Skip to main content

Operational Improvement in Pediatric Neurosurgery

  • Chapter
  • First Online:
Frailty in Children

Abstract

In recent years, the concept of frailty in neurosurgery has also been extended to pediatric patients. These patients, in fact, have intrinsic features that make them fragile under stressful events such as neurosurgery.

It must also be considered that the improvement of medical therapy in general has increased survival and, therefore, the number of frail patients.

In order to treat these patients in the best possible way, we have developed the concept of minimally invasive surgery, thanks to various tools such as: neuroendoscopy, stereotactic surgery, microsurgery, and robotics.

The advantages of minimally invasive surgery are increased precision, less tissue disruption, lower morbidity, and shorter hospital days.

Moreover, an increased attention to patients’ needs have developed, so that the improvement in neurosurgery implies a multidisciplinary approach and different medical specialties are involved in order to ameliorate the outcome (neuroradiology, neuro-anesthesia, neuro-oncology, neuropsychology).

In our experience, other complementary figures such as engineers, are essential to improve surgical strategies and techniques.

In fact, since 2016, 3D printing entered the daily clinical practice at Meyer Children’s Hospital. “T3Ddy” laboratory introduced highly customized medical devices and methods to support the treatment of pediatric diseases.

In pediatric neurosurgery, it will therefore be increasingly essential to be aware of technological developments and acquire multi-level skills that allow to improve both the survival and the quality of life of young patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H-MRS:

H-magnetic resonance spectroscopy

AA:

Amino acids

AC:

Arachnoid cysts

ADC:

Apparent diffusion coefficient

ASL:

Arterial spin labeling

bFFE:

Balanced fast field-echo

BOLD:

Blood oxygenation level-dependent

CBF:

Cerebral blood flow

Cho:

Choline

CNS:

Central nervous system

Cr:

Creatine

CSF:

Cerebrospinal fluid

CT:

Computed tomography

DIPG:

Diffuse intrinsic pontine glioma

DMN:

Default mode network

DTI:

Diffusion tensor images

DWI:

Diffusion-weighted images

EES:

Endoscopic endonasal surgery

ESC:

Endoscopic strip craniectomy

ETV:

Endoscopic third ventriculocisternostomy

FA:

Fractional anisotropy

FIESTA:

Fast imaging employing steady-state acquisition

FLAIR:

Fluid-Attenuated Inversion Recovery

fMRI:

Functional MRI

GE:

Gradient echo

Gli:

Glutamate glutamine

HARDI:

High-angular resolution diffusion imaging

HCP:

Hydrocephalus

ICA:

Independent component analysis

Lip:

Lipids

LITT:

Laser interstitial thermal therapy

MAP:

Mean arterial pressure

mI:

Myoinositol

MPRAGE:

Magnetization prepared—rapid gradient echo

MRI:

Magnetic resonance imaging

MRS:

Proton MR spectroscopy

MTT:

Mean transit time

NAA:

N-Acetylaspartate

NDI:

Neurite density index

ODI:

Orientation dispersion index

PWI:

Perfusion-weighted imaging

ROSA:

Robotic operating surgical assistant

SE:

Spin echo

SPGR:

Spoiled gradient-recalled

SWI:

Susceptibility-weighted images

T:

Tesla

TrueFISP:

Fast imaging with steady-state free precession

References

  1. Morley JE, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392–7. https://doi.org/10.1016/j.jamda.2013.03.022.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pazniokas J, et al. The immense heterogeneity of frailty in neurosurgery: a systematic literature review. Neurosurg Rev. 2021;44(1):189–201. https://doi.org/10.1007/s10143-020-01241-2.

    Article  PubMed  Google Scholar 

  3. Shahrestani S, et al. The role of frailty in geriatric cranial neurosurgery for primary central nervous system neoplasms. Neurosurg Focus. 2020;49(4):E15. https://doi.org/10.3171/2020.7.FOCUS20426.

    Article  PubMed  Google Scholar 

  4. Sastry RA, Pertsch NJ, Tang O, Shao B, Toms SA, Weil RJ. Frailty and outcomes after craniotomy for brain tumor. J Clin Neurosci. 2020;81:95–100. https://doi.org/10.1016/j.jocn.2020.09.002.

    Article  PubMed  Google Scholar 

  5. Gatta G, Caldora M, Galati F, Capocaccia R. Childhood (0–19 years) cancer mortality in Italy, 1970–2008. Epidemiol Prev. 2013;37(1):228–33.

    PubMed  Google Scholar 

  6. Udaka YT, Packer RJ. Pediatric brain tumors. Neurol Clin. 2018;36(3):533–56. https://doi.org/10.1016/j.ncl.2018.04.009.

    Article  PubMed  Google Scholar 

  7. Rosenfeld JV. Minimally invasive neurosurgery. Aust N Z J Surg. 1996;66(8):553–9. https://doi.org/10.1111/j.1445-2197.1996.tb00808.x.

    Article  CAS  PubMed  Google Scholar 

  8. Sheinberg MA, Ross DA. Cranial procedures without hair removal. Neurosurgery. 1999;44(6):1263–5. https://doi.org/10.1097/00006123-199906000-00054.

    Article  CAS  PubMed  Google Scholar 

  9. Bekar A, Korfall E, Doǧan S, Yilmazlar S, Başkan Z, Aksoy K. The effect of hair on infection after cranial surgery. Acta Neurochir. 2001;143(6):533–6. https://doi.org/10.1007/s007010170057.

    Article  CAS  PubMed  Google Scholar 

  10. Winston KR. Hair and neurosurgery. Neurosurgery. 1992;31(2):320–9. https://doi.org/10.1227/00006123-199208000-00018.

    Article  CAS  PubMed  Google Scholar 

  11. McCann ME, Soriano SG. Progress in anesthesia and management of the newborn surgical patient. Semin Pediatr Surg. 2014;23(5):244–8. https://doi.org/10.1053/j.sempedsurg.2014.09.003.

    Article  PubMed  Google Scholar 

  12. Soriano SG, Eldredge EA, Rockoff MA. Pediatric neuroanesthesia. Neuroimaging Clin N Am. 2007;17(2):259–67. https://doi.org/10.1016/j.nic.2007.03.010.

    Article  PubMed  Google Scholar 

  13. Best C. Paediatric airway anaesthesia. Curr Opin Anaesthesiol. 2012;25(1):38–41. https://doi.org/10.1097/ACO.0b013e32834e63e2.

    Article  CAS  PubMed  Google Scholar 

  14. Smith I, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2011;28(8):556–69. https://doi.org/10.1097/EJA.0b013e3283495ba1.

    Article  PubMed  Google Scholar 

  15. Conroy PH, O’Rourke J. Tumescent anaesthesia. Surgeon. 2013;11(4):210–21. https://doi.org/10.1016/j.surge.2012.12.009.

    Article  PubMed  Google Scholar 

  16. Demaerel P. A. J. Barkovich: Pediatric neuroimaging. Eur Radiol. 2001;11(11):2347. https://doi.org/10.1007/s003300100904.

    Article  Google Scholar 

  17. Mathur AM, Neil JJ, McKinstry RC, Inder TE. Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol. 2008;38(3):260–4. https://doi.org/10.1007/s00247-007-0705-9.

    Article  PubMed  Google Scholar 

  18. Sugahara T, et al. Comparison of HASTE and segmented-HASTE sequences with a T2-weighted fast spin-echo sequence in the screening evaluation of the brain. Am J Roentgenol. 1997;169(5):1401–10. https://doi.org/10.2214/ajr.169.5.9353469.

    Article  CAS  Google Scholar 

  19. Sargent MA, Poskitt KJ. Fast fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging of the brain: a comparison of multi-shot echo-planar and fast spin-echo techniques. Pediatr Radiol. 1997;27(6):545–9. https://doi.org/10.1007/s002470050177.

    Article  CAS  PubMed  Google Scholar 

  20. Sehgal V, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22(4):439–50. https://doi.org/10.1002/jmri.20404.

    Article  PubMed  Google Scholar 

  21. Agarwal N, Tekes A, Poretti A, Meoded A, Huisman TAGM. Pitfalls in diffusion-weighted and diffusion tensor imaging of the pediatric brain. Neuropediatrics. 2017;48(5):340–9. https://doi.org/10.1055/s-0037-1603979.

    Article  PubMed  Google Scholar 

  22. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7. https://doi.org/10.1148/radiology.161.2.3763909.

    Article  PubMed  Google Scholar 

  23. Feldman HM, Yeatman JD, Lee ES, Barde LHF, Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J Dev Behav Pediatr. 2010;31(4):346. https://doi.org/10.1097/DBP.0b013e3181dcaa8b.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pecheva D, et al. Recent advances in diffusion neuroimaging: applications in the developing preterm brain [version 1; referees: 2 approved]. F1000Research. 2018;7:15073. https://doi.org/10.12688/f1000research.15073.1.

    Article  Google Scholar 

  25. Batalle D, et al. Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. NeuroImage. 2019;185:764–75. https://doi.org/10.1016/j.neuroimage.2018.05.046.

    Article  PubMed  Google Scholar 

  26. Ho ML, Campeau NG, Ngo TD, Udayasankar UK, Welker KM. Pediatric brain MRI, part 2: advanced techniques. Pediatr Radiol. 2017;47(5):544–55. https://doi.org/10.1007/s00247-017-3792-2.

    Article  PubMed  Google Scholar 

  27. Öz G, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270(3):658–79. https://doi.org/10.1148/radiol.13130531.

    Article  PubMed  Google Scholar 

  28. Bray MD, Mullins ME. Metabolic white matter diseases and the utility of MR spectroscopy. Radiol Clin N Am. 2014;52(2):403–11. https://doi.org/10.1016/j.rcl.2013.11.012.

    Article  PubMed  Google Scholar 

  29. Cha S. Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in pediatric patients. Neuroimaging Clin N Am. 2006;16(1):137–47. https://doi.org/10.1016/j.nic.2005.11.006.

    Article  PubMed  Google Scholar 

  30. Ho CY, Cardinal JS, Kamer AP, Lin C, Kralik SF. Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. Am J Neuroradiol. 2016;37(3):544–51. https://doi.org/10.3174/ajnr.A4559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petcharunpaisan S, et al. Arterial spin labeling in neuroimaging: basic principles, emerging techniques and clinical applications in neuroimaging. World J Radiol. 2010;2(10):384–98.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. Am J Neuroradiol. 2008;29(7):1228–34. https://doi.org/10.3174/ajnr.A1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41. https://doi.org/10.1002/mrm.1910340409.

    Article  CAS  PubMed  Google Scholar 

  34. McKeown MJ, Sejnowski TJ. Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp. 1998;6(5–6):368–72. https://doi.org/10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raichle ME. Cognitive neuroscience. Bold insights. Nature. 2001;412(6843):128–30.

    Article  CAS  PubMed  Google Scholar 

  36. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8. https://doi.org/10.1073/pnas.0135058100.

    Article  CAS  PubMed  Google Scholar 

  37. Fransson P, et al. Resting-state networks in the infant brain. Proc Natl Acad Sci U S A. 2007;104(39):15531–6. https://doi.org/10.1073/pnas.0704380104.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smyser CD, et al. Longitudinal analysis of neural network development in preterm infants. Cereb Cortex. 2010;20(12):2852–62. https://doi.org/10.1093/cercor/bhq035.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mudry A. The history of the microscope for use in ear surgery. Am J Otol. 2000;21(6):877–86.

    CAS  PubMed  Google Scholar 

  40. Kurze T, Apuzzo MLJ, Weiss MH, Heiden JS. Experiences with sterilization of the operating microscope. J Neurosurg. 1977;47(6):861–3. https://doi.org/10.3171/jns.1977.47.6.0861.

    Article  CAS  PubMed  Google Scholar 

  41. Kriss TC, Kriss VM. History of the operating microscope: from magnifying glass to microneurosurgery. Neurosurgery. 1998;42(4):899–907. https://doi.org/10.1097/00006123-199804000-00116.

    Article  CAS  PubMed  Google Scholar 

  42. Uluç K, Kujoth GC, Başkaya MK. Operating microscopes: past, present, and future. Neurosurg Focus. 2009;27(3):E4. https://doi.org/10.3171/2009.6.FOCUS09120.

    Article  PubMed  Google Scholar 

  43. Sanai N, Spetzler RF. Defining excellence in vascular neurosurgery. Clin Neurosurg. 2010;57:23–7.

    PubMed  Google Scholar 

  44. Richard Winn MH. Youmans and Winn neurological surgery. Amsterdam: Elsevier; 2017.

    Google Scholar 

  45. Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77(5):663–73. https://doi.org/10.1227/NEU.0000000000000929.

    Article  PubMed  Google Scholar 

  46. Fiani B, Jarrah R, Griepp DW, Adukuzhiyil J. The role of 3D exoscope systems in neurosurgery: an optical innovation. Cureus. 2021;13:e15878. https://doi.org/10.7759/cureus.15878.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Siller S, Zoellner C, Fuetsch M, Trabold R, Tonn JC, Zausinger S. A high-definition 3D exoscope as an alternative to the operating microscope in spinal microsurgery. J Neurosurg Spine. 2020;33(5):705–14. https://doi.org/10.3171/2020.4.SPINE20374.

    Article  Google Scholar 

  48. Vetrano IG, Acerbi F, Falco J, D’Ammando A, Devigili G, Nazzi V. High-definition 4K 3D exoscope (ORBEYETM) in peripheral nerve sheath tumor surgery: a preliminary, explorative, pilot study. Oper Neurosurg. 2020;19(4):480–8. https://doi.org/10.1093/ons/opaa090.

    Article  Google Scholar 

  49. de Divitiis O, Somma T, Sacco M, d’Avella E, Guizzardi G. VITOM®-3D in lumbar disc herniation: preliminary experience. Interdiscip Neurosurg Adv Tech Case Manag. 2019;18:100547. https://doi.org/10.1016/j.inat.2019.100547.

    Article  Google Scholar 

  50. De Divitiis O, D’avella E, Denaro L, Somma T, Sacco M, D’avella D. Vitom® 3D: preliminary experience with intradural extramedullary spinal tumors. J Neurosurg Sci. 2019;66(4):356–61. https://doi.org/10.23736/S0390-5616.19.04666-6.

    Article  PubMed  Google Scholar 

  51. De Divitiis O, et al. The role of Vitom-3D in the management of spinal meningiomas: review of the literature and illustrative case. Mini-Invasive Surg. 2020;4:66. https://doi.org/10.20517/2574-1225.2020.66.

    Article  Google Scholar 

  52. Barbagallo GMV, Certo F. Three-dimensional, high-definition exoscopic anterior cervical discectomy and fusion: a valid alternative to microscope-assisted surgery. World Neurosurg. 2019;130:e244–50. https://doi.org/10.1016/j.wneu.2019.06.049.

    Article  PubMed  Google Scholar 

  53. Sack J, et al. Initial experience using a high-definition 3-dimensional exoscope system for microneurosurgery. Oper Neurosurg. 2018;14(4):395–401. https://doi.org/10.1093/ons/opx145.

    Article  Google Scholar 

  54. Mamelak AN, Nobuto T, Berci G. Initial clinical experience with a high-definition exoscope system for microneurosurgery. Neurosurgery. 2010;67(2):476–83. https://doi.org/10.1227/01.NEU.0000372204.85227.BF.

    Article  PubMed  Google Scholar 

  55. Muhammad S, Lehecka M, Niemelä M. Preliminary experience with a digital robotic exoscope in cranial and spinal surgery: a review of the Synaptive Modus V system. Acta Neurochir. 2019;161(10):2175–80. https://doi.org/10.1007/s00701-019-03953-x.

    Article  PubMed  Google Scholar 

  56. Panchal S, et al. A practice survey to compare and identify the usefulness of neuroendoscope and exoscope in the current neurosurgery practice. Asian J Neurosurg. 2020;15(3):601. https://doi.org/10.4103/ajns.ajns_339_19.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wanibuchi M, Komatsu K, Akiyama Y, Mikami T, Mikuni N. Effectiveness of the 3D monitor system for medical education during neurosurgical operation. World Neurosurg. 2018;109:e105–9. https://doi.org/10.1016/j.wneu.2017.09.113.

    Article  PubMed  Google Scholar 

  58. Rossini Z, Cardia A, Milani D, Lasio GB, Fornari M, D’Angelo V. VITOM 3D: preliminary experience in cranial surgery. World Neurosurg. 2017;107:663–8. https://doi.org/10.1016/j.wneu.2017.08.083.

    Article  PubMed  Google Scholar 

  59. Haase J. Neuronavigation. Childs Nerv Syst. 1999;15(11–12):755–7. https://doi.org/10.1007/s003810050466.

    Article  CAS  PubMed  Google Scholar 

  60. Enchev Y. Neuronavigation: geneology, reality, and prospects. Neurosurg Focus. 2009;27(3):E11. https://doi.org/10.3171/2009.6.FOCUS09109.

    Article  PubMed  Google Scholar 

  61. Willems PWA, Van Der Sprenkel JWB, Tulleken CAF, Viergever MA, Taphoorn MJB. Neuronavigation and surgery of intracerebral tumours. J Neurol. 2006;253(9):1123–36. https://doi.org/10.1007/s00415-006-0158-3.

    Article  CAS  PubMed  Google Scholar 

  62. Barnett GH, Kormos DW, Steiner CP, Weisenberger JRT. Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging. Neurosurgery. 1993;33(4):674–8. https://doi.org/10.1227/00006123-199310000-00017.

    Article  CAS  PubMed  Google Scholar 

  63. Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC. Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery. 2008;62(3 Suppl. 1):ONS201–8. https://doi.org/10.1227/01.neu.0000317394.14303.99.

    Article  Google Scholar 

  64. Mongen MA, Willems PWA. Current accuracy of surface matching compared to adhesive markers in patient-to-image registration. Acta Neurochir. 2019;161(5):865–70. https://doi.org/10.1007/s00701-019-03867-8.

    Article  PubMed  Google Scholar 

  65. Mert A, Gan LS, Knosp E, Sutherland GR, Wolfsberger S. Advanced cranial navigation. Neurosurgery. 2013;72(Suppl. 1):A43–53. https://doi.org/10.1227/NEU.0b013e3182750c03.

    Article  Google Scholar 

  66. LoPresti MA, Nguyen J, Lam SK. Pinning in pediatric neurosurgery: the modified rubber stopper technique. J Neurosurg Pediatr. 2020;26(1):98–103. https://doi.org/10.3171/2020.1.PEDS19541.

    Article  PubMed  Google Scholar 

  67. Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices. 2012;9(5):491–500. https://doi.org/10.1586/erd.12.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Paraskevopoulos D, Biyani N, Constantini S, Beni-Adani L. Combined intraoperative magnetic resonance imaging and navigated neuroendoscopy in children with multicompartmental hydrocephalus and complex cysts: a feasibility study—clinical article. J Neurosurg Pediatr. 2011;8(3):279–88. https://doi.org/10.3171/2011.6.PEDS10501.

    Article  PubMed  Google Scholar 

  69. De Benedictis A, et al. Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus. 2017;42(5):E7. https://doi.org/10.3171/2017.2.FOCUS16579.

    Article  PubMed  Google Scholar 

  70. Gupta M, et al. Robot-assisted stereotactic biopsy of pediatric brainstem and thalamic lesions. J Neurosurg Pediatr. 2021;27(3):317–24. https://doi.org/10.3171/2020.7.PEDS20373.

    Article  Google Scholar 

  71. Minchev G, et al. A novel robot-guided minimally invasive technique for brain tumor biopsies. J Neurosurg. 2020;132(1):150–8. https://doi.org/10.3171/2018.8.JNS182096.

    Article  Google Scholar 

  72. Okano A, Ogiwara H. Long-term follow-up for patients with infantile hydrocephalus treated by choroid plexus coagulation. J Neurosurg Pediatr. 2018;22(6):638–45. https://doi.org/10.3171/2018.6.PEDS1840.

    Article  PubMed  Google Scholar 

  73. Gallieni M, Del Maestro M, Luzzi S, Trovarelli D, Ricci A, Galzio R. Endoscope-assisted microneurosurgery for intracranial aneurysms: operative technique, reliability, and feasibility based on 14 years of personal experience. Acta Neurochir Suppl. 2018;129:19–24.

    Article  PubMed  Google Scholar 

  74. Drake JM. The surgical management of pediatric hydrocephalus. Neurosurgery. 2008;62(Suppl. 2):SHC633–42. https://doi.org/10.1227/01.neu.0000316268.05338.5b.

    Article  Google Scholar 

  75. Hanak BW, Bonow RH, Harris CA, Browd SR. Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg. 2017;52(6):381–400. https://doi.org/10.1159/000452840.

    Article  PubMed  Google Scholar 

  76. Stein SC, Guo W. Have we made progress in preventing shunt failure? A critical analysis. J Neurosurg Pediatr. 2008;1(1):40–7. https://doi.org/10.3171/PED-08/01/040.

    Article  PubMed  Google Scholar 

  77. Rocque BG, et al. Shunt failure clusters: an analysis of multiple, frequent shunt failures. J Neurosurg Pediatr. 2021;27(3):287–93. https://doi.org/10.3171/2020.7.PEDS20199.

    Article  Google Scholar 

  78. Gmeiner M, et al. Long-term mortality rates in pediatric hydrocephalus—a retrospective single-center study. Childs Nerv Syst. 2017;33(1):101–9. https://doi.org/10.1007/s00381-016-3268-y.

    Article  PubMed  Google Scholar 

  79. Vinchon M, Rekate H, Kulkarni AV. Pediatric hydrocephalus outcomes: a review. Fluids Barriers CNS. 2012;9(1):18. https://doi.org/10.1186/2045-8118-9-18.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Choux M, Genitori L, Lang D, Lena G. Shunt implantation: reducing the incidence of shunt infection. J Neurosurg. 1992;77(6):875–80. https://doi.org/10.3171/jns.1992.77.6.0875.

    Article  CAS  PubMed  Google Scholar 

  81. Gholampour S, Bahmani M, Shariati A. Comparing the efficiency of two treatment methods of hydrocephalus: shunt implantation and endoscopic third ventriculostomy. Basic Clin Neurosci. 2019;10(3):185. https://doi.org/10.32598/bcn.9.10.285.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shim KW, Park EK, Kim DS, Choi JU. Neuroendoscopy: current and future perspectives. J Korean Neurosurg Soc. 2017;60(3):322–6. https://doi.org/10.3340/jkns.2017.0202.006.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cinalli G, et al. Initial experience with endoscopic ultrasonic aspirator in purely neuroendoscopic removal of intraventricular tumors. J Neurosurg Pediatr. 2017;19(3):325–32. https://doi.org/10.3171/2016.10.PEDS16352.

    Article  PubMed  Google Scholar 

  84. Turillazzi E, Bello S, Neri M, Riezzo I, Fineschi V. Colloid cyst of the third ventricle, hypothalamus, and heart: a dangerous link for sudden death. Diagn Pathol. 2012;7(1):1–5. https://doi.org/10.1186/1746-1596-7-144.

    Article  Google Scholar 

  85. Greenlee JDW, Teo C, Ghahreman A, Kwok B. Purely endoscopic resection of colloid cysts. Neurosurgery. 2008;62(3 Suppl. 1):ONS51–6. https://doi.org/10.1227/01.neu.0000317373.00018.6f.

    Article  Google Scholar 

  86. Samadian M, et al. Colloid cyst of the third ventricle: long-term results of endoscopic management in a series of 112 cases. World Neurosurg. 2018;111:e440–8. https://doi.org/10.1016/j.wneu.2017.12.093.

    Article  PubMed  Google Scholar 

  87. Kumar V, Behari S, Kumar Singh R, Jain M, Jaiswal AK, Jain VK. Pediatric colloid cysts of the third ventricle: management considerations. Acta Neurochir. 2010;152(3):451–61. https://doi.org/10.1007/s00701-009-0531-y.

    Article  PubMed  Google Scholar 

  88. Longatti P, et al. Cooperative study by the Italian neuroendoscopy group on the treatment of 61 colloid cysts. Childs Nerv Syst. 2006;22(10):1263–7. https://doi.org/10.1007/s00381-006-0105-8.

    Article  CAS  PubMed  Google Scholar 

  89. Gangemi M, Seneca V, Colella G, Cioffi V, Imperato A, Maiuri F. Endoscopy versus microsurgical cyst excision and shunting for treating intracranial arachnoid cysts: clinical article. J Neurosurg Pediatr. 2011;8(2):158–64. https://doi.org/10.3171/2011.5.PEDS1152.

    Article  PubMed  Google Scholar 

  90. Choi JU, Kim DS, Huh R. Endoscopic approach to arachnoid cyst. Childs Nerv Syst. 1999;15(6–7):285–91. https://doi.org/10.1007/s003810050396.

    Article  CAS  PubMed  Google Scholar 

  91. Van Beijnum J, Hanlo PW, Sen Han K, Van Der Pol WL, Verdaasdonk RM, Van Nieuwenhuizen O. Navigated laser-assisted endoscopic fenestration of a suprasellar arachnoid cyst in a 2-year-old child with bobble-head doll syndrome: case report. J Neurosurg Pediatr. 2006;104(Suppl. 5):348–51. https://doi.org/10.3171/ped.2006.104.5.348.

    Article  Google Scholar 

  92. Spacca B, Kandasamy J, Mallucci CL, Genitori L. Endoscopic treatment of middle fossa arachnoid cysts: a series of 40 patients treated endoscopically in two centres. Childs Nerv Syst. 2010;26(2):163–72. https://doi.org/10.1007/s00381-009-0952-1.

    Article  PubMed  Google Scholar 

  93. Xu S, Wang Y, Luo Q, Jiang J, Zhong C. Endoscopic fenestration of 26 patients with middle fossa arachnoid cyst. J Craniofac Surg. 2016;27(4):973–5. https://doi.org/10.1097/SCS.0000000000002624.

    Article  PubMed  Google Scholar 

  94. Peretta P, et al. Complications and pitfalls of neuroendoscopic surgery in children. J Neurosurg Pediatr. 2006;105(Suppl. 3):187–93. https://doi.org/10.3171/ped.2006.105.3.187.

    Article  Google Scholar 

  95. Cappabianca P, et al. Endoscopic endonasal transsphenoidal approach. In: Midline skull base surgery. Cham: Springer International Publishing; 2016.

    Google Scholar 

  96. Munson PD, Moore EJ. Pediatric endoscopic skull base surgery. Curr Opin Otolaryngol Head Neck Surg. 2010;18(6):571–6. https://doi.org/10.1097/MOO.0b013e3283401fdc.

    Article  PubMed  Google Scholar 

  97. Giovannetti F, et al. Endoscopic endonasal skull base surgery in pediatric patients. A single center experience. J Cranio-Maxillofac Surg. 2018;46(12):2017–21. https://doi.org/10.1016/j.jcms.2018.09.013.

    Article  Google Scholar 

  98. Soldozy S, et al. Endoscopic endonasal surgery outcomes for pediatric craniopharyngioma: a systematic review. Neurosurg Focus. 2020;48(1):E6. https://doi.org/10.3171/2019.10.FOCUS19728.

    Article  PubMed  Google Scholar 

  99. Denis D, Genitori L, Conrath J, Lena G, Choux M. Ocular findings in children operated on for plagiocephaly and trigonocephaly. Childs Nerv Syst. 1996;12(11):683–9. https://doi.org/10.1007/BF00366151.

    Article  CAS  PubMed  Google Scholar 

  100. Giordano F, Serio P, Savasta S, Oliveri G, Genitori L. Craniofacial surgery in fibrous dysplasia. J Pediatr Endocrinol Metab. 2006;19(Suppl. 2):595–604. https://doi.org/10.1515/jpem.2006.19.s2.595.

    Article  PubMed  Google Scholar 

  101. Spinelli G, et al. Complex craniofacial advancement in paediatric patients: piezoelectric and traditional technique evaluation. J. Cranio Maxillofac Surg. 2015;43(8):1422–7. https://doi.org/10.1016/j.jcms.2015.07.012.

    Article  Google Scholar 

  102. Volpe Y, et al. Surgery of complex craniofacial defects: a single-step AM-based methodology. Comput Methods Prog Biomed. 2018;165:225–33.

    Article  Google Scholar 

  103. Mannelli G, Arcuri F, Spacca B, Genitori L, Spinelli G. Respiratory and volumetric changes of the upper airways in craniofacial synostosis patients. J Cranio-Maxillofac Surg. 2019;47(4):548–55. https://doi.org/10.1016/j.jcms.2019.01.042.

    Article  Google Scholar 

  104. Genitori L, Cavalheiro S, Lena G, Dollo C, Choux M. Skull base in trigonocephaly. Pediatr Neurosurg. 1991;17(4):175–81. https://doi.org/10.1159/000120591.

    Article  PubMed  Google Scholar 

  105. Jimenez DF, Barone CM. Endoscopic craniectomy for early surgical correction of sagittal craniosynostosis. J Neurosurg. 1998;88(1):77–81. https://doi.org/10.3171/jns.1998.88.1.0077.

    Article  CAS  PubMed  Google Scholar 

  106. Nelson JH, Menser CC, Reddy SK. Endoscopic craniosynostosis repair. Int Anesthesiol Clin. 2019;57(4):61–71. https://doi.org/10.1097/AIA.0000000000000246.

    Article  PubMed  Google Scholar 

  107. Williams CT, et al. Evaluation of endoscopic strip craniectomy and orthotic therapy for bilateral coronal craniosynostosis. J Craniofac Surg. 2019;30(2):453. https://doi.org/10.1097/SCS.0000000000005118.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hersh DS, Hoover-Fong JE, Beck N, Dorafshar AH, Ahn ES. Endoscopic surgery for patients with syndromic craniosynostosis and the requirement for additional open surgery. J Neurosurg Pediatr. 2017;20(1):91–8. https://doi.org/10.3171/2017.2.PEDS16710.

    Article  PubMed  Google Scholar 

  109. Zubovic E, Skolnick GB, Naidoo SD, Bellanger M, Smyth MD, Patel KB. Endoscopic treatment of combined metopic-sagittal craniosynostosis. J Neurosurg Pediatr. 2020;26(2):113–21. https://doi.org/10.3171/2020.2.PEDS2029.

    Article  PubMed  Google Scholar 

  110. Goyal A, Lu VM, Yolcu YU, Elminawy M, Daniels DJ. Endoscopic versus open approach in craniosynostosis repair: a systematic review and meta-analysis of perioperative outcomes. Childs Nerv Syst. 2018;34(9):1627–37. https://doi.org/10.1007/s00381-018-3852-4.

    Article  PubMed  Google Scholar 

  111. Kung TA, Vercler CJ, Muraszko KM, Buchman SR. Endoscopic strip craniectomy for craniosynostosis: do we really understand the indications, outcomes, and risks? J Craniofac Surg. 2016;27(2):293–8. https://doi.org/10.1097/SCS.0000000000002364.

    Article  PubMed  Google Scholar 

  112. Patel NV, et al. Laser interstitial thermal therapy technology, physics of magnetic resonance imaging thermometry, and technical considerations for proper catheter placement during magnetic resonance imaging-guided laser interstitial thermal therapy. Clin Neurosurg. 2016;79:S8–16. https://doi.org/10.1227/NEU.0000000000001440.

    Article  Google Scholar 

  113. Melnick K, et al. Role of laser interstitial thermal therapy in the management of primary and metastatic brain tumors. Curr Treat Options Oncol. 2021;22(12):1–17. https://doi.org/10.1007/s11864-021-00912-6.

    Article  Google Scholar 

  114. Liew Y, Beveridge E, Demetriades AK, Hughes MA. 3D printing of patient-specific anatomy: a tool to improve patient consent and enhance imaging interpretation by trainees. Br J Neurosurg. 2015;29(5):712–4. https://doi.org/10.3109/02688697.2015.1026799.

    Article  PubMed  Google Scholar 

  115. Randazzo M, Pisapia J, Singh N, Thawani J. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(34):S801–9. https://doi.org/10.4103/2152-7806.194059.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mussi E, et al. Current practice in preoperative virtual and physical simulation in neurosurgery. Bioengineering. 2020;7(1):7. https://doi.org/10.3390/bioengineering7010007.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Marzola A, Governi L, Genitori L, Mussa F, Volpe Y, Furferi R. A semi-automatic hybrid approach for defective skulls reconstruction. Comput Aided Des Appl. 2020;17(1):190–204. https://doi.org/10.14733/cadaps.2020.190-204.

    Article  Google Scholar 

  118. Buonamici F, et al. Reverse engineering techniques for virtual reconstruction of defective skulls: an overview of existing approaches. Comput Aided Des Appl. 2018;16(1):112. https://doi.org/10.14733/cadaps.2019.103-112.

    Article  Google Scholar 

  119. Rønning C, Sundet K, Due-Tønnessen B, Lundar T, Helseth E. Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatr Neurosurg. 2005;41(1):15–21. https://doi.org/10.1159/000084860.

    Article  PubMed  Google Scholar 

  120. Maddrey AM, et al. Neuropsychological performance and quality of life of 10 year survivors of childhood medulloblastoma. J Neuro-Oncol. 2005;72(3):245–53. https://doi.org/10.1007/s11060-004-3009-z.

    Article  Google Scholar 

  121. Laguitton V, et al. Intellectual outcome from 1 to 5 years after epilepsy surgery in 81 children and adolescents: a longitudinal study. Seizure. 2021;91:384–92. https://doi.org/10.1016/j.seizure.2021.07.010.

    Article  PubMed  Google Scholar 

  122. Baxendale S, et al. Indications and expectations for neuropsychological assessment in epilepsy surgery in children and adults: report of the ILAE Neuropsychology Task Force Diagnostic Methods Commission: 2017–2021 neuropsychological assessment in epilepsy surgery. Epileptic Disord. 2019;21(3):221–34. https://doi.org/10.1684/epd.2019.1065.

    Article  PubMed  Google Scholar 

  123. Westerveld M, et al. Temporal lobectomy in children: cognitive outcome. J Neurosurg. 2000;92(1):24–30. https://doi.org/10.3171/jns.2000.92.1.0024.

    Article  CAS  PubMed  Google Scholar 

  124. Viggedal G, Olsson I, Carlsson G, Rydenhag B, Uvebrant P. Intelligence 2 years after epilepsy surgery in children. Epilepsy Behav. 2013;29(3):565–70. https://doi.org/10.1016/j.yebeh.2013.10.012.

    Article  PubMed  Google Scholar 

  125. Skirrow C, Cross JH, Cormack F, Harkness W, Vargha-Khadem F, Baldeweg T. Long-term intellectual outcome after temporal lobe surgery in childhood. Neurology. 2011;76(15):1330–7. https://doi.org/10.1212/WNL.0b013e31821527f0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Klajdi P, Smith ML. Predictors of long-term quality of life after pediatric epilepsy surgery. Epilepsia. 2015;56(6):873–81.

    Article  Google Scholar 

  127. Korkman M, et al. Two-year follow-up of intelligence after pediatric epilepsy surgery. Pediatr Neurol. 2005;33(3):173–8. https://doi.org/10.1016/j.pediatrneurol.2005.04.006.

    Article  PubMed  Google Scholar 

  128. Helmstaedter C, Beeres K, Elger CE, Kuczaty S, Schramm J, Hoppe C. Cognitive outcome of pediatric epilepsy surgery across ages and different types of surgeries: a monocentric 1-year follow-up study in 306 patients of school age. Seizure. 2020;77:86–92. https://doi.org/10.1016/j.seizure.2019.07.021.

    Article  CAS  PubMed  Google Scholar 

  129. Gleissner U, Clusmann H, Sassen R, Elger CE, Helmstaedter C. Postsurgical outcome in pediatric patients with epilepsy: a comparison of patients with intellectual disabilities, subaverage intelligence, and average-range intelligence. Epilepsia. 2006;47(2):406–14. https://doi.org/10.1111/j.1528-1167.2006.00436.x.

    Article  PubMed  Google Scholar 

  130. Moosa ANV, Wyllie E. Cognitive outcome after epilepsy surgery in children. Semin Pediatr Neurol. 2017;24(4):331–9. https://doi.org/10.1016/j.spen.2017.10.010.

    Article  PubMed  Google Scholar 

  131. Sim LP. Cognitive dysfunction in children with temporal lobe epilepsy. Paediatr Child Adolescent Health. 2006;46(3):180–2.

    Google Scholar 

  132. Lou Smith M. Neuropsychology in epilepsy: children are not small adults. Epilepsia. 2010;51(Suppl. 1):68–9. https://doi.org/10.1111/j.1528-1167.2009.02451.x.

    Article  Google Scholar 

  133. Chieffo D, Tamburrini G, Caldarelli M, Di Rocco C. Preoperative neuropsychological and behavioral evaluation of children with thalamic tumors: clinical article. J Neurosurg Pediatr. 2014;13(5):507–13. https://doi.org/10.3171/2014.2.PEDS13352.

    Article  PubMed  Google Scholar 

  134. Di Rocco C, Chieffo D, Frassanito P, Caldarelli M, Massimi L, Tamburrini G. Heralding cerebellar mutism: evidence for pre-surgical language impairment as primary risk factor in posterior fossa surgery. Cerebellum. 2011;10(3):551–62. https://doi.org/10.1007/s12311-011-0273-2.

    Article  PubMed  Google Scholar 

  135. Di Rocco C, Chieffo D, Pettorini BL, Massimi L, Caldarelli M, Tamburrini G. Preoperative and postoperative neurological, neuropsychological and behavioral impairment in children with posterior cranial fossa astrocytomas and medulloblastomas: the role of the tumor and the impact of the surgical treatment. Childs Nerv Syst. 2010;26(9):1173–88. https://doi.org/10.1007/s00381-010-1166-2.

    Article  PubMed  Google Scholar 

  136. Dennis M. Language disorders in children with central nervous system injury. J Clin Exp Neuropsychol. 2010;32(4):417–32. https://doi.org/10.1080/13803390903164355.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chieffo D, Tamburrini G, Frassanito P, Arcangeli V, Caldarelli M, Di Rocco C. Preoperative neurocognitive evaluation as a predictor of brain tumor grading in pediatric patients with supratentorial hemispheric tumors. Childs Nerv Syst. 2016;32(10):1931–7. https://doi.org/10.1007/s00381-016-3170-7.

    Article  CAS  PubMed  Google Scholar 

  138. Cirelli I, Bickle Graz M, Tolsa JF. Comparison of Griffiths-II and Bayley-II tests for the developmental assessment of high-risk infants. Infant Behav Dev. 2015;41:17–25. https://doi.org/10.1016/j.infbeh.2015.06.004.

    Article  PubMed  Google Scholar 

  139. Farmer C. Leiter International Performance Scale-Revised (Leiter-R). In: Encyclopedia of autism spectrum disorders. Cham: Springer Nature; 2021.

    Google Scholar 

  140. Achenbach T. Manual for the ASEBA school-age forms and profiles an integrated system of multi-informant assessment. Res Cent Child. 2007;1617(82):238.

    Google Scholar 

  141. Achenbach TM. Manual for the child: behavior checklist and revised child behavior profile. Encycl Psychol. 2004;2(8):230.

    Google Scholar 

  142. Valverde AA, Araújo CRS, de Castro Magalhães L, Cardoso AA. Relationship between visual-motor integration and manual dexterity in children with developmental coordination disorder. Braz J Occup Ther. 2020;28(3):AO1999. https://doi.org/10.4322/2526-8910.CTOAO1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Genitori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spacca, B. et al. (2023). Operational Improvement in Pediatric Neurosurgery. In: Lima, M., Mondardini, M.C. (eds) Frailty in Children. Springer, Cham. https://doi.org/10.1007/978-3-031-24307-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24307-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24306-6

  • Online ISBN: 978-3-031-24307-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics