Skip to main content
Log in

Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, growth of full composition graded II–VI materials in different morphologies using a simple but versatile chemical vapor deposition method was demonstrated and various characterizations of those materials were carried out using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence techniques. All these techniques reveal that our materials were grown in very high crystal quality and providing a unique platform to be used for many applications. In the scope of this paper, we utilized them as humidity sensing materials as they provide a wide variety of morphology change. Humidity sensing properties of those materials were investigated under various humidity levels using quartz crystal microbalance (QCM) system. It was revealed that ZnS-rich ZnCdSSe nanowires have more adsorption sites compared to the other morphologies, namely tapered nanobelt, nanosheet and thin film, and this makes them more sensitive than others. Overall, the fabricated QCM sensors exhibited fast response, high sensitivity and narrow hysteresis and therefore they are very promising for everyday appliances and various manufacturing environments with their easy operation, high sensitivity and stability, ability to work at room temperature and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Joanni, R. Savu, L. Valadares, M. Cilense, M.A. Zaghete, Thermal evaporation furnace with improved configuration for growing nanostructured inorganic materials. Rev. Sci. Instrum. 82, 065101 (2011)

    Article  Google Scholar 

  2. Y. Chen, C. Zhu, T. Wang, The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 17, 3012–3017 (2006)

    Article  Google Scholar 

  3. F.H. Ramirez, J.D. Prades, A. Hackner, T. Fisher, G. Mueller, S. Mathur, J.R. Morante, Miniaturized ionization gas sensors from single metal oxide nanowires. Nanoscale 3, 630–634 (2011)

    Article  Google Scholar 

  4. G.C. Yi, Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications (Springer, Berlin, 2012)

    Book  Google Scholar 

  5. S. Logothetidis, Nanostructured Materials and Their Applications (Springer, Berlin, 2012)

    Book  Google Scholar 

  6. G. Cao, Y. Wang, Chapter 2, in Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press, London, 2004)

  7. T. Kuykendall, P. Ulrich, S. Aloni, P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 6, 12 (2007)

    Article  Google Scholar 

  8. Y. Wang, J. Xu, P. Ren, Q. Zhang, X. Zhuang, X. Zhu, Q. Wan, H. Zhou, W. Hu, A. Pan, Bandgap broadly tunable GaZnSeAs alloy nanowires. Phys. Chem. Chem. Phys. 15, 8 (2013)

    Google Scholar 

  9. S. Turkdogan, F. Fan, C.Z. Ning, Color-temperature tuning and control of trichromatic white light emission from a multisegment ZnCdSSe heterostructure nanosheet. Adv. Funct. Mater. 26, 8521–8526 (2016)

    Article  Google Scholar 

  10. S.H. Song, H.H. Yang, C.H. Han, S.D. Ko, S.H. Lee, J.B. Yoon, Metal–oxide–semiconductor field effect transistor humidity sensor using surface conductance. Appl. Phys. Lett. 100, 101603 (2012)

    Article  Google Scholar 

  11. B. Patissier, Humidity sensors for automotive, appliances and consumer applications. Sens. Actuators B 59, 231–234 (1999)

    Article  Google Scholar 

  12. D. Bridgeman, J. Corral, A. Quach, X. Xian, E. Forzani, Colorimetric humidity sensor based on liquid composite materials for the monitoring of food and pharmaceuticals. Langmuir 30, 10785–10791 (2014)

    Article  Google Scholar 

  13. D. Cartasegna, F. Conso, A. Donida, M. Grassi, L. Picolli, G. Rescio et al., Integrated microsystem with humidity, temperature and light sensors for monitoring the preservation conditions of food. Sensors 25, 1859–1862 (2011)

    Google Scholar 

  14. L. Gu, Q.A. Huang, M. Qing, A novel capacitive-type humidity sensor using CMOS fabrication technology. Sens. Actuators B 99, 491–498 (2004)

    Article  Google Scholar 

  15. L. Alwis, T. Sun, K.V. Grattan, Analysis of polyimide-coated optical fiber long period grating-based relative humidity sensor. IEEE Sens. J. 13, 767–771 (2013)

    Article  Google Scholar 

  16. J.K. Kwan, J.C. Sit, High sensitivity Love-wave humidity sensors using glancing angle deposited thin films. Sens. Actuators B 173, 164–168 (2012)

    Article  Google Scholar 

  17. H.T. Hsueh, S.J. Chang, F.Y. Hung, C.L. Hsu, B.T. Dai, K.T. Lam, K.H. Wen, A flexible ZnO nanowire-based humidity sensor. IEEE Trans. Nanotechnol. 11, 520–525 (2012)

    Article  Google Scholar 

  18. B.M. Kulwicki, Humidity sensors. J. Am. Ceram. Soc. 74, 697–708 (1991)

    Article  Google Scholar 

  19. V.P. Anju, P.R. Jithesh, S.K. Narayanankutty, A novel humidity and ammonia sensor based on nanofibers/polyaniline/polyvinyl alcohol. Sens. Actuators A 285, 35–44 (2019)

    Article  Google Scholar 

  20. Y.N. Guo, Z.Y. Gao, X.X. Wang, L. Sun, X. Yan, S.Y. Yan, W.P. Han, A highly stretchable humidity sensor based on spandex covered yarns and nanostructured polyaniline. RSC Adv. 8, 1078–1082 (2018)

    Article  Google Scholar 

  21. K.N. Chappanda, O. Shekhah, O. Yassine, S.P. Patole, M. Eddaoudi, K.N. Salama, The quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study. Sens. Actuators B 257, 609–619 (2018)

    Article  Google Scholar 

  22. X. Cha, F. Yu, Y. Fan, J. Chen, L. Wang, Q. Xiang, J. Xu, Superhydrophilic ZnO nanoneedle array: controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism. Sens. Actuators B 263, 436–444 (2018)

    Article  Google Scholar 

  23. T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Recent trends of ceramic humidity sensors development: a review. Sens. Actuators B 228, 416–442 (2016)

    Article  Google Scholar 

  24. X. Chen, X. Chen, N. Li, X. Ding, X. Zhao, A QCM humidity sensors based on GO/Nafion composite films with enhanced sensitivity. IEEE Sens. J. 16, 8874–8883 (2016)

    Google Scholar 

  25. Y. Yao, X. Chen, W. Ma, W. Ling, Quartz crystal microbalance humidity sensors based on nanodiamond sensing films. IEEE Trans. Nanotechnol. 13, 386–393 (2014)

    Article  Google Scholar 

  26. N. Asar, A. Erol, S. Okur, M.C. Arikan, Morphology-dependent humidity adsorption kinetics of ZnO nanostructures. Sens. Actuators A 187, 37–42 (2012)

    Article  Google Scholar 

  27. S. Okur, N. Üzar, N. Tekgüzel, A. Erol, M.Ç. Arıkan, Synthesis and humidity sensing analysis of ZnS nanowires. Physica E 44, 1103–1107 (2012)

    Article  Google Scholar 

  28. A. Erol, S. Okur, N. Yağmurcukardeş, M.Ç. Arıkan, Humidity-sensing properties of a ZnO nanowire film as measured with a QCM. Sens. Actuators B 152, 115–120 (2011)

    Article  Google Scholar 

  29. A. Erol, S. Okur, B. Comba, Ö. Mermer, M.C. Arıkan, Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process. Sens. Actuators B 145, 174–180 (2010)

    Article  Google Scholar 

  30. F. Pascal-Delannoy, B. Sorli, A. Boyer, Quartz crystal microbalance (QCM) used as humidity sensor. Sens. Actuators A 84, 285–291 (2000)

    Article  Google Scholar 

  31. K. Galatsis, W. Qu, W. Wlodarski, Quartz crystal microbalance humidity sensor with porous electrodes, in 1998 Conference on Optoelectronic and Microelectronic Materials Devices, 1998. Proceedings (IEEE, 1999), pp. 373–375

  32. Ş.D. Zor, H. Cankurtaran, QCM humidity sensors based on organic/inorganic nanocomposites of water soluble-conductive poly (diphenylamine sulfonic acid). Int. J. Electrochem. Sci. 11, 7976–7989 (2016)

    Google Scholar 

  33. R.S. Wagner, W.C. Ellis, Vapor–solid–liquid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)

    Article  Google Scholar 

  34. F. Fan, S. Turkdogan, Z. Liu, D. Shelhammer, C.Z. Ning, A monolithic white laser. Nat. Nanotechnol. 10, 796 (2015)

    Article  Google Scholar 

  35. G.H. Gilmer, G.H. Marcia, Models of thin film growth modes. JOM 39, 6 (1987)

    Article  Google Scholar 

  36. Y. Liu, J.A. Zapien, Y.Y. Shan, C.Y. Geng, C.S. Lee, S.T. Lee, Wavelength controlled lasing in ZnxCd1−xS single crystal nanoribbons. Adv. Mater. 17, 1372–1377 (2005)

    Article  Google Scholar 

  37. Y. Liu, J.A. Zapien, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons. Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/36/365606

    Google Scholar 

  38. J.A. Zapien, Y. Liu, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Continuous near-infrared-to-ultraviolet lasing from II–VI nanoribbons. Appl. Phys. Lett. 90, 213114 (2007)

    Article  Google Scholar 

  39. S. Turkdogan, Growth and Characterization of Multisegment Chalcogenide Alloy Nanostructures for Photonic Applications in a Wide Spectral Range, Dissertation, Arizona State University, 2015

  40. Thin Film Evaporation Guide (Lebow Corporation and Vacuum Engineering and Materials, Inc., Santa Clara, 2008)

  41. G. Sauerbrey, The use of quartz crystal oscillators for weighing thin layers and for microweighing applications. Z. Phys. 155(3), 206–222 (1959)

    Article  Google Scholar 

  42. T. Takahashi, P. Nichols, K. Takei, A.C. Ford, A. Jamshidi, M.C. Wu, C.Z. Ning, A. Javey, contact printing of compositionally graded CdSxSe1−x nanowire parallel arrays for tunable photodetectors. Nanotechnology (2012). https://doi.org/10.1088/0957-4484/23/4/045201

    Google Scholar 

  43. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 10 (1939)

    Article  Google Scholar 

  44. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. WJNSE 2, 154 (2012)

    Article  Google Scholar 

  45. M. Su, J. Wang, Y. Hao, Development of Y3+ and Mg2+-doped zirconia thick film humidity sensors. Mater. Chem. Phys. 126, 31–35 (2011)

    Article  Google Scholar 

  46. L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G.R. Patzke, G. Chen, Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B 159, 1–7 (2011)

    Article  Google Scholar 

  47. X. Zhou, J. Zhang, T. Jiang, X. Wang, Z. Zhu, Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sens. Actuators A 135, 209–214 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Yalova University under the Project Number 2017/AP/140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunay Turkdogan.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkdogan, S. Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM. J Mater Sci: Mater Electron 30, 10427–10434 (2019). https://doi.org/10.1007/s10854-019-01384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01384-z

Navigation