2017)

    Google Scholar 

  21. Ranjan, A., et al.: Competitive collaboration: joint unsupervised learning of depth, camera motion, optical flow and motion segmentation. In: CVPR (2019)

    Google Scholar 

  22. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical flow estimation. AAAI (2017)

    Google Scholar 

  23. Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: CVPR (2017)

    Google Scholar 

  24. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR (2010)

    Google Scholar 

  25. Sun, D., Yang, X., Liu, M.-Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)

    Google Scholar 

  26. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_32

    Chapter  Google Scholar 

  27. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV (1998)

    Google Scholar 

  28. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)

    Google Scholar 

  29. Wang, Y., Wang, P., Yang, Z., Luo, C., Yang, Y., Xu, W.: UnOS: unified unsupervised optical-flow and stereo-depth estimation by watching videos. In: CVPR (2019)

    Google Scholar 

  30. Wang, Y., Yang, Y., Yang, Z., Zhao, L., Wang, P., Xu, W.: Occlusion aware unsupervised learning of optical flow. In: CVPR (2018)

    Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  32. Yang, G., Ramanan, D.: Volumetric correspondence networks for optical flow. In: NeurIPS (2019)

    Google Scholar 

  33. Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: CVPR (2018)

    Google Scholar 

  34. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_1

    Chapter  Google Scholar 

  35. Zhong, Y., Ji, P., Wang, J., Dai, Y., Li, H.: Unsupervised deep epipolar flow for stationary or dynamic scenes. In: CVPR (2019)

    Google Scholar 

  36. Zou, Y., Luo, Z., Huang, J.-B.: DF-Net: unsupervised joint learning of depth and flow using cross-task consistency. In: ECCV (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Jonschkowski .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 7879 KB)

Supplementary material 2 (mp4 6278 KB)

Supplementary material 3 (mp4 4084 KB)

Supplementary material 4 (mp4 3096 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jonschkowski, R., Stone, A., Barron, J.T., Gordon, A., Konolige, K., Angelova, A. (2020). What Matters in Unsupervised Optical Flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics