Skip to main content

Abstract

This chapter discusses the problems associated with monitoring the amount of water vapors in the atmosphere. This is an important issue because, due to the unique properties of water, humidity of the atmosphere strongly affects living organisms, including humans, and materials. Currently, the most common devices used to measure humidity of the air are solid-state humidity sensors such as conductometric, capacitive, and quartz crystal microbalance-based sensors. Their construction and principles of operation are described in this chapter. It has been shown that the properties of II–VI compounds are very sensitive to changes in humidity; therefore, these materials can indeed be used to develop humidity sensors of indicated types. Examples of the implementation of humidity sensors both based on II–VI compounds and based on their composites with polymers are given. The use of 1D nanostructures of II–VI connections in the development of humidity sensors is also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamson AW, Gast AP. Physical chemistry of surface. New York: Wiley; 1997.

    Google Scholar 

  2. Bereir GA, Kline DE. Dynamic mechanical behaviour of polyimide. J Appl Polym Sci. 1968;12:593–604.

    Article  Google Scholar 

  3. Bhattacharjeea M, Bandyopadhyay D. Mechanisms of humidity sensing on a CdS nanoparticle coated paper sensor. Sens Actuators A Phys. 2019;285:241–7.

    Article  Google Scholar 

  4. Chatzandroulis S, Tserepi A, Goustouridis D, Normand P, Tsoukalas D. Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor. Microelectron Eng. 2002;61–62:955–61.

    Article  Google Scholar 

  5. Chen H, Shi D, Qi J, Wang B. Electronic and mechanical properties of ZnS nanowires with different surface adsorptions. Phys E. 2009;42:32–7.

    Article  Google Scholar 

  6. Chen Q, Nie M, Guo Y. Controlled synthesis and humidity sensing properties of CdS/polyaniline composite based on CdAl layered double hydroxide. Sensors Actuators B Chem. 2018;254:30–5.

    Article  Google Scholar 

  7. Choudhari U, Jagtap S. Hydrothermally synthesized ZnSe nanoparticles for relative humidity sensing application. J Electron Mater. 2020;49:5903–16.

    Article  ADS  Google Scholar 

  8. Demir R, Okur S, Seker M, Zor M. Humidity sensing properties of CdS nanoparticles synthesized by chemical bath deposition method. Ind Eng Chem Res. 2011;50:5606–10.

    Article  Google Scholar 

  9. Demir R, Okur S, Seker M. Electrical characterization of CdS nanoparticles for humidity sensing applications. Ind Eng Chem Res. 2012;51:3309–13.

    Article  Google Scholar 

  10. Dimitrov RI, Boyanov BS. Oxidation of metal sulphides and determination of characteristic temperatures by DTA and TG. J Therm Anal Calorim. 2000;61:181–9.

    Article  Google Scholar 

  11. Dimitrov RI, Moldovanska N, Bonev IK. Cadmium sulphide oxidation. Thermochim Acta. 2002;385:41–9.

    Article  Google Scholar 

  12. Du L, Zhang Y, Lei Y, Zhao H. Synthesis of high-quality CdS nanowires and their application as humidity sensors. Mater Lett. 2014;129:46–9.

    Article  Google Scholar 

  13. Fang X, Zhai T, Gautam UK, Li L, Wua L, Bando Y, Golberg D. ZnS nanostructures: from synthesis to applications. Prog Mater Sci. 2011;56:175–287.

    Article  Google Scholar 

  14. Farahani H, Wagiran R, Hamidon MN. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 2014;14:7881–939.

    Article  ADS  Google Scholar 

  15. Feng MH, Wang WC, Li XJ. Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array. J Alloys Compd. 2017;698:94–8.

    Article  Google Scholar 

  16. Fleming WJ. A physical understanding of solid state humidity sensors. Soc Automot Eng Trans. 1981;90(2):1656–67.

    Google Scholar 

  17. Fu XQ, Wang C, Yu HC, Wang YG, Wang TH. Fast humidity sensors based onCeO2 nanowires. Nanotechnology. 2007;18:145503.

    Article  ADS  Google Scholar 

  18. Gimenez AJ, Luna-Barcenas G, Sanchez IC, Yanez-Limon JM. Paper-based ZnO oxygen sensor. IEEE Sensors J. 2015;15:1246–51.

    Article  ADS  Google Scholar 

  19. Goodell CM, Gilbert B, Weigand SJ, Banfield JF. Kinetics of the water adsorption driven structural transformation of ZnS nanoparticles. J Phys Chem C. 2008;112(13):4791–6.

    Article  Google Scholar 

  20. Goswami N, Sen P. Water-induced stabilization of ZnS nanoparticles. Solid State Commun. 2004;132:791–4.

    Article  ADS  Google Scholar 

  21. Gupta SS, van Huis MA. Adsorption study of a water molecule on vacancy-defected on polar CdS surfaces. J Phys Chem C. 2017;121(18):9815–24.

    Article  Google Scholar 

  22. Hattingh J. The importance of relative humidity measurements in the improvement of product quality. In: Proceedings of 2001 NCSL International Workshop & Symposium. 2001. http://www.ncsli.org/i/c/TransactionLib/C01_R7.pdf

  23. He Y, Zhang M, Zhang N, Zhu D, Huang C, Kang L, et al. Paper-based ZnS:Cu alternating current electroluminescent devices for current humidity sensors with high–linearity and flexibility. Sensors. 2019;19:4607.

    Article  ADS  Google Scholar 

  24. Hertl W. Surface chemical properties of zinc sulfide. Langmuir. 1988;4:594–8.

    Article  Google Scholar 

  25. Hsueh H-T, Hsiao Y-J, Lin Y-D, Wu C-L. Bifacial structures of ZnS humidity sensor and Cd-free CIGS photovoltaic cell as a self-powered device. IEEE Electron Dev Lett. 2014;35(12):1272–4.

    Article  ADS  Google Scholar 

  26. Huang F, Gilbert B, Zhang H, Banfield JF. Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state. Phys Rev Lett. 2004;92:155501.

    Article  ADS  Google Scholar 

  27. Ishihara T, Matsubara S. Capacitive type gas sensors. J Electroceram. 1998;2(4):215–28.

    Article  Google Scholar 

  28. Jiang P, Jie J, Yu Y, Wang Z, Xie C, Zhang X, et al. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. J Mater Chem. 2012;22:6856.

    Article  Google Scholar 

  29. Kannan PK, Saraswathi R, Rayappan JBB. CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceram Int. 2014;40:13115–22.

    Article  Google Scholar 

  30. Korotcenkov G. Why do we need to control humidity? In: Korotcenkov G, editor. Handbook of humidity measurements, vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018. p. 17–45.

    Google Scholar 

  31. Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018.

    Google Scholar 

  32. Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 2: Electronic and electrical humidity sensors. Boca Raton: CRC Press; 2019.

    Book  Google Scholar 

  33. Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 3: Sensing materials and technologies. Boca Raton: CRC Press; 2020.

    Book  Google Scholar 

  34. Korotcenkov G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nanomaterials. 2020;10:1392.

    Article  Google Scholar 

  35. Kulwick BM. (1991) Humidity sensors. J Am Ceram Soc. 1991;74(4):697–708.

    Google Scholar 

  36. Leung YP, Choy WCH, Yuk TI. Linearly resistive humidity sensor based on quasi one-dimensional ZnSe nanostructures. Chem Phys Lett. 2008;457:198–201.

    Article  ADS  Google Scholar 

  37. Liang Y-C, Liu S-L. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres. Nanoscale Res Lett. 2014;9:647.

    Article  ADS  Google Scholar 

  38. Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron. 2020;168(15):112513.

    Article  Google Scholar 

  39. Long X, Chen J, Chen Y. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: a DFT study. Appl Surf Sci. 2016;370:11–8.

    Article  ADS  Google Scholar 

  40. Lu T, Zhang M, Guo S, Liu R. Humidity and salt sensor based on CdSSe nanowire chip. IOP Conf Series: Mater Sci Eng. 2019;569:022006.

    Article  Google Scholar 

  41. Luo M, Shao K, Long Z, Wang L, Peng C, Ouyang J, Na N. A paper-based plasma-assisted cataluminescence sensor for ethylene detection. Sens Actuators B Chem. 2017;240:132–41.

    Google Scholar 

  42. McCafferty E, Zettlemoyer AC. Adsorption of water vapour on α-Fe2O3. Faraday Discuss. 1971;52:239–54.

    Article  Google Scholar 

  43. Moromoto T, Nagao M, Tokuda F. Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J Phys Chem. 1969;73:243–8.

    Article  Google Scholar 

  44. Muhammad F, Tahir M, Zeb M, Wahab F, Kalasad MN, Khan DN, Karimov KS. Cadmium selenide quantum dots: synthesis, characterization and their humidity and temperature sensing properties with poly-(dioctylfluorene). Sens Actuators B Chem. 2019;285:504–12.

    Google Scholar 

  45. Niarchos G, Dubourg G, Afroudakis G, Georgopoulos M, Tsouti V, Makarona E, Crnojevic-Bengin V, Tsamis C. Humidity sensing properties of paper substrates and their passivation with ZnO nanoparticles for sensor applications. Sensors. 2017;17:516.

    Article  ADS  Google Scholar 

  46. Nitta T. Ceramic humidity sensor. Ind Eng Chem Prod Res Dev. 1981;20:669–74.

    Article  Google Scholar 

  47. Okur S, Uzar N, Tekguzel N, Erol A, Arıkan MC. Synthesis and humidity sensing analysis of ZnS nanowires. Phys E. 2012;44:1103–7.

    Article  Google Scholar 

  48. Parangusan H, Bhadra J, Ahmad Z, Mallick S, Touati F, Al-Than N. Capacitive type humidity sensor based on PANI decorated Cu-ZnS porous microspheres. Talanta. 2020;219:121361.

    Article  Google Scholar 

  49. Ponec V, Knor Z, Cerný S. Adsorption on solids. London: Butterworth; 1974. p. 405.

    Google Scholar 

  50. Rittersma ZM. Recent achievements in miniaturised humidity sensors–a review of transduction techniques. Sens Actuators A Phys. 2002;96:196–210.

    Google Scholar 

  51. Sager K, Schroth A, Nakladal A, Gerlach G. Humidity-dependent mechanical properties of polyimide films and their use for IC-compatible humidity sensors. Sensors Actuators A Phys. 1996;53:330–4.

    Article  Google Scholar 

  52. Sauerbrey G. The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys. 1959;155:206–22.

    Article  ADS  Google Scholar 

  53. Spomer LA, Tibbitts TW. Humidity. In: Langhans RW, Tibbitts TW, editors. Plant growth chamber handbook. Ames: Iowa State University; 1997. p. 43–64.

    Google Scholar 

  54. Srivastava R. Humidity sensor: an overview. Int J Green Nanotechnol. 2012;4:302–9.

    Article  Google Scholar 

  55. Turkdogan S. Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM. J Mater Sci Mater Electron. 2019;30:10427–34.

    Article  Google Scholar 

  56. Üzar N, Okur S, Arikana MC. Investigation of humidity sensing properties of ZnS nanowires synthesized by vapor liquid solid (VLS) technique. Sens. Actuators A. 2011;167:188–93.

    Article  Google Scholar 

  57. Vashist SK, Vashist P. Recent advances in quartz crystal microbalance-based sensors. J Sensors. 2011;2011:571405.

    Article  Google Scholar 

  58. Visscher GJW. Chapter 72: Humidity and moisture measurement. In: Webster JG, editor. The measurement, instrumentation, and sensors: handbook. Boca Raton: CRC; 1999.

    Google Scholar 

  59. Wiederhold PR. Water vapor measurement: methods and instrumentation. New York: CRC Press; 1997.

    Google Scholar 

  60. Wang M, Zhang Q, Hao W, Sun Z-X. Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate. Chem Cent J. 2011;5:73.

    Article  Google Scholar 

  61. Yan W, Hu C, Xi Y, Wan B, He X, Zhang M, Zhang Y. ZnSe nanorods prepared in hydroxide-melts and their application as a humidity sensor. Mater Res Bull. 2009;44:1205–8.

    Article  Google Scholar 

  62. Zhang H, Gilbert B, Huang F, Banfield JF. Water-driven structure transformation in nanoparticles at room temperature. Nature. 2003;424:1025–9.

    Article  ADS  Google Scholar 

  63. Zhang H, Rustad JR, Banfield JF. Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations. J Phys Chem A. 2007;111:5008–14.

    Article  Google Scholar 

  64. Zhang M, Guo S, Weller D, Hao Y, Wang X, Ding C, et al. CdSSe nanowire-chip based wearable sweat sensor. J Nanobiotechnology. 2019;17:42.

    Article  Google Scholar 

Download references

Acknowledgments

G.K., M.I., and V.B. are grateful to the State Program of the Republic of Moldova, project 20.80009.5007.02, for supporting their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghenadii Korotcenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korotcenkov, G., Ivanov, M., Brinzari, V. (2023). II–VI Semiconductor-Based Humidity Sensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_11

Download citation

Publish with us

Policies and ethics