Skip to main content

Fractional Exhaled Nitric Oxide: Indications and Interpretation

  • Chapter
  • First Online:
Diagnostic Tests in Pediatric Pulmonology

Abstract

Exhaled nitric oxide (NO) is a marker for eosinophilic airway inflammation. The correlations between fraction of exhaled NO (FENO) and eosinophils in blood, sputum, bronchoalveolar lavage, and mucosal biopsies of the airway have been well studied. A quantitative, noninvasive, and simple methodology has been developed to determine how best to assess FENO as a measure of airway inflammation. FENO measurement has been standardized by the American Thoracic Society/European Respiratory Society (Am J Respir Crit Care Med 171(8):912–930, 2005). The gold standard for measuring FENO is the single-breath online method, which can be performed in young children from the age of 4–5 years. A chemiluminescence-based analyzer or a portable analyzer using an electrochemical sensor can be used to measure FENO. Many studies have shown that FENO has potential diagnostic and therapeutic roles in various respiratory diseases, particularly asthma. In asthma, FENO is useful to diagnose and monitor eosinophilic airway inflammation, and predict steroid responsiveness. It also can be helpful in supporting the diagnosis of asthma and in guiding adjustment of anti-inflammatory medication. ATS Clinical Practice Guidelines have been published for interpretation and clinical applicability of FENO (Dweik et al., 184(5):602–615, 2011). FENO can provide additional information on underlying airway inflammation, and is complementary to respiratory symptoms, lung function tests, and bronchial provocation tests for asthma and other respiratory diseases in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes PJ, Dweik RA, Gelb AF, Gibson PG, George SC, Grasemann H, et al. Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest. 2010;138(3):682–92. PubMed PMID: 20822990.

    CAS  PubMed  Google Scholar 

  2. American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171(8):912–30. PubMed PMID: 15817806.

    Google Scholar 

  3. Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Res Crit Care Med. 1999;160(6):2104–17. PubMed PMID: 10588636.

    Google Scholar 

  4. Silkoff PE, Erzurum SC, Lundberg JO, George SC, Marczin N, Hunt JF, et al. ATS workshop proceedings: exhaled nitric oxide and nitric oxide oxidative metabolism in exhaled breath condensate. Proc Am Thorac Soc. 2006;3(2):131–45. PubMed PMID: 16565422.

    PubMed  Google Scholar 

  5. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–15. PubMed PMID: 21885636.

    CAS  PubMed  Google Scholar 

  6. Baraldi E, de Jongste JC. European Respiratory Society/American Thoracic Society Task F. Measurement of exhaled nitric oxide in children, 2001. Eur Respir J. 2002;20(1):223–37.

    CAS  PubMed  Google Scholar 

  7. Lane C, Knight D, Burgess S, Franklin P, Horak F, Legg J, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax. 2004;59(9):757–60. PubMed PMID: 15333851. Pubmed Central PMCID: 1747143.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Barreto M, Villa MP, Monti F, Bohmerova Z, Martella S, Montesano M, et al. Additive effect of eosinophilia and atopy on exhaled nitric oxide levels in children with or without a history of respiratory symptoms. Pediatr Allergy Immunol. 2005;16(1):52–8. PubMed PMID: 15693912.

    PubMed  Google Scholar 

  9. Lex C, Ferreira F, Zacharasiewicz A, Nicholson AG, Haslam PL, Wilson NM, et al. Airway eosinophilia in children with severe asthma: predictive values of noninvasive tests. Am J Respir Crit Care Med. 2006;174(12):1286–91. PubMed PMID: 16973985.

    PubMed  Google Scholar 

  10. Payne DN, Adcock IM, Wilson NM, Oates T, Scallan M, Bush A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med. 2001;164(8 Pt 1):1376–81. PubMed PMID: 11704581.

    CAS  PubMed  Google Scholar 

  11. Strunk RC, Szefler SJ, Phillips BR, Zeiger RS, Chinchilli VM, Larsen G, et al. Relationship of exhaled nitric oxide to clinical and inflammatory markers of persistent asthma in children. J Allergy Clin Immunol. 2003;112(5):883–92. PubMed PMID: 14610474.

    CAS  PubMed  Google Scholar 

  12. van den Toorn LM, Overbeek SE, de Jongste JC, Leman K, Hoogsteden HC, Prins JB. Airway inflammation is present during clinical remission of atopic asthma. Am J Respir Crit Care Med. 2001;164(11):2107–13. PubMed PMID: 11739143.

    PubMed  Google Scholar 

  13. Warke TJ, Fitch PS, Brown V, Taylor R, Lyons JD, Ennis M, et al. Exhaled nitric oxide correlates with airway eosinophils in childhood asthma. Thorax. 2002;57(5):383–7. PubMed PMID: 11978911. Pubmed Central PMCID: 1746317.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Thomas PS, Gibson PG, Wang H, Shah S, Henry RL. The relationship of exhaled nitric oxide to airway inflammation and responsiveness in children. J Asthma. 2005;42(4):291–5. PubMed PMID: 16032938.

    CAS  PubMed  Google Scholar 

  15. Hemmingsson T, Linnarsson D, Gambert R. Novel hand-held device for exhaled nitric oxide-analysis in research and clinical applications. J Clin Monit Comput. 2004;18(5–6):379–87. PubMed PMID: 15957630.

    PubMed  Google Scholar 

  16. Alving K, Janson C, Nordvall L. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children. Respir Res. 2006;7:67. PubMed PMID: 16626491. Pubmed Central PMCID: 1462993.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Pisi R, Aiello M, Tzani P, Marangio E, Olivieri D, Chetta A. Measurement of fractional exhaled nitric oxide by a new portable device: comparison with the standard technique. J Asthma. 2010;47(7):805–9. PubMed PMID: 20670207.

    CAS  PubMed  Google Scholar 

  18. McGill C, Malik G, Turner SW. Validation of a hand-held exhaled nitric oxide analyzer for use in children. Pediatr Pulmonol. 2006;41(11):1053–7. PubMed PMID: 16871592.

    PubMed  Google Scholar 

  19. Buchvald F, Baraldi E, Carraro S, Gaston B, De Jongste J, Pijnenburg MW, et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J Allergy Clin Immunol. 2005;115(6):1130–6. PubMed PMID: 15940124.

    CAS  PubMed  Google Scholar 

  20. Pijnenburg MW, Floor SE, Hop WC, De Jongste JC. Daily ambulatory exhaled nitric oxide measurements in asthma. Pediatr Allergy Immunol. 2006;17(3):189–93. PubMed PMID: 16672005.

    PubMed  Google Scholar 

  21. Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Nitric oxide in exhaled air. Eur Respir J. 1996;9(12):2671–80. PubMed PMID: 8980984.

    CAS  PubMed  Google Scholar 

  22. Silkoff PE, McClean PA, Slutsky AS, Furlott HG, Hoffstein E, Wakita S, et al. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am J Respir Crit Care Med. 1997;155(1):260–7. PubMed PMID: 9001322.

    CAS  PubMed  Google Scholar 

  23. Pedroletti C, Zetterquist W, Nordvall L, Alving K. Evaluation of exhaled nitric oxide in schoolchildren at different exhalation flow rates. Pediatr Res. 2002;52(3):393–8. PubMed PMID: 12193674.

    CAS  PubMed  Google Scholar 

  24. Silkoff PE, Sylvester JT, Zamel N, Permutt S. Airway nitric oxide diffusion in asthma: Role in pulmonary function and bronchial responsiveness. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1218–28. PubMed PMID: 10764315.

    CAS  PubMed  Google Scholar 

  25. Lundberg JO, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Anggaard A, et al. High nitric oxide production in human paranasal sinuses. Nat Med. 1995;1(4):370–3. PubMed PMID: 7585069.

    CAS  PubMed  Google Scholar 

  26. Baraldi E, Scollo M, Zaramella C, Zanconato S, Zacchello F. A simple flow-driven method for online measurement of exhaled NO starting at the age of 4 to 5 years. Am J Respir Crit Care Med. 2000;162(5):1828–32. PubMed PMID: 11069821.

    CAS  PubMed  Google Scholar 

  27. Silkoff PE, Bates CA, Meiser JB, Bratton DL. Single-breath exhaled nitric oxide in preschool children facilitated by a servo-controlled device maintaining constant flow. Pediatr Pulmonol. 2004;37(6):554–8. PubMed PMID: 15114557.

    PubMed  Google Scholar 

  28. Buchvald F, Bisgaard H. FeNO measured at fixed exhalation flow rate during controlled tidal breathing in children from the age of 2 yr. Am J Respir Crit Care Med. 2001;163(3 Pt 1):699–704. PubMed PMID: 11254527.

    CAS  PubMed  Google Scholar 

  29. Debley JS, Stamey DC, Cochrane ES, Gama KL, Redding GJ. Exhaled nitric oxide, lung function, and exacerbations in wheezy infants and toddlers. J Allergy Clin Immunol. 2010;125(6):1228–34 e13. PubMed PMID: 20462633. Pubmed Central PMCID: 2879468.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Tepper RS, Llapur CJ, Jones MH, Tiller C, Coates C, Kimmel R, et al. Expired nitric oxide and airway reactivity in infants at risk for asthma. J Allergy Clin Immunol. 2008;122(4):760–5. PubMed PMID: 18760452.

    CAS  PubMed  Google Scholar 

  31. Wildhaber JH, Hall GL, Stick SM. Measurements of exhaled nitric oxide with the single-breath technique and positive expiratory pressure in infants. Am J Respir Crit Care Med. 1999;159(1):74–8. PubMed PMID: 9872821.

    CAS  PubMed  Google Scholar 

  32. Baraldi E, Dario C, Ongaro R, Scollo M, Azzolin NM, Panza N, et al. Exhaled nitric oxide concentrations during treatment of wheezing exacerbation in infants and young children. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1284–8. PubMed PMID: 10194178.

    CAS  PubMed  Google Scholar 

  33. Franklin PJ, Turner SW, Mutch RC, Stick SM. Measuring exhaled nitric oxide in infants during tidal breathing: methodological issues. Pediatr Pulmonol. 2004;37(1):24–30. PubMed PMID: 14679485.

    PubMed  Google Scholar 

  34. Hall GL, Reinmann B, Wildhaber JH, Frey U. Tidal exhaled nitric oxide in healthy, unsedated newborn infants with prenatal tobacco exposure. J Appl Physiol. 2002;92(1):59–66. PubMed PMID: 11744643.

    CAS  PubMed  Google Scholar 

  35. Franklin PJ, Turner SW, Mutch RC, Stick SM. Comparison of single-breath and tidal breathing exhaled nitric oxide levels in infants. Eur Respir J. 2004;23(3):369–72. PubMed PMID: 15065823.

    CAS  PubMed  Google Scholar 

  36. Tsoukias NM, George SC. A two-compartment model of pulmonary nitric oxide exchange dynamics. J Appl Physiol. 1998;85(2):653–66. PubMed PMID: 9688744.

    CAS  PubMed  Google Scholar 

  37. Lehtimaki L, Kankaanranta H, Saarelainen S, Hahtola P, Jarvenpaa R, Koivula T, et al. Extended exhaled NO measurement differentiates between alveolar and bronchial inflammation. Am J Respir Crit Care Med. 2001;163(7):1557–61. PubMed PMID: 11401873.

    CAS  PubMed  Google Scholar 

  38. Lehtimaki L, Turjanmaa V, Kankaanranta H, Saarelainen S, Hahtola P, Moilanen E. Increased bronchial nitric oxide production in patients with asthma measured with a novel method of different exhalation flow rates. Ann Med. 2000;32(6):417–23. PubMed PMID: 11028690.

    CAS  PubMed  Google Scholar 

  39. Lehtimaki L, Kankaanranta H, Saarelainen S, Turjanmaa V, Moilanen E. Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur Respir J. 2002;20(4):841–5. PubMed PMID: 12412673.

    CAS  PubMed  Google Scholar 

  40. Keen C, Gustafsson P, Lindblad A, Wennergren G, Olin AC. Low levels of exhaled nitric oxide are associated with impaired lung function in cystic fibrosis. Pediatr Pulmonol. 2010;45(3):241–8. PubMed PMID: 20146368.

    CAS  PubMed  Google Scholar 

  41. Paraskakis E, Brindicci C, Fleming L, Krol R, Kharitonov SA, Wilson NM, et al. Measurement of bronchial and alveolar nitric oxide production in normal children and children with asthma. Am J Respir Crit Care Med. 2006;174(3):260–7. PubMed PMID: 16627868.

    CAS  PubMed  Google Scholar 

  42. Sepponen A, Lehtimaki L, Huhtala H, Kaila M, Kankaanranta H, Moilanen E. Alveolar and bronchial nitric oxide output in healthy children. Pediatr Pulmonol. 2008;43(12):1242–8. PubMed PMID: 19009623.

    PubMed  Google Scholar 

  43. Shin HW, Rose-Gottron CM, Sufi RS, Perez F, Cooper DM, Wilson AF, et al. Flow-independent nitric oxide exchange parameters in cystic fibrosis. Am J Respir Crit Care Med. 2002;165(3):349–57. PubMed PMID: 11818320.

    PubMed  Google Scholar 

  44. Suri R, Paraskakis E, Bush A. Alveolar, but not bronchial nitric oxide production is elevated in cystic fibrosis. Pediatr Pulmonol. 2007;42(12):1215–21. PubMed PMID: 17969001.

    PubMed  Google Scholar 

  45. See KC, Christiani DC. Normal values and thresholds for the clinical interpretation of exhaled nitric oxide levels in the US general population: results from the National Health and Nutrition Examination Survey 2007–2010. Chest. 2013;143(1):107–16. PubMed PMID: 22628492.

    PubMed  Google Scholar 

  46. Malmberg LP, Petays T, Haahtela T, Laatikainen T, Jousilahti P, Vartiainen E, et al. Exhaled nitric oxide in healthy nonatopic school-age children: determinants and height-adjusted reference values. Pediatr Pulmonol. 2006;41(7):635–42. PubMed PMID: 16703576.

    CAS  PubMed  Google Scholar 

  47. Kovesi T, Dales R. Exhaled nitric oxide and respiratory symptoms in a community sample of school aged children. Pediatr Pulmonol. 2008;43(12):1198–205. PubMed PMID: 19003883.

    PubMed  Google Scholar 

  48. Kovesi T, Kulka R, Dales R. Exhaled nitric oxide concentration is affected by age, height, and race in healthy 9- to 12-year-old children. Chest. 2008;133(1):169–75. PubMed PMID: 17925422.

    CAS  PubMed  Google Scholar 

  49. Saito J, Inoue K, Sugawara A, Yoshikawa M, Watanabe K, Ishida T, et al. Exhaled nitric oxide as a marker of airway inflammation for an epidemiologic study in schoolchildren. J Allergy Clin Immunol. 2004;114(3):512–6. PubMed PMID: 15356549.

    CAS  PubMed  Google Scholar 

  50. Wong GW, Liu EK, Leung TF, Yung E, Ko FW, Hui DS, et al. High levels and gender difference of exhaled nitric oxide in Chinese schoolchildren. Clin Exp Allergy. 2005;35(7):889–93. PubMed PMID: 16008675.

    CAS  PubMed  Google Scholar 

  51. Ekroos H, Karjalainen J, Sarna S, Laitinen LA, Sovijarvi AR. Short-term variability of exhaled nitric oxide in young male patients with mild asthma and in healthy subjects. Respir Med. 2002;96(11):895–900. PubMed PMID: 12418587.

    CAS  PubMed  Google Scholar 

  52. Kharitonov SA, Gonio F, Kelly C, Meah S, Barnes PJ. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur Respir J. 2003;21(3):433–8. PubMed PMID: 12661997.

    CAS  PubMed  Google Scholar 

  53. Santamaria F, Montella S, De Stefano S, Sperli F, Barbarano F, Valerio G. Relationship between exhaled nitric oxide and body mass index in children and adolescents. J Allergy Clin Immunol. 2005;116(5):1163–4. author reply 4–5. PubMed PMID: 16275394.

    PubMed  Google Scholar 

  54. Olin AC, Aldenbratt A, Ekman A, Ljungkvist G, Jungersten L, Alving K, et al. Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respir Med. 2001;95(2):153–8. PubMed PMID: 11217912.

    CAS  PubMed  Google Scholar 

  55. Zetterquist W, Pedroletti C, Lundberg JO, Alving K. Salivary contribution to exhaled nitric oxide. Eur Respir J. 1999;13(2):327–33. PubMed PMID: 10065676.

    CAS  PubMed  Google Scholar 

  56. Cardinale F, Tesse R, Fucilli C, Loffredo MS, Iacoviello G, Chinellato I, et al. Correlation between exhaled nitric oxide and dietary consumption of fats and antioxidants in children with asthma. J Allergy Clin Immunol. 2007;119(5):1268–70. PubMed PMID: 17321576.

    CAS  PubMed  Google Scholar 

  57. Byrnes CA, Dinarevic S, Busst CA, Shinebourne EA, Bush A. Effect of measurement conditions on measured levels of peak exhaled nitric oxide. Thorax. 1997;52(8):697–701. PubMed PMID: 9337828. Pubmed Central PMCID: 1758633.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bruce C, Yates DH, Thomas PS. Caffeine decreases exhaled nitric oxide. Thorax. 2002;57(4):361–3. PubMed PMID: 11923558. Pubmed Central PMCID: 1746303.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Yates DH, Kharitonov SA, Robbins RA, Thomas PS, Barnes PJ. The effect of alcohol ingestion on exhaled nitric oxide. Eur Respir J. 1996;9(6):1130–3. PubMed PMID: 8804927.

    CAS  PubMed  Google Scholar 

  60. Kharitonov SA, Lubec G, Lubec B, Hjelm M, Barnes PJ. L-arginine increases exhaled nitric oxide in normal human subjects. Clin Sci. 1995;88(2):135–9. PubMed PMID: 7720336.

    CAS  PubMed  Google Scholar 

  61. Mehta S, Stewart DJ, Levy RD. The hypotensive effect of L-arginine is associated with increased expired nitric oxide in humans. Chest. 1996;109(6):1550–5. PubMed PMID: 8769510.

    CAS  PubMed  Google Scholar 

  62. Ogata H, Yatabe M, Misaka S, Shikama Y, Sato S, Munakata M, et al. Effect of oral L-arginine administration on exhaled nitric oxide (no) concentration in healthy volunteers. Fukushima J Med Sci. 2013;59(1):43–8. PubMed PMID: 23842514.

    CAS  PubMed  Google Scholar 

  63. Zetterquist W, Marteus H, Kalm-Stephens P, Nas E, Nordvall L, Johannesson M, et al. Oral bacteria—the missing link to ambiguous findings of exhaled nitrogen oxides in cystic fibrosis. Respir Med. 2009;103(2):187–93. PubMed PMID: 19006660.

    PubMed  Google Scholar 

  64. Baraldi E, Azzolin NM, Zanconato S, Dario C, Zacchello F. Corticosteroids decrease exhaled nitric oxide in children with acute asthma. J Pediatr. 1997;131(3):381–5. PubMed PMID: 9329413.

    CAS  PubMed  Google Scholar 

  65. Kharitonov SA, Yates DH, Barnes PJ. Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med. 1996;153(1):454–7. PubMed PMID: 8542158.

    CAS  PubMed  Google Scholar 

  66. Carra S, Gagliardi L, Zanconato S, Scollo M, Azzolin N, Zacchello F, et al. Budesonide but not nedocromil sodium reduces exhaled nitric oxide levels in asthmatic children. Respir Med. 2001;95(9):734–9. PubMed PMID: 11575894.

    CAS  PubMed  Google Scholar 

  67. Bisgaard H, Loland L, Oj JA. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast. Am J Respir Crit Care Med. 1999;160(4):1227–31. PubMed PMID: 10508811.

    CAS  PubMed  Google Scholar 

  68. Silkoff PE, Romero FA, Gupta N, Townley RG, Milgrom H. Exhaled nitric oxide in children with asthma receiving Xolair (omalizumab), a monoclonal anti-immunoglobulin E antibody. Pediatrics. 2004;113(4):e308–12. PubMed PMID: 15060258.

    PubMed  Google Scholar 

  69. Silkoff PE, Wakita S, Chatkin J, Ansarin K, Gutierrez C, Caramori M, et al. Exhaled nitric oxide after beta2-agonist inhalation and spirometry in asthma. Am J Respir Crit Care Med. 1999;159(3):940–4. PubMed PMID: 10051277.

    CAS  PubMed  Google Scholar 

  70. Mitsufuji H, Kobayashi H, Imasaki T, Ichikawa T, Kawakami T, Tomita T. Acute changes in bronchoconstriction influences exhaled nitric oxide level. Jpn J Physiol. 2001;51(2):151–7. PubMed PMID: 11405907.

    CAS  PubMed  Google Scholar 

  71. Kissoon N, Duckworth LJ, Blake KV, Murphy SP, Lima JJ. Effect of beta2-agonist treatment and spirometry on exhaled nitric oxide in healthy children and children with asthma. Pediatr Pulmonol. 2002;34(3):203–8. PubMed PMID: 12203849.

    PubMed  Google Scholar 

  72. Lim S, Tomita K, Caramori G, Jatakanon A, Oliver B, Keller A, et al. Low-dose theophylline reduces eosinophilic inflammation but not exhaled nitric oxide in mild asthma. Am J Respir Crit Care Med. 2001;164(2):273–6. PubMed PMID: 11463600.

    CAS  PubMed  Google Scholar 

  73. Deykin A, Halpern O, Massaro AF, Drazen JM, Israel E. Expired nitric oxide after bronchoprovocation and repeated spirometry in patients with asthma. Am J Respir Crit Care Med. 1998;157(3 Pt 1):769–75. PubMed PMID: 9517589.

    CAS  PubMed  Google Scholar 

  74. Kharitonov SA, Robbins RA, Yates D, Keatings V, Barnes PJ. Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am J Respir Crit Care Med. 1995;152(2):609–12. PubMed PMID: 7543345.

    CAS  PubMed  Google Scholar 

  75. Schilling J, Holzer P, Guggenbach M, Gyurech D, Marathia K, Geroulanos S. Reduced endogenous nitric oxide in the exhaled air of smokers and hypertensives. Eur Respir J. 1994;7(3):467–71. PubMed PMID: 8013603.

    CAS  PubMed  Google Scholar 

  76. Yates DH, Breen H, Thomas PS. Passive smoke inhalation decreases exhaled nitric oxide in normal subjects. Am J Respir Crit Care Med. 2001;164(6):1043–6. PubMed PMID: 11587994.

    CAS  PubMed  Google Scholar 

  77. Gabriele C, Asgarali R, Jaddoe VW, Hofman A, Moll HA, de Jongste JC. Smoke exposure, airway symptoms and exhaled nitric oxide in infants: the Generation R study. Eur Respir J. 2008;32(2):307–13. PubMed PMID: 18417508.

    CAS  PubMed  Google Scholar 

  78. Frey U, Kuehni C, Roiha H, Cernelc M, Reinmann B, Wildhaber JH, et al. Maternal atopic disease modifies effects of prenatal risk factors on exhaled nitric oxide in infants. Am J Respir Crit Care Med. 2004;170(3):260–5. PubMed PMID: 15059789.

    PubMed  Google Scholar 

  79. Franklin PJ, Turner S, Mutch R, Stick SM. Parental smoking increases exhaled nitric oxide in young children. Eur Respir J. 2006;28(4):730–3. PubMed PMID: 17012629.

    CAS  PubMed  Google Scholar 

  80. Gabriele C, Pijnenburg MW, Monti F, Hop W, Bakker ME, de Jongste JC. The effect of spirometry and exercise on exhaled nitric oxide in asthmatic children. Pediatr Allergy Immunol. 2005;16(3):243–7. PubMed PMID: 15853954.

    PubMed  Google Scholar 

  81. Deykin A, Massaro AF, Coulston E, Drazen JM, Israel E. Exhaled nitric oxide following repeated spirometry or repeated plethysmography in healthy individuals. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1237–40. PubMed PMID: 10764317.

    CAS  PubMed  Google Scholar 

  82. Piacentini GL, Bodini A, Costella S, Vicentini L, Suzuki Y, Boner AL. Exhaled nitric oxide is reduced after sputum induction in asthmatic children. Pediatr Pulmonol. 2000;29(6):430–3. PubMed PMID: 10821723.

    CAS  PubMed  Google Scholar 

  83. Beier J, Beeh KM, Kornmann O, Buhl R. Sputum induction leads to a decrease of exhaled nitric oxide unrelated to airflow. Eur Respir J. 2003;22(2):354–7. PubMed PMID: 12952273.

    CAS  PubMed  Google Scholar 

  84. ten Hacken NH, van der Vaart H, van der Mark TW, Koeter GH, Postma DS. Exhaled nitric oxide is higher both at day and night in subjects with nocturnal asthma. Am J Respir Crit Care Med. 1998;158(3):902–7. PubMed PMID: 9731024.

    PubMed  Google Scholar 

  85. Ratjen F, Kavuk I, Gartig S, Wiesemann HG, Grasemann H. Airway nitric oxide in infants with acute wheezy bronchitis. Pediatr Allergy Immunol. 2000;11(4):230–5. PubMed PMID: 11110577.

    CAS  PubMed  Google Scholar 

  86. Georges G, Bartelson BB, Martin RJ, Silkoff PE. Circadian variation in exhaled nitric oxide in nocturnal asthma. J Asthma. 1999;36(5):467–73. PubMed PMID: 10461936.

    CAS  PubMed  Google Scholar 

  87. Mattes J, Storm van’s Gravesande K, Moeller C, Moseler M, Brandis M, Kuehr J. Circadian variation of exhaled nitric oxide and urinary eosinophil protein X in asthmatic and healthy children. Pediatr Res. 2002;51(2):190–4. PubMed PMID: 11809913.

    CAS  PubMed  Google Scholar 

  88. Vahlkvist S, Sinding M, Skamstrup K, Bisgaard H. Daily home measurements of exhaled nitric oxide in asthmatic children during natural birch pollen exposure. J Allergy Clin Immunol. 2006;117(6):1272–6. PubMed PMID: 16750986.

    CAS  PubMed  Google Scholar 

  89. Morris NH, Carroll S, Nicolaides KH, Steer PJ, Warren JB. Exhaled nitric oxide concentration and amniotic fluid nitrite concentration during pregnancy. Eur J Clin Invest. 1995;25(2):138–41. PubMed PMID: 7737264.

    CAS  PubMed  Google Scholar 

  90. Oguzulgen IK, Turktas H, Erbas D. Airway inflammation in premenstrual asthma. J Asthma. 2002;39(6):517–22. PubMed PMID: 12375711.

    PubMed  Google Scholar 

  91. Morris NH, Sooranna SR, Steer PJ, Warren JB. The effect of the menstrual cycle on exhaled nitric oxide and urinary nitrate concentration. Eur J Clin Invest. 1996;26(6):481–4. PubMed PMID: 8817162.

    CAS  PubMed  Google Scholar 

  92. Jilma B, Kastner J, Mensik C, Vondrovec B, Hildebrandt J, Krejcy K, et al. Sex differences in concentrations of exhaled nitric oxide and plasma nitrate. Life Sci. 1996;58(6):469–76. PubMed PMID: 8569419.

    CAS  PubMed  Google Scholar 

  93. Dotsch J, Demirakca S, Terbrack HG, Huls G, Rascher W, Kuhl PG. Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Eur Respir J. 1996;9(12):2537–40. PubMed PMID: 8980966.

    CAS  PubMed  Google Scholar 

  94. Carlin RE, Ferrario L, Boyd JT, Camporesi EM, McGraw DJ, Hakim TS. Determinants of nitric oxide in exhaled gas in the isolated rabbit lung. Am J Respir Crit Care Med. 1997;155(3):922–7. PubMed PMID: 9117027.

    CAS  PubMed  Google Scholar 

  95. Stromberg S, Lonnqvist PA, Persson MG, Gustafsson LE. Lung distension and carbon dioxide affect pulmonary nitric oxide formation in the anaesthetized rabbit. Acta Physiol Scand. 1997;159(1):59–67. PubMed PMID: 9124071.

    CAS  PubMed  Google Scholar 

  96. Persson MG, Lonnqvist PA, Gustafsson LE. Positive end-expiratory pressure ventilation elicits increases in endogenously formed nitric oxide as detected in air exhaled by rabbits. Anesthesiology. 1995;82(4):969–74. PubMed PMID: 7717570.

    CAS  PubMed  Google Scholar 

  97. Dweik RA, Laskowski D, Abu-Soud HM, Kaneko F, Hutte R, Stuehr DJ, et al. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest. 1998;101(3):660–6. PubMed PMID: 9449700. Pubmed Central PMCID: 508610.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Schmetterer L, Strenn K, Kastner J, Eichler HG, Wolzt M. Exhaled NO during graded changes in inhaled oxygen in man. Thorax. 1997;52(8):736–8. PubMed PMID: 9337835. Pubmed Central PMCID: 1758631.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Brussee JE, Smit HA, Kerkhof M, Koopman LP, Wijga AH, Postma DS, et al. Exhaled nitric oxide in 4-year-old children: relationship with asthma and atopy. Eur Respir J. 2005;25(3):455–61. PubMed PMID: 15738288.

    CAS  PubMed  Google Scholar 

  100. Prasad A, Langford B, Stradling JR, Ho LP. Exhaled nitric oxide as a screening tool for asthma in school children. Respir Med. 2006;100(1):167–73. PubMed PMID: 15885997.

    PubMed  Google Scholar 

  101. Malmberg LP, Pelkonen AS, Haahtela T, Turpeinen M. Exhaled nitric oxide rather than lung function distinguishes preschool children with probable asthma. Thorax. 2003;58(6):494–9. PubMed PMID: 12775859. Pubmed Central PMCID: 1746693.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Sivan Y, Gadish T, Fireman E, Soferman R. The use of exhaled nitric oxide in the diagnosis of asthma in school children. J Pediatr. 2009;155(2):211–6. PubMed PMID: 19394049.

    CAS  PubMed  Google Scholar 

  103. Henriksen AH, Lingaas-Holmen T, Sue-Chu M, Bjermer L. Combined use of exhaled nitric oxide and airway hyperresponsiveness in characterizing asthma in a large population survey. Eur Respir J. 2000;15(5):849–55. PubMed PMID: 10853848.

    CAS  PubMed  Google Scholar 

  104. Narang I, Ersu R, Wilson NM, Bush A. Nitric oxide in chronic airway inflammation in children: diagnostic use and pathophysiological significance. Thorax. 2002;57(7):586–9. PubMed PMID: 12096200. Pubmed Central PMCID: 1746369.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Nordvall SL, Janson C, Kalm-Stephens P, Foucard T, Toren K, Alving K. Exhaled nitric oxide in a population-based study of asthma and allergy in schoolchildren. Allergy. 2005;60(4):469–75. PubMed PMID: 15727578.

    CAS  PubMed  Google Scholar 

  106. Hahn PY, Morgenthaler TY, Lim KG. Use of exhaled nitric oxide in predicting response to inhaled corticosteroids for chronic cough. Mayo Clin Proc. 2007;82(11):1350–5. PubMed PMID: 17976354.

    CAS  PubMed  Google Scholar 

  107. Szefler SJ, Martin RJ, King TS, Boushey HA, Cherniack RM, Chinchilli VM, et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol. 2002;109(3):410–8. PubMed PMID: 11897984.

    CAS  PubMed  Google Scholar 

  108. Szefler SJ, Phillips BR, Martinez FD, Chinchilli VM, Lemanske RF, Strunk RC, et al. Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. J Allergy Clin Immunol. 2005;115(2):233–42. PubMed PMID: 15696076.

    CAS  PubMed  Google Scholar 

  109. Zeiger RS, Szefler SJ, Phillips BR, Schatz M, Martinez FD, Chinchilli VM, et al. Response profiles to fluticasone and montelukast in mild-to-moderate persistent childhood asthma. J Allergy Clin Immunol. 2006;117(1):45–52. PubMed PMID: 16387583.

    CAS  PubMed  Google Scholar 

  110. Knuffman JE, Sorkness CA, Lemanske Jr RF, Mauger DT, Boehmer SJ, Martinez FD, et al. Phenotypic predictors of long-term response to inhaled corticosteroid and leukotriene modifier therapies in pediatric asthma. J Allergy Clin Immunol. 2009;123(2):411–6. PubMed PMID: 19121860. Pubmed Central PMCID: 2662352.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Smith AD, Cowan JO, Brassett KP, Filsell S, McLachlan C, Monti-Sheehan G, et al. Exhaled nitric oxide: a predictor of steroid response. Am J Respir Crit Care Med. 2005;172(4):453–9. PubMed PMID: 15901605.

    PubMed  Google Scholar 

  112. Silkoff PE, McClean P, Spino M, Erlich L, Slutsky AS, Zamel N. Dose-response relationship and reproducibility of the fall in exhaled nitric oxide after inhaled beclomethasone dipropionate therapy in asthma patients. Chest. 2001;119(5):1322–8. PubMed PMID: 11348935.

    CAS  PubMed  Google Scholar 

  113. Cowan DC, Cowan JO, Palmay R, Williamson A, Taylor DR. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax. 2010;65(5):384–90. PubMed PMID: 19996343.

    PubMed  Google Scholar 

  114. Jones SL, Herbison P, Cowan JO, Flannery EM, Hancox RJ, McLachlan CR, et al. Exhaled NO and assessment of anti-inflammatory effects of inhaled steroid: dose-response relationship. Eur Respir J. 2002;20(3):601–8. PubMed PMID: 12358335.

    CAS  PubMed  Google Scholar 

  115. Kharitonov SA, Donnelly LE, Montuschi P, Corradi M, Collins JV, Barnes PJ. Dose-dependent onset and cessation of action of inhaled budesonide on exhaled nitric oxide and symptoms in mild asthma. Thorax. 2002;57(10):889–96. PubMed PMID: 12324677. Pubmed Central PMCID: 1746196.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Pijnenburg MW, Hofhuis W, Hop WC, De Jongste JC. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. Thorax. 2005;60(3):215–8. PubMed PMID: 15741438. Pubmed Central PMCID: 1747332.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Li AM, Tsang TW, Lam HS, Sung RY, Chang AB. Predictors for failed dose reduction of inhaled corticosteroids in childhood asthma. Respirology. 2008;13(3):400–7. PubMed PMID: 18399863.

    PubMed  Google Scholar 

  118. Zacharasiewicz A, Wilson N, Lex C, Erin EM, Li AM, Hansel T, et al. Clinical use of noninvasive measurements of airway inflammation in steroid reduction in children. Am J Respir Crit Care Med. 2005;171(10):1077–82. PubMed PMID: 15709050.

    PubMed  Google Scholar 

  119. de Jongste JC, Carraro S, Hop WC, Group CS, Baraldi E. Daily telemonitoring of exhaled nitric oxide and symptoms in the treatment of childhood asthma. Am J Respir Crit Care Med. 2009;179(2):93–7. PubMed PMID: 18931330.

    PubMed  Google Scholar 

  120. Fritsch M, Uxa S, Horak Jr F, Putschoegl B, Dehlink E, Szepfalusi Z, et al. Exhaled nitric oxide in the management of childhood asthma: a prospective 6-months study. Pediatr Pulmonol. 2006;41(9):855–62. PubMed PMID: 16850457.

    PubMed  Google Scholar 

  121. Pijnenburg MW, Bakker EM, Hop WC, De Jongste JC. Titrating steroids on exhaled nitric oxide in children with asthma: a randomized controlled trial. Am J Respir Crit Care Med. 2005;172(7):831–6. PubMed PMID: 15976380.

    PubMed  Google Scholar 

  122. Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med. 2005;352(21):2163–73. PubMed PMID: 15914548.

    CAS  PubMed  Google Scholar 

  123. Szefler SJ, Mitchell H, Sorkness CA, Gergen PJ, O’Connor GT, Morgan WJ, et al. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. Lancet. 2008;372(9643):1065–72. PubMed PMID: 18805335. Pubmed Central PMCID: 2610850.

    PubMed Central  PubMed  Google Scholar 

  124. Petsky HL, Cates CJ, Lasserson TJ, Li AM, Turner C, Kynaston JA, et al. A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). Thorax. 2012;67(3):199–208. PubMed PMID: 20937641.

    CAS  PubMed  Google Scholar 

  125. Powell H, Murphy VE, Taylor DR, Hensley MJ, McCaffery K, Giles W, et al. Management of asthma in pregnancy guided by measurement of fraction of exhaled nitric oxide: a double-blind, randomised controlled trial. Lancet. 2011;378(9795):983–90. PubMed PMID: 21907861.

    CAS  PubMed  Google Scholar 

  126. Beck-Ripp J, Griese M, Arenz S, Koring C, Pasqualoni B, Bufler P. Changes of exhaled nitric oxide during steroid treatment of childhood asthma. Eur Respir J. 2002;19(6):1015–9. PubMed PMID: 12108850.

    CAS  PubMed  Google Scholar 

  127. van Veen IH, Ten Brinke A, Sterk PJ, Sont JK, Gauw SA, Rabe KF, et al. Exhaled nitric oxide predicts lung function decline in difficult-to-treat asthma. Eur Respir J. 2008;32(2):344–9. PubMed PMID: 18508818.

    PubMed  Google Scholar 

  128. de Gouw HW, Grunberg K, Schot R, Kroes AC, Dick EC, Sterk PJ. Relationship between exhaled nitric oxide and airway hyperresponsiveness following experimental rhinovirus infection in asthmatic subjects. Eur Respir J. 1998;11(1):126–32. PubMed PMID: 9543281.

    PubMed  Google Scholar 

  129. Murphy AW, Platts-Mills TA, Lobo M, Hayden F. Respiratory nitric oxide levels in experimental human influenza. Chest. 1998;114(2):452–6. PubMed PMID: 9726729.

    CAS  PubMed  Google Scholar 

  130. Kharitonov SA, Yates D, Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J. 1995;8(2):295–7. PubMed PMID: 7538934.

    CAS  PubMed  Google Scholar 

  131. Franklin PJ, Turner SW, Hall GL, Moeller A, Stick SM. Exhaled nitric oxide is reduced in infants with rhinorrhea. Pediatr Pulmonol. 2005;39(2):117–9. PubMed PMID: 15573394.

    PubMed  Google Scholar 

  132. Pena Zarza JA, Osona B, Gil-Sanchez JA, Figuerola J. Exhaled nitric oxide in acute phase of bronchiolitis and its relation with episodes of subsequent wheezing in children of preschool age. Pediatr Allergy Immunol Pulmonol. 2012;25(2):92–6. PubMed PMID: 22768386. Pubmed Central PMCID: 3377953.

    PubMed Central  PubMed  Google Scholar 

  133. Moeller A, Diefenbacher C, Lehmann A, Rochat M, Brooks-Wildhaber J, Hall GL, et al. Exhaled nitric oxide distinguishes between subgroups of preschool children with respiratory symptoms. J Allergy Clin Immunol. 2008;121(3):705–9. PubMed PMID: 18177695.

    CAS  PubMed  Google Scholar 

  134. Gabriele C, Nieuwhof EM, Van Der Wiel EC, Hofhuis W, Moll HA, Merkus PJ, et al. Exhaled nitric oxide differentiates airway diseases in the first two years of life. Pediatr Res. 2006;60(4):461–5. PubMed PMID: 16940253.

    CAS  PubMed  Google Scholar 

  135. Roiha HL, Kuehni CE, Zanolari M, Zwahlen M, Baldwin DN, Casaulta C, et al. Alterations of exhaled nitric oxide in pre-term infants with chronic lung disease. Eur Respir J. 2007;29(2):251–8. PubMed PMID: 17050555.

    CAS  PubMed  Google Scholar 

  136. Williams O, Dimitriou G, Hannam S, Rafferty GF, Greenough A. Lung function and exhaled nitric oxide levels in infants developing chronic lung disease. Pediatr Pulmonol. 2007;42(2):107–13. PubMed PMID: 17186509.

    PubMed  Google Scholar 

  137. Leipala JA, Williams O, Sreekumar S, Cheeseman P, Rafferty GF, Hannam S, et al. Exhaled nitric oxide levels in infants with chronic lung disease. Eur J Pediatr. 2004;163(9):555–8. PubMed PMID: 15205950.

    PubMed  Google Scholar 

  138. May C, Williams O, Milner AD, Peacock J, Rafferty GF, Hannam S, et al. Relation of exhaled nitric oxide levels to development of bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed. 2009;94(3):F205–9. PubMed PMID: 19383857.

    CAS  PubMed  Google Scholar 

  139. Storme L, Riou Y, Leclerc F, Dubois A, Deschildre A, Pierre MH, et al. Exhale nitric oxide (NO) and respiratory function measured with body plethysmography in children. Arch Pediatr. 1998;5(4):389–96. PubMed PMID: 9759158. Monoxyde d’azote (NO) exhale et fonction ventilatoire mesuree par plethysmographie corporelle chez l’enfant.

    CAS  PubMed  Google Scholar 

  140. Mieskonen ST, Malmberg LP, Kari MA, Pelkonen AS, Turpeinen MT, Hallman NM, et al. Exhaled nitric oxide at school age in prematurely born infants with neonatal chronic lung disease. Pediatr Pulmonol. 2002;33(5):347–55. PubMed PMID: 11948979.

    PubMed  Google Scholar 

  141. Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med. 2005;171(1):68–72. PubMed PMID: 15477497.

    PubMed  Google Scholar 

  142. Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, Oppedisano R, et al. Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med. 1998;158(3):917–23. PubMed PMID: 9731026.

    CAS  PubMed  Google Scholar 

  143. Clini E, Cremona G, Campana M, Scotti C, Pagani M, Bianchi L, et al. Production of endogenous nitric oxide in chronic obstructive pulmonary disease and patients with cor pulmonale. Correlates with echo-Doppler assessment. Am J Respir Crit Care Med. 2000;162(2 Pt 1):446–50. PubMed PMID: 10934068.

    CAS  PubMed  Google Scholar 

  144. Machado RF, Londhe Nerkar MV, Dweik RA, Hammel J, Janocha A, Pyle J, et al. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free Radic Biol Med. 2004;37(7):1010–7. PubMed PMID: 15336317.

    CAS  PubMed  Google Scholar 

  145. Ozkan M, Dweik RA, Laskowski D, Arroliga AC, Erzurum SC. High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung. 2001;179(4):233–43. PubMed PMID: 11891614.

    CAS  PubMed  Google Scholar 

  146. Robroeks CM, Rosias PP, van Vliet D, Jobsis Q, Yntema JB, Brackel HJ, et al. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children. Pediatr Allergy Immunol. 2008;19(7):652–9. PubMed PMID: 18312532.

    PubMed  Google Scholar 

  147. Grasemann H, Michler E, Wallot M, Ratjen F. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol. 1997;24(3):173–7. PubMed PMID: 9330413.

    CAS  PubMed  Google Scholar 

  148. Elphick HE, Demoncheaux EA, Ritson S, Higenbottam TW, Everard ML. Exhaled nitric oxide is reduced in infants with cystic fibrosis. Thorax. 2001;56(2):151–2. PubMed PMID: 11209106. Pubmed Central PMCID: 1746000.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Franklin PJ, Hall GL, Moeller A, Horak Jr F, Brennan S, Stick SM. Exhaled nitric oxide is not reduced in infants with cystic fibrosis. Eur Respir J. 2006;27(2):350–3. PubMed PMID: 16452591.

    CAS  PubMed  Google Scholar 

  150. Grasemann H, Schwiertz R, Matthiesen S, Racke K, Ratjen F. Increased arginase activity in cystic fibrosis airways. Am J Respir Crit Care Med. 2005;172(12):1523–8. PubMed PMID: 16166623.

    PubMed  Google Scholar 

  151. de Winter-de Groot KM, van der Ent CK. Nitric oxide in cystic fibrosis. J Cyst Fibros. 2005;4 Suppl 2:25–9. PubMed PMID: 15982933.

    PubMed  Google Scholar 

  152. Kelley TJ, Drumm ML. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest. 1998;102(6):1200–7. PubMed PMID: 9739054. Pubmed Central PMCID: 509103.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Moeller A, Horak Jr F, Lane C, Knight D, Kicic A, Brennan S, et al. Inducible NO synthase expression is low in airway epithelium from young children with cystic fibrosis. Thorax. 2006;61(6):514–20. PubMed PMID: 16517573. Pubmed Central PMCID: 2111217.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Zheng S, Xu W, Bose S, Banerjee AK, Haque SJ, Erzurum SC. Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2004;287(2):L374–81. PubMed PMID: 15107292.

    CAS  PubMed  Google Scholar 

  155. Meng QH, Springall DR, Bishop AE, Morgan K, Evans TJ, Habib S, et al. Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J Pathol. 1998;184(3):323–31. PubMed PMID: 9614386.

    CAS  PubMed  Google Scholar 

  156. Gaston B, Ratjen F, Vaughan JW, Malhotra NR, Canady RG, Snyder AH, et al. Nitrogen redox balance in the cystic fibrosis airway: effects of antipseudomonal therapy. Am J Respir Crit Care Med. 2002;165(3):387–90. PubMed PMID: 11818326.

    PubMed  Google Scholar 

  157. Grasemann H, Ioannidis I, Tomkiewicz RP, de Groot H, Rubin BK, Ratjen F. Nitric oxide metabolites in cystic fibrosis lung disease. Arch Dis Child. 1998;78(1):49–53. PubMed PMID: 9534676. Pubmed Central PMCID: 1717443.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Grasemann H, Schwiertz R, Grasemann C, Vester U, Racke K, Ratjen F. Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis. Respir Res. 2006;7:87. PubMed PMID: 16764721. Pubmed Central PMCID: 1526723.

    PubMed Central  PubMed  Google Scholar 

  159. Jones KL, Hegab AH, Hillman BC, Simpson KL, Jinkins PA, Grisham MB, et al. Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr Pulmonol. 2000;30(2):79–85. PubMed PMID: 10922128.

    CAS  PubMed  Google Scholar 

  160. Morrissey BM, Schilling K, Weil JV, Silkoff PE, Rodman DM. Nitric oxide and protein nitration in the cystic fibrosis airway. Arch Biochem Biophys. 2002;406(1):33–9. PubMed PMID: 12234487.

    CAS  PubMed  Google Scholar 

  161. Jaffe A, Slade G, Rae J, Laverty A. Exhaled nitric oxide increases following admission for intravenous antibiotics in children with cystic fibrosis. J Cyst Fibros. 2003;2(3):143–7. PubMed PMID: 15463863.

    CAS  PubMed  Google Scholar 

  162. Grasemann H, Kurtz F, Ratjen F. Inhaled L-arginine improves exhaled nitric oxide and pulmonary function in patients with cystic fibrosis. Am J Respir Crit Care Med. 2006;174(2):208–12. PubMed PMID: 16627863.

    CAS  PubMed  Google Scholar 

  163. Grasemann H, Knauer N, Buscher R, Hubner K, Drazen JM, Ratjen F. Airway nitric oxide levels in cystic fibrosis patients are related to a polymorphism in the neuronal nitric oxide synthase gene. Am J Respir Crit Care Med. 2000;162(6):2172–6. PubMed PMID: 11112133.

    CAS  PubMed  Google Scholar 

  164. Jobsis Q, Raatgeep HC, Schellekens SL, Kroesbergen A, Hop WC, de Jongste JC. Hydrogen peroxide and nitric oxide in exhaled air of children with cystic fibrosis during antibiotic treatment. Eur Respir J. 2000;16(1):95–100. PubMed PMID: 10933092.

    CAS  PubMed  Google Scholar 

  165. Karadag B, James AJ, Gultekin E, Wilson NM, Bush A. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J. 1999;13(6):1402–5. PubMed PMID: 10445619.

    CAS  PubMed  Google Scholar 

  166. Baraldi E, Pasquale MF, Cangiotti AM, Zanconato S, Zacchello F. Nasal nitric oxide is low early in life: case study of two infants with primary ciliary dyskinesia. Eur Respir J. 2004;24(5):881–3. PubMed PMID: 15516684.

    CAS  PubMed  Google Scholar 

  167. Corbelli R, Bringolf-Isler B, Amacher A, Sasse B, Spycher M, Hammer J. Nasal nitric oxide measurements to screen children for primary ciliary dyskinesia. Chest. 2004;126(4):1054–9. PubMed PMID: 15486363.

    CAS  PubMed  Google Scholar 

  168. Horvath I, Loukides S, Wodehouse T, Csiszer E, Cole PJ, Kharitonov SA, et al. Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia. Thorax. 2003;58(1):68–72. PubMed PMID: 12511725. Pubmed Central PMCID: 1746449.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Lundberg JO, Weitzberg E, Nordvall SL, Kuylenstierna R, Lundberg JM, Alving K. Primarily nasal origin of exhaled nitric oxide and absence in Kartagener’s syndrome. Eur Respir J. 1994;7(8):1501–4. PubMed PMID: 7957837.

    CAS  PubMed  Google Scholar 

  170. Silkoff PE, Caramori M, Tremblay L, McClean P, Chaparro C, Kesten S, et al. Exhaled nitric oxide in human lung transplantation. A noninvasive marker of acute rejection. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1822–8. PubMed PMID: 9620912.

    CAS  PubMed  Google Scholar 

  171. Antus B, Csiszer E, Czebe K, Horvath I. Pulmonary infections increase exhaled nitric oxide in lung transplant recipients: a longitudinal study. Clin Transplant. 2005;19(3):377–82. PubMed PMID: 15877802.

    PubMed  Google Scholar 

  172. Gabbay E, Walters EH, Orsida B, Whitford H, Ward C, Kotsimbos TC, et al. Post-lung transplant bronchiolitis obliterans syndrome (BOS) is characterized by increased exhaled nitric oxide levels and epithelial inducible nitric oxide synthase. Am J Respir Crit Care Med. 2000;162(6):2182–7. PubMed PMID: 11112135.

    CAS  PubMed  Google Scholar 

  173. Neurohr C, Huppmann P, Leuschner S, von Wulffen W, Meis T, Leuchte H, et al. Usefulness of exhaled nitric oxide to guide risk stratification for bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant. 2011;11(1):129–37. PubMed PMID: 21087415.

    CAS  PubMed  Google Scholar 

  174. Bendiak GN, Kritzinger F, Dipchand AI, Ng VL, Solomon M, Grasemann H. Flow-independent exhaled nitric oxide parameters in pediatric lung and cardiac transplant recipients. Transplantation. 2011;91(10):e75–7. PubMed PMID: 21540720.

    PubMed  Google Scholar 

  175. Grasemann H, Kritzinger F, Dipchand A, Hebert D, Solomon M. Nasal nitric oxide is reduced in children after solid-organ transplantation. J Heart Lung Transplant. 2011;30(1):108–9. PubMed PMID: 20934886.

    PubMed  Google Scholar 

  176. Fazekas T, Eickhoff P, Lawitschka A, Knotek B, Potschger U, Peters C. Exhaled nitric oxide and pulmonary complications after paediatric stem cell transplantation. Eur J Pediatr. 2012;171(7):1095–101. PubMed PMID: 22350283.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jee Kim M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, YJ., Kercsmar, C.M., Davis, S.D. (2015). Fractional Exhaled Nitric Oxide: Indications and Interpretation. In: Davis, S., Eber, E., Koumbourlis, A. (eds) Diagnostic Tests in Pediatric Pulmonology. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1801-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1801-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1800-3

  • Online ISBN: 978-1-4939-1801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics