Skip to main content

Nitric Oxide as a Diagnostic and Therapeutic Tool in Respiratory Diseases

  • Chapter
  • First Online:
Nitric Oxide: From Research to Therapeutics

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 22))

Abstract

Nitric oxide (NO) is a gasotransmitter that plays a vital role in diverse biological processes. NO is a fundamental component in regulating cardiovascular functions, smooth muscle tone, and neurotransmission. It acts as a critical signaling molecule in the body that widens blood vessels in the lungs when inhaled. Several lines of evidence indicate that endogenous NO is responsible for the physiological regulation of airways and is involved in various respiratory diseases. The primary sources of NO in the respiratory tract are epithelial cells, inflammatory cells (macrophages, neutrophils, mast cells), and endothelial. The highest output of NO is from epithelial cells and macrophages. The concentrations of NO are different for each airway inflammatory disease, and these changes in the level help in the evaluation and management of respiratory disorders. The amount of NO found in expired air is detectable by a non-invasive method in animals and humans. Several research findings have pointed out the role of NO in the pathogenesis of various diseases affecting airways, and this can be translated to future application in clinical practice. This review summarizes the basic understanding of NO in various respiratory disorders, and the fractional exhaled levels of NO can be an important non-invasive economical diagnostic marker. Further, the current version of the role of endogenous NO may provide new insight into the regulation of the airways, and inhaled NO may potentially contribute as treatment strategies to various respiratory diseases in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ray A, Joshi J, Tripathi S, Saha Roy S, Gulati K (2015) Safety considerations in nitric oxide pharmacotherapy. J Pharmacovigilance Drug Safety 12:12–14

    Google Scholar 

  2. Ray A, Chakraborti A, Gulati K (2007) Current trends in nitric oxide research. Cell Mol Biol 53:3–14

    CAS  PubMed  Google Scholar 

  3. Khazan M, Hdayati M (2014) The role of nitric oxide in health and diseases. Scimetr 3:e20987

    Article  Google Scholar 

  4. Bryan NS, Bian K, Murad F (2009) Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci 14:1–18

    Article  CAS  Google Scholar 

  5. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed  Google Scholar 

  6. Tejero J, Shiva E, Gladwin MT (2019) Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 99:311–379

    Article  CAS  PubMed  Google Scholar 

  7. Jaffrey SR (2012) Nitric oxide. In: Katzung BG, Masters SB, Trevor AJ (eds) Basic and clinical pharmacology. New Delhi, McGraw-Hill Companies Inc, pp 331–337

    Google Scholar 

  8. Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40:501–506

    Article  CAS  PubMed  Google Scholar 

  9. Niziolek M, Korytowski W, Girotti AW (2003) Chain-breaking antioxidant and cytoprotective action of nitric oxide on photo dynamically stressed tumor cells. Photochem Photobiol 78:262–270

    Article  CAS  PubMed  Google Scholar 

  10. Clancy RM, Leszczynska-Piziak J, Abramson SB (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 90:1116–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin HC, Wang CH, Yu CT, Hwang KS, Kuo HP (2001) Endogenous nitric oxide inhibits neutrophil adherence to lung epithelial cells to module interleukin-G release. Life Sci 69:1333–1344

    Article  CAS  PubMed  Google Scholar 

  12. Park SK, Lin HC, Murphy S (1997) Nitric oxide regulates nitric oxide synthase-2-gene expression by inhibiting NF-kappa B binding to DNA. Biochem J 322:609–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raychaudhuri B, Dweik R, Connors MJ, Buhrow L, Malur A, Drazba J et al (1999) Nitric oxide blocks nuclear factor-kB activation in alveolar macrophages. Am J Respir Cell Mol Biol 21:311–316

    Article  CAS  PubMed  Google Scholar 

  14. Peng HB, Libby P, Liao JK (1995) Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270:14214–14219

    Article  CAS  PubMed  Google Scholar 

  15. Zhu S, Manuel M, Tanaka S, Choe N, Kagen E, Matalon S (1998) Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ Health Perspect 106(Suppl 5):1157–1163

    Google Scholar 

  16. Yang S, Porter VA, Cornfield DN, Milla C, Panoskaltsis-Mortari A, Blazar BR et al (2001) Effects of oxidant stress on inflammation and survival of iNOS knockout mice after marrow transplantation. Am J Physiol 281:L922–L930

    CAS  Google Scholar 

  17. Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL (2000) nitric oxide provokes tumor necrosis factor-α expression in adult feline myocardium through a cGMP-dependent pathway. Circulation 102:1302–1307

    Article  CAS  PubMed  Google Scholar 

  18. Gulati K, Guhathakurta S, Joshi JC, Rai N, Ray A (2016) Cytokines and their role in health and disease: a brief overview. MOJ Immunol 4:1–9

    Google Scholar 

  19. Castranova V (2004) The role of nitric oxide in the progression of pneumoconiosis. Biochem Mosc 69:32–37

    Article  CAS  Google Scholar 

  20. Dupuy PM, Shore SA, Drazen JM, Frostell C, Hill WA, Zapol WM (1992) Bronchodilator action of inhaled nitric oxide in guinea pigs. J Clin Invest 90:421–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Högman M, Frostell C, Arnberg H, Hedenstierna G (1993) Inhalation of nitric oxide modulates methacholine-induced bronchoconstriction in the rabbit. Eur Respir J 6:177–180

    Article  PubMed  Google Scholar 

  22. Stretton D (1991) Nonadrenergic, noncholinergic neural control of the airways. Clin Exp Pharmacol Pathol. 18:675–684

    Article  CAS  Google Scholar 

  23. Belvisi MG, Stretton CD, Yacoub M, Barnes PJ (1992) Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol 210:221–222

    Article  CAS  PubMed  Google Scholar 

  24. Miura M, Yamauchi H, Ichinose M, Ohuchi Y, Kageyama N, Tomaki M et al (1997) Impairment of neural nitric oxide-mediated relaxation after antigen exposure in guinea pig airways in vitro. Am J Respir Crit Care Med 156:217–222

    Article  CAS  PubMed  Google Scholar 

  25. Ricciardolo FLM, Geppetti P, Mistretta A, Nadel JA, Sapienza MA, Bellofiore S et al (1996) Randomised double-blind placebo-controlled study of the effect of inhibition of nitric oxide synthesis in bradykinin-induced asthma. Lancet 348:374–377

    Article  CAS  PubMed  Google Scholar 

  26. Jonasson S, Hedenstierna G, Hjoberg J (2010) Concomitant administration of nitric oxide and glucocorticoids improves protection against bronchoconstriction in a murine model of asthma. J Appl Physiol 109:521–531

    Article  CAS  PubMed  Google Scholar 

  27. Nijkamp FP, Van Der Linde HJ, Folkerts G (1993) Nitric oxide synthesis inhibitors induce airway hyperresponsiveness in the guinea pig in vivo and in vitro. Am Rev Respir Dis 148:727–734

    Article  CAS  PubMed  Google Scholar 

  28. Gaboury JP, Niu XF, Kubes P (1996) Nitric oxide inhibits numerous features of mast cell-induced inflammation. Circulation 93:318–326

    Article  CAS  PubMed  Google Scholar 

  29. Ricciardolo FL, Timmers MC, Geppetti P, Hiemstra PS, van Krieken JHJM, Sterk PJ, et al (2001) Allergen-induced impairment of bronchoprotective nitric oxide synthesis in asthma. J Allergy Clin Immunol 108:198–204

    Google Scholar 

  30. Pennacchioni-Alves P, Vieira RP, Lopes FDTQS, Arantes-Costa FM, Pianheri FB, Martins MA, et al (2010) Role of nitric oxide in hyperpnea-induced bronchoconstriction and airway microvascular permeability in guinea pigs. Exp Lung Res 36:67–74

    Google Scholar 

  31. Kanazawa H, Hirata K, Yoshikawa J (2000) Possible mechanism of bronchoprotection by SIN-1 in anesthetized guinea pigs: roles of nitric oxide and peroxynitrite. Clin Exp Allergy 30:445–450

    Article  CAS  PubMed  Google Scholar 

  32. Lee YC, Cheon KT, Lee HB, Kim W, Rhee YK, Kim DS (2000) Gene polymorphisms of endothelial nitric oxide synthase and angiotensin-converting enzyme in patients with asthma. Allergy 55:959–963

    Article  CAS  PubMed  Google Scholar 

  33. Ho JJD, Man HSJ, Marsden PA (2012) Nitric oxide signaling in hypoxia. J Mol Med 90:217–231

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y, Wang X, Noviana M, Hou M (2018) Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim Biophys Sin 50:621–634

    Article  CAS  PubMed  Google Scholar 

  35. Kim-Shapiro DB, Schechter AN, Gladwin MT (2006) Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol 26:697–705

    Article  CAS  PubMed  Google Scholar 

  36. Hess DT, Matsumoto A, Kim S-O, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cel Biol 6:150–166

    Article  CAS  Google Scholar 

  37. Mathew R (2020) Endothelial dysfunction and disruption in pulmonary hypertension. In: Cardiovascular risk factors in pathology. https://doi.org/10.5772/intechopen.92177

  38. Matthew P. Coggins, Bloch KD (2007) Nitric oxide in the pulmonary vasculature. Arterioscl Throm Vas 27:1877–885

    Google Scholar 

  39. García-Lucio J, Peinado VI, Jover LD, del Pozo R, Blanco I, Bonjoch C et al (2018) Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease. PLoS ONE 13:e0195724

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prado CM, Martins MA, Tiberio IFLC (2011) Nitric oxide in asthma physiopathology. Int Sch Res Net ISRN 1:1–13

    Google Scholar 

  41. Gulati K, Joshi J, Ray A (2015) Recent trends in stress research: Focus on nitric oxide. Eur J Pharmacol 765:406–414

    Article  CAS  PubMed  Google Scholar 

  42. Deja M, Busch T, Bachmann S, Riskowisk K, Câmpean V, Weidmann B et al (2003) Reduced nitric oxide in sinus epithelium of patients with radiologic maxillary sinusitis and sepsis. Am J Respir Critical Care Med 168:281–286

    Article  Google Scholar 

  43. Djupesland PG, Chatkin JM, Qian W, Haight JS (2001) Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology. Am J Otolaryngol 22:19–32

    Article  CAS  PubMed  Google Scholar 

  44. Blanco EEA, Pinge MCM, Neto OAA, Pessoa NG (2009) Effects of nitric oxide in mucociliary transport. Braz J Otorhinolaryngol 75:866–871

    Article  PubMed  Google Scholar 

  45. Das S, Pal M (2020) Non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J Electrochem Soc 167:037562

    Article  CAS  Google Scholar 

  46. Bikov A, Meszaros M, Laza Z (2019) Exhaled nitric oxide in COPD. Curr Respi Med Rev 15:71–78

    Article  CAS  Google Scholar 

  47. Heffler E, Carpagnano GE, Favero E, Guida G, Maniscalco M, Motta M et al (2020) Fractional exhaled nitric oxide (FENO) in the management of asthma: a position paper of the Italian Respiratory Society (SIP/IRS) and Italian Society of Allergy, Asthma and Clinical Immunology (SIAAIC). Multidiscip Respir Med 15:36

    Article  PubMed  PubMed Central  Google Scholar 

  48. Smith AD, Cowan JO, Brassett KP, Filsell S, McLachlan C, Monti-Sheehan G et al (2005) Exhaled nitric oxide: a predictor of steroid response. Am J Respir Crit Care Med 172:453–459

    Article  PubMed  Google Scholar 

  49. Bernholm KF, Homoe A, Meteran H, Jensen CB, Porsbjerg C, Backer V (2018) FeNO-based asthma management results in faster improvement of airway hyperresponsiveness. ERJ Open Res 4:00147–02017

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abba AA (2009) Exhaled nitric oxide in the diagnosis and management of respiratory diseases. Ann Thorac Med 4:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barnes PJ, Dweik RA, Gelb AF, Gibson PG, George SC, Grasemann H et al (2010) Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest 138:682–692

    Article  CAS  PubMed  Google Scholar 

  52. Lim KG, Mottram C (2008) The use of fraction of exhaled nitric oxide in pulmonary practice. Chest 133:1232–1242

    Article  CAS  PubMed  Google Scholar 

  53. Menzies-Gow A, Mansur AH, Brightling CE (2020) Clinical utility of fractional exhaled nitric oxide (FeNO) in severe asthma management. Eur Respir J 55:1901633

    Google Scholar 

  54. Wechsler ME, Grasemann H, Deykin A, Silverman EK, Yandava CN, Israel E et al (2000) Exhaled nitric oxide in patients with asthma: association with NOS1 genotype. Am J Respir Crit Care Med 162:2043–2047

    Article  CAS  PubMed  Google Scholar 

  55. Sato S, Saito J, Sato Y, Ishii T, Xintao W, Tanino Y et al (2008) Clinical usefulness of fractional exhaled nitric oxide for diagnosing prolonged cough. Respir Med 102:1452–1459

    Article  PubMed  Google Scholar 

  56. Dupont LJ, Demedts MG, Verleden GM (2003) Prospective evaluation of the accuracy of exhaled nitric oxide for the diagnosis of asthma. Chest 123:751–56

    Google Scholar 

  57. Ekroos H, Tuominen J, Sovijarvi AR (2000) Exhaled nitric oxide and its longterm variation in healthy non-smoking subjects. Clin Physiol 20:434–439

    Article  CAS  PubMed  Google Scholar 

  58. Gulati K, Babita, Rajkumar, Menon BK, Ray A (2017) A clinical study to evaluate the effects of yogic intervention on pulmonary functions, inflammatory marker and quality of life in patients of bronchial asthma. EC Pharmacol Toxicol 3:174–81

    Google Scholar 

  59. Babita, Gulati K, Menon BK, Rajkumar, Ray A (2020) A clinical study to evaluate the effects of yoga and pharmacotherapy on pulmonary functions, mechanism of inflammation, and quality of life in bronchial asthma patients. Clin Invest (Lond.) 10:106–16

    Google Scholar 

  60. Ricciardolo FL, Sorbello V, Bellezza Fontana R, Schiavetti I, Ciprandi G (2016) Exhaled nitric oxide in relation to asthma control: a real-life survey. Allergol Immunopathol (Madr) 44:197–205

    Google Scholar 

  61. Lee WY, Suh DI, Song DJ, Baek HS, Shin M, Yoo Y et al (2019) Asthma control test reflects not only lung function but also airway inflammation in children with stable asthma. J Asthma 10:1–6

    Google Scholar 

  62. Sato S, Saito J, Fukuhara A, Uematsu M, Suzuki Y, Togawa R et al (2017) The clinical role of fractional exhaled nitric oxide in asthma control. Ann Allergy Asthma Immunol 119:541–547

    Article  CAS  PubMed  Google Scholar 

  63. Meena RK, Raj D, Lodha R, Kabra SK (2016) Fractional exhaled nitric oxide for identification of uncontrolled asthma in children. Indian Pediatr 53:307–310

    Article  PubMed  Google Scholar 

  64. Martins C, Silva D, Severo M, Rufo J, Paciência I, Madureira J et al (2017) Spirometry-adjusted fraction of exhaled nitric oxide increases accuracy for assessment of asthma control in children. Pediatr Allergy Immunol 28:754–762

    Article  PubMed  Google Scholar 

  65. Fielding S, Pijnenburg M, de Jongste JC, Pike KC, Roberts G, Petsky H et al (2019) Change in FEV1 and FENO measurements as predictors of future asthma outcomes in children. Chest 155:331–341

    Article  PubMed  Google Scholar 

  66. Gulati K, Chakraborti A, Ray A (2009) Differential role of nitric oxide (NO) in acute and chronic stress induced neurobehavioral modulation and oxidative injury in rats. Pharmacol Biochem Behav 92:272–276

    Article  CAS  PubMed  Google Scholar 

  67. Hogman M, Thornadtsson A, Broms K, Janson C, Lisspers K, Ställberg B et al (2019) Different relationships between FENO and COPD characteristics in smokers and Ex-Smokers. COPD 16:227–233

    Article  CAS  PubMed  Google Scholar 

  68. Lu Z, Huang W, Wang L, Xu N, Ding Q, Cao C (2018) Exhaled nitric oxide in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 13:2695–2705

    Google Scholar 

  69. Chen F, Huang X, Liu Y, Lin G, Xie C (2016) Importance of fractional exhaled nitric oxide in the differentiation of asthma–COPD overlap syndrome, asthma, and COPD. Int J Chron Obstruct Pulmon Dis 11:2385–2390

    Article  PubMed  PubMed Central  Google Scholar 

  70. Global Initiative for Asthma, Global Initiative for Chronic Obstructive Lung Disease Diagnosis of disease of chronic airflow limitation: Asthma, COPD, and asthma-COPD overlap syndrome (ACOS). http://www.ginasthma.org/local/uploads/files/ACOS_2015.pdf

  71. Takayama Y, Ohnishi H, Ogasawara F, Oyama K, Kubota T, Yokoyama A (2018) Clinical utility of fractional exhaled nitric oxide and blood eosinophils counts in the diagnosis of asthma-COPD overlap. Int J Chron Obstruct Pulmon Dis 13:2525–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malerba M, Radaeli A, Olivini A, Damiani G, Ragnoli B, Montuschi P et al (2014) Exhaled nitric oxide as a biomarker in COPD and related comorbidities. Biomed Res Int 2014:271918

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zietkowski Z, Kucharewicz I, Bodzenta-Lukaszyk A (2005) The influence of inhaled corticosteroids on exhaled nitric oxide in stable chronic obstructive pulmonary disease. Respir Med 99:816–824

    Article  CAS  PubMed  Google Scholar 

  74. Dummer JF, Epton MJ, Cowan JO, Cook JM, Condliffe R, Landhuis CE et al (2009) Predicting corticosteroid response in chronic obstructive pulmonary disease using exhaled nitric oxide. Am J Respir Crit Care Med 180:846–852

    Article  CAS  PubMed  Google Scholar 

  75. Tashkin DP, Wechsler ME (2018) Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chronic Obstr 13:335–349

    CAS  Google Scholar 

  76. Clini E, Cremona G, Campana M, Scotti C, Pagani M, Bianchi L, et al (2000) Production of endogenous nitric oxide in chronic obstructive pulmonary disease and patients with cor pulmonale: correlates with echo-Doppler assessment. Am J Respir Crit Care Med 162: 446–50

    Google Scholar 

  77. Thokchom SK, Gulati K, Ray A, Menon BK (2018) Effects of yogic intervention on pulmonary functions and health status in patients with COPD and the possible mechanisms. Complement Ther Clin Pract 33:20–26

    Google Scholar 

  78. Hofer M, Mueller L, Rechsteiner T, Benden C, Boehler A (2009) Extended nitric oxide measurements in exhaled air of cystic fibrosis and healthy adults. Lung 187:307–313

    Article  CAS  PubMed  Google Scholar 

  79. Thomas SR, Kharitonov SA, Scott SF, Hodson ME, Barnes PJ (2000) Nasal and exhaled nitric oxide is reduced in adult patients with cystic fibrosis and does not correlate with cystic fibrosis genotype. Chest 117:1085–1089

    Article  CAS  PubMed  Google Scholar 

  80. Grasemann H, Ratjen F (2012) Nitric oxide and L-arginine deficiency in cystic fibrosis. Curr Pharm Des 18:726–736

    Article  CAS  PubMed  Google Scholar 

  81. Meng QH, Polak JM, Edgar AJ, Chacon MR, Evans TJ, Gruenert DC et al (2000) Neutrophils enhance expression of inducible nitric oxide synthase in human normal but not cystic fibrosis bronchial epithelial cells. J Pathol 190:126–132

    Article  CAS  PubMed  Google Scholar 

  82. Johannesson M, Ludviksdottir D, Janson C (2000) Lung function changes in relation to menstrual cycle in females with cystic fibrosis. Respir Med 94:1043–1046

    Article  CAS  PubMed  Google Scholar 

  83. Todorova M, Genkova N, Marinov B, Mandadzhieva S, Bosheva M, Kostianev S (2013) Differences in exhaled nitric oxide levels between patients with cystic fibrosis and atopic bronchial asthma. Eur Respir J 42:P1185

    Google Scholar 

  84. Eshghi A, Khanbabaee G, Hassanzad M, Tabatabaee SA, Rezaei M (2019) Evaluation of fraction of exhaled nitric oxide (FeNO) in CF children and its association with sputum culture. J Compr Ped 10:e94685

    Article  Google Scholar 

  85. Shoemark A, Devaraj A, Meister M, Ozerovitch L, Hansell DM, Wilson R (2011) Elevated peripheral airway nitric oxide in bronchiectasis reflects disease severity. Respir Med 105:885–891

    Article  CAS  PubMed  Google Scholar 

  86. Cho Y, Lim H, Park JS, Lee JH, Lee C, Yoon HI (2013) Measurement of fractional exhaled nitric oxide in stable bronchiectasis. Tuberc Respir Dis (Seoul) 74:7–14

    Article  PubMed  Google Scholar 

  87. Foley SC, Hopkins NO, Fitzgerald MX, Donnelly SC, McLoughlin P (2007) Airway nitric oxide output is reduced in bronchiectasis. Respir Med 101:1549–1555

    Article  PubMed  Google Scholar 

  88. Linhares D, Jacinto T, Pereira AM, Fonseca JA (2011) Effects of atopy and rhinitis on exhaled nitric oxide values - a systematic review. Clin Transl Allergy 1:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lundberg JO (2008) Nitric oxide and the paranasal sinuses. Anat Rec 291:1479–1484

    Article  Google Scholar 

  90. Turner PJ, Maggs JR, Foreman JC (2000) Induction by inhibitors of nitric oxide synthase of hyperresponsiveness in the human nasal airway. Br J Pharmacol 131:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kang BH, Chen SS, Jou LS, Weng PK, Wang HW (2000) Immunolocalization of inducible nitric oxide synthase and 3-nitrotyrosine in the nasal mucosa of patients with rhinitis. Eur Arch Otorhinolaryngol 257:242–246

    Article  CAS  PubMed  Google Scholar 

  92. Hanazawa T, Antuni JD, Kharitonov SA, Barnes PJ (2000) Intranasal administration of eotaxin increases nasal eosinophils and nitric oxide in patients with allergic rhinitis. J Allergy Clin Immunol 105:58–64

    Article  CAS  PubMed  Google Scholar 

  93. Cameli P, Bargagli E, Bergantini L, Refini RM, Pieroni M, Sestini P et al (2019) Evaluation of multiple-flows exhaled nitric oxide in idiopathic and non-idiopathic interstitial lung disease. J Breath Res 13:026008

    Article  CAS  PubMed  Google Scholar 

  94. Rizzi M, Radovanovic D, Airoldi A, Cristiano A, Frassanito F, Gaboardi P et al (2019) Rationale underlying the measurement of fractional exhaled nitric oxide in systemic sclerosis patients. Clin Exp Rheumatol 37(Suppl 119):125–132

    Google Scholar 

  95. Cameli P, Bargagli E, Bennett D, Refini RM, Rottoli P (2015) Evaluation of exhaled nitric oxide in idiopathic interstitial lung diseases. Eur Respir J 46:PA3822

    Google Scholar 

  96. Lin G, Guo Y, Shi J, Hui Y, Liu Y, Xie C, et al (2020) Evaluation of fractional exhaled nitric oxide in interstitial lung disease. Res Square

    Google Scholar 

  97. Saleh D, Barnes PJ, Giaid A (1997) Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 155:1763–1769

    Article  CAS  PubMed  Google Scholar 

  98. Cameli P, Bargagli E, Refini RM, Pieroni MG, Pieroni MG, Rottoli P (2014) Exhaled nitric oxide in interstitial lung diseases. Resp Physiol Neurobi 197:46–52

    Article  CAS  Google Scholar 

  99. Cameli P, Earbagli E, Rottoli P (2016) Exhaled nitric oxide is not increased in pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 33:39–40

    PubMed  Google Scholar 

  100. Krauss E, Froehler M, Degen M, Mahavadi P, Dartsch RC, Korfei M et al (2019) Exhalative breath markers do not offer for diagnosis of interstitial lung diseases: data from the European IPF Registry (eurIPFreg) and Biobank. J Clin Med 8:643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moodley YP, Chetty R, Lalloo UG (1999) Nitric oxide levels in exhaled air and inducible nitric oxide synthase immunolocalization in pulmonary sarcoidosis. Eur Respir J 14:822–827

    Article  CAS  PubMed  Google Scholar 

  102. Chami HE, Fortier C, Tsacoyianis R, Roberts K, Hill N, Preston I (2016) Fractional exhaled nitric oxide in pulmonary hypertension. Eur Respir J 48:PA2492

    Google Scholar 

  103. Girgis RE, Champion HC, Diette GB, Johns RA, Permutt S, Sylvester JT (2005) Decreased exhaled nitric oxide in pulmonary arterial hypertension: Response to Bosentan therapy. Am J Respir Crit Care Med 172:352–357

    Article  PubMed  Google Scholar 

  104. Malekmohammad M, Folkerts G, Kashani BS, Naghan PA, Dastenae ZH, Khoundabi B et al (2019) Exhaled nitric oxide is not a biomarker for idiopathic pulmonary arterial hypertension or for treatment efficacy. BMC Pulm Med 19:188

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hill NS, Preston IR, Roberts KE (2015) Inhaled therapies for pulmonary hypertension. Respir Care 60:794–805

    Article  PubMed  Google Scholar 

  106. Sumino H, Nakamura T, Kanda T, Sato K, Sakamaki T, Takahashi T et al (2000) Effect of enalapril on exhaled nitric oxide in normotensive and hypertensive subjects. Hypertension 36:934–940

    Article  CAS  PubMed  Google Scholar 

  107. Perrone LA, Belser JA, Wadford DA, Katz JM, Tumpey TM (2013) Inducible nitric oxide contributes to viral pathogenesis following highly pathogenic influenza virus infection in mice. J Infect Dis 207:1576–1584

    Article  CAS  PubMed  Google Scholar 

  108. de Kluijver J, Evertse CE, Sont JK, Schrumpf JA, van Zeijl-van der Ham CJ, Dick CR, et al (2003) Are rhinovirus-induced airway responses in asthma aggravated by chronic allergen exposure? Am J Respir Crit Care Med 168:1174–80

    Google Scholar 

  109. Murphy AW, Platts MT, Lobo M, Hayden F (1998) Respiratory nitric oxide levels in experimental human influenza. Chest 114:452–456

    Article  CAS  PubMed  Google Scholar 

  110. Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ (1999) An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Darwish I, Miller C, Kain KC, Liles WC (2012) Inhaled nitric oxide therapy fails to improve outcome in experimental severe influenza. Int J Med Sci 9:157–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gadish T, Soferman R, Merimovitch T, Fireman E, Sivan Y (2010) Exhaled nitric oxide in acute respiratory syncytial virus bronchiolitis. Arch Pediatr Adolesc Med 164:727–731

    Article  PubMed  Google Scholar 

  113. Goldbart A, Golan-Tripto I, Pillar G, Livnat-Levanon G, Efrati O, Spiegel R et al (2020) Inhaled nitric oxide therapy in acute bronchiolitis: A multicenter randomized clinical trial. Sci Rep 10:9605

    Google Scholar 

  114. de Mel A (2020) Potential poles of nitric oxide in COVID-19: A perspective. Integr Mol Med 7:1–4

    Article  Google Scholar 

  115. Alvarez RA, Berra L, Gladwin MT (2020) Home nitric oxide therapy for COVID-19. Am J Respir Crit Care Med 202:16–20

    Article  PubMed  PubMed Central  Google Scholar 

  116. Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM (1991) Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 83:2038–047

    Google Scholar 

  117. Roberts JD Jr, Chen TY, Kawai N, Wain J, Dupuy P, Shimouchi A et al (1993) Inhaled nitric oxide reverses pulmonary vasoconstriction in the hypoxic and acidotic newborn lamb. Circ Res 72:246–254

    Article  CAS  PubMed  Google Scholar 

  118. Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD et al (2006) Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 355:343–353

    Article  CAS  PubMed  Google Scholar 

  119. Kinsella JP (2006) Inhaled nitric oxide therapy in premature newborns. Curr Opin Pediatr 18:107–111

    Article  PubMed  Google Scholar 

  120. Demoncheaux EAG, Davies M, Higenbottam TW, Smith APL (1996) Is nitrite a physiological NO donor? J Physiol 46:101

    Google Scholar 

  121. Waldow T, Alexiou K, Witt W, Wagner FM, Kappert U, Knaut M et al (2004) Protection of lung tissue against ischemia/reper-fusion injury by preconditioning with inhaled nitric oxide in an in situ pig model of normothermic pulmonary ischemia. Nitric Oxide 10:195–201

    Article  CAS  PubMed  Google Scholar 

  122. Gomez CB, del Valle HF, Bertolotti A, Negroni JA, Cuniberti L, Martinez V et al (2005) Effects of short-term inhaled nitric oxide on interleukin-8 release after single-lung transplantation in pigs. J Heart Lung Transplant 24:714–722

    Article  PubMed  Google Scholar 

  123. Egan TM, Hoffmann SC, Sevala M, Sadoff JD, Schlidt SA (2006) Nitroglycerin reperfusion reduces ischemia-reperfusion injury in non-heart-beating donor lungs. J Heart Lung Transplant 25:110–119

    Article  PubMed  Google Scholar 

  124. Loehe F, Preissler G, Annecke T, Bittmann I, Jauch KW, Messmer K (2004) Continuous infusion of nitroglycerin improves pulmonary graft function of non-heart-beating donor lungs. Transplantation 77:1803–1808

    Article  CAS  PubMed  Google Scholar 

  125. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al (1994) Report of the American-European concensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial co-ordination. Intensive Care Med 20:225–232

    Article  CAS  PubMed  Google Scholar 

  126. Marshall BE, Hanson CW, Frasch F, Marshall C (1994) Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. Intensive Care Med 20:379–389

    Article  CAS  PubMed  Google Scholar 

  127. Hillman ND, Meliones JN, Black DR, Craig DM, Cheifetz IM, Smith PK (1995) In acute lung injury inhaled nitric oxide improves ventilation-perfusion matching, pulmonary vascular mechanics, transpulmonary vascular efficiency. J Thorac Cardiovasc Surg 110:593–600

    Article  CAS  PubMed  Google Scholar 

  128. Rossaint R, Gerlach H, Schmidt-Ruhnke H, Pappert D, Lewandowski K, Steudel W et al (1995) Efficacy of inhaled nitric oxide in patients with severe ARDS. Chest 107:1107–1115

    Google Scholar 

  129. Young JD, Brampton WJ, Knighton JD, Finfer SR (1994) Inhaled nitric oxide in acute respiratory failure in adults. Br J Anaesth 73:499–502

    Article  CAS  PubMed  Google Scholar 

  130. Barbera JA, Roger N, Roca J, Rovira I, Higenbottam TW, Rodriguez-Roisin R (1996) Worsening of pulmonary gas exchange with nitric oxide inhalation in chronic obstructive pulmonary disease. Lancet 347:436–440

    Article  CAS  PubMed  Google Scholar 

  131. Yoshida M, Taguchi O, Gabazza EC, Kobayashi T, Yamakami T, Kobayashi H et al (1997) Combined inhalation of nitric oxide and oxygen in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 155:S26–S29

    Article  Google Scholar 

  132. Fakhr BS, Wiegand SF, Pinciroli R, Gianni S, Morais CCA, Ikeda T et al (2020) High concentrations of nitric oxide inhalation therapy in pregnant patients with severe corona virus disease 2019 (COVID-19). Obstet Gynecol 136:1109–1113

    Article  Google Scholar 

  133. Parikh R, Wilson C, Weinberg J, Gavin D, Murphy J, Reardon CC (2020) Inhaled nitric oxide treatment in spontaneously breathing COVID-19 patients. Ther Adv Respir Dis 14:1–3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Gulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gulati, K., Thokchom, S.K., Ray, A. (2023). Nitric Oxide as a Diagnostic and Therapeutic Tool in Respiratory Diseases. In: Ray, A., Gulati, K. (eds) Nitric Oxide: From Research to Therapeutics. Advances in Biochemistry in Health and Disease, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-031-24778-1_11

Download citation

Publish with us

Policies and ethics