Skip to main content
Log in

Hydrothermally Synthesized ZnSe Nanoparticles for Relative Humidity Sensing Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper describes hydrothermally synthesized ZnSe nanoparticles for resistive-type relative humidity sensors. The structural, optical and morphological characterization of synthesized ZnSe nanoparticles was analyzed by means of x-ray diffraction, UV–vis spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and transmission electron microscopy. Also, the details of the fabrication process and humidity sensing mechanism are described. The considerable sensitivity, response and recovery time is achieved due to enhanced electron transfer capability of ZnSe nanoparticles. The film resistance changes with relative humidity (RH) for approximately three orders of magnitude (109–106) over the range of 20–100% RH shows reasonably good sensitivity. This indicates the promising applications of ZnSe nanoparticles for room temperature environmental monitoring. Further, the response and recovery time, repeatability and reproducibility of the humidity sensors are also measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, Z. Tang, D. Hu, D. Meng, and S. Jia, Mater. Lett. 168, 121 (2016).

    CAS  Google Scholar 

  2. M.S. Gudiksen, J. Wang, and C.M. Lieber, J. Phys. Chem. B 105, 4062 (2001).

    CAS  Google Scholar 

  3. L. Wang, X. Xu, and X. Yuan, J. Lumin. 130, 137 (2010).

    CAS  Google Scholar 

  4. H.S. Hong, M.-S. Kim, E.K. Byun, and Y.L. Lee, Gernol. Cryst. Growth 535, 125523 (2020).

    CAS  Google Scholar 

  5. Y. Song, W. Yin, C. Fernandes, and H.E. Ruda, Thin Solid Films 548, 130 (2013).

    CAS  Google Scholar 

  6. C. Wang, J. Wang, Q. Li, and G.C. Yi, Adv. Funct. Mater. 15, 1471 (2005).

    CAS  Google Scholar 

  7. X. Fang, S. Xiong, T. Zhai, Y. Bando, M. Liao, U.K. Gautam, Y. Koide, X. Zhang, Y. Qian, and D. Golberg, Adv. Mater. 21, 5016 (2009).

    CAS  Google Scholar 

  8. L. Chen, J.S. Lai, X.N. Fu, J. Sun, Z.F. Ying, J.D. Wu, H. Lu, and N. Xu, Thin Solid Films 529, 76 (2013).

    CAS  Google Scholar 

  9. H. Zhang and Y. Fang, J. Alloys Compd. 781, 201 (2019).

    CAS  Google Scholar 

  10. J. Yang, G. Wang, H. Liu, J. Park, X. Gou, and X. Cheng, J. Cryst. Growth 310, 3645 (2008).

    CAS  Google Scholar 

  11. C. Jiang, W. Zhang, G. Zou, W. Yu, and Y. Qian, Nanotechnology 16, 551 (2005).

    CAS  Google Scholar 

  12. M.-H. Chiang, Y.-S. Fu, C.-H. Shih, C.-C. Kuo, T.-F. Guo, and W.-T. Lin, Thin Solid Films 544, 291 (2013).

    CAS  Google Scholar 

  13. X. Zhang, Z. Liu, K. Ip, Y. Leung, Q. Li, and S. Hark, J. Appl. Phys. 95, 5752 (2004).

    CAS  Google Scholar 

  14. T. Zhai, H. Zhong, Z. Gu, A. Peng, H. Fu, Y. Ma, Y. Li, and J. Yao, J. Phys. Chem. C 111, 2980 (2007).

    CAS  Google Scholar 

  15. D.-D. Hou, H. Wu, and Y.-K. Liu, Optoelectron. Lett. 6, 241 (2010).

    Google Scholar 

  16. H. Fu, H. Li, W. Jie, and L. Yang, J. Cryst. Growth 289, 440 (2006).

    CAS  Google Scholar 

  17. T. Forest, F.T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Risbud, and P. Stroeve, Langmuir 16, 4049 (2000).

    Google Scholar 

  18. L. Huang and H. Han, Mater. Lett. 64, 1099 (2010).

    CAS  Google Scholar 

  19. A.R. Khataee, M. Hosseini, Y. Hanifehpour, M. Safarpour, and S.W. Joo, Res. Chem. Intermed. 40, 495 (2014).

    CAS  Google Scholar 

  20. K. Byrappa and T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007).

    CAS  Google Scholar 

  21. A.P. Alivisatos, Science 271, 933 (1996).

    CAS  Google Scholar 

  22. S. Jagtapa, P. Chopadea, S. Tadepalli, A. Bhalerao, and S. Gosavi, Opto-electron. Rev. 27, 90 (2019).

    Google Scholar 

  23. K.M. Ip, Z. Liu, C.M. Ng, and S.K. Hark, Nanotechnology 16, 1144 (2005).

    CAS  Google Scholar 

  24. Y.P. Leung, W.C.H. Choy, and T.I. Yuk, Chem. Phys. Lett. 457, 198 (2008).

    CAS  Google Scholar 

  25. S.N. Guin, D.S. Negi, R. Datta, and K. Biswas, J. Mater. Chem. A 2, 4324 (2014).

    CAS  Google Scholar 

  26. H.S. Song, W.J. Zhang, G.D. Yuan, Z.B. He, W.F. Zhang, Y.B. Tang, L.B. Luo, C.S. Lee, I. Bello, and S.T. Lee, Appl. Phys. Lett. 95, 033117 (2009).

    Google Scholar 

  27. A. Shirmardi, M. Asri Mat Teridi, H.R. Azimi, W. Jeffrey Basirun, F. Jamali-Sheini, and R. Yousefi, Appl. Surf. Sci. 462, 730 (2018).

    CAS  Google Scholar 

  28. T. Maddanimath, I.S. Mulla, S.R. Sainkar, K. Vijayamohanan, K.I. Shaikh, A.S. Patil, and S.P. Vernekar, Sens. Actuators B Chem. 81, 141 (2002).

    CAS  Google Scholar 

  29. S. Jain, S. Chakane, A.B. Samui, V.N. Krishnamurthy, and S.V. Bhoraskar, Sens. Actuators B Chem. 96, 124 (2003).

    CAS  Google Scholar 

  30. J.R. Stetter, W.R. Penrose, and S. Yao, J. Electrochem. Soc. 150, S11 (2003).

    CAS  Google Scholar 

  31. T.-H. Huang, J.-C. Chou, T.-P. Sun, and S.-K. Hsiung, Sens. Actuators B Chem. 134, 206 (2008).

    CAS  Google Scholar 

  32. M. Pelino, C. Colella, C. Cantalini, M. Faccio, G. Ferri, and A. D‘Amico, Sens. Actuators B Chem. 7, 464 (1992).

    CAS  Google Scholar 

  33. W.-D. Lin, H.-M. Chang, and R.-J. Wu, Sens. Actuators B Chem. 181, 326 (2013).

    CAS  Google Scholar 

  34. B.C. Yadav and M. Singh, IEEE Sens. J. 10, 1759 (2010).

    CAS  Google Scholar 

  35. J.-S. Koo and M.-S. Gong, Macromol. Res. 20, 1226 (2013).

    Google Scholar 

  36. K.S. Karimov, K.Y. Cheong, M. Saleem, I. Murtaza, M. Farooq, and A.F.M. Noor, J. Semicond. 31, 054002 (2010).

    Google Scholar 

  37. G. Gusmano, G. Montesperelli, P. Nunziante, and E. Traversa, Electrochim. Acta 38, 2617 (1993).

    CAS  Google Scholar 

  38. K. Wang, X. Qian, L. Zhang, Y. Li, and H. Liu, ACS Appl. Mater. Interfaces. 5, 5825 (2013).

    CAS  Google Scholar 

  39. A. Wilkes and D. Williams, Anesth. Intensive Care Med. 19, 198 (2018).

    Google Scholar 

  40. Z.M. Rittersam, Sens. Actuators A Phys. 96, 196 (2002).

    Google Scholar 

  41. M. Masanobu, K. Takkakia, M. Tetsuya, S. Sachiki, T. Ogura, and Y. Sakai, Sens. Actuators B 52, 53 (1998).

    Google Scholar 

  42. R.K. Kotnala, J. Shah, M.C. Mathpal, K.C. Verma, S. Singh, and Lovkush, Thin Solid Films 519, 6136 (2011).

    Google Scholar 

  43. J.S. Kim, M.J. Lee, M.-S. Kang, K.-P. Yoo, K.-H. Kwon, V.R. Singh, and N.K. Min, Thin Solid Films 517, 3879 (2009).

    CAS  Google Scholar 

  44. M. Morsy, M. Ibrahim, Z. Yuan, and F. Meng, IEEE 22, 1558 (2019).

    Google Scholar 

  45. H. Yang, Q. Ye, R. Zeng, J. Zhang, L. Yue, M. Xu, Z.-J. Qiu, and D. Wu, Sensors 17, 2415 (2017).

    Google Scholar 

  46. Q. Zhang, H. Li, Y. Ma, and T. Zhai, Prog. Mater. Sci. 83, 472 (2016).

    CAS  Google Scholar 

  47. W. Yan, C. Hu, Y. Xi, B. Wan, X. Hi, M. Zhang, and Y. Zhang, Mater. Res. Bull. 44, 1205 (2009).

    CAS  Google Scholar 

  48. L. Zhang, H. Yang, J. Yu, F. Shao, L. Li, F. Zhang, and H. Zhao, J. Phys. Chem. C 113, 5434 (2009).

    CAS  Google Scholar 

  49. A.M. Chaparro, M.A. Martinez, C. Guillen, R. Bayon, M.T. Gutierrez, and J. Herrero, Thin Solid Films 361, 177 (2000).

    Google Scholar 

  50. S. Jagtap and K. Priolkar, IEEE Sens. 15, 4700 (2015).

    CAS  Google Scholar 

  51. A. Yadav, S.P. Nehra, and D. Patidar, ISSN 13, 0973 (2018).

    Google Scholar 

  52. A.B. Panda, S. Acharya, S. Efrima, and Y. Golan, Langmuir 23, 765 (2007).

    CAS  Google Scholar 

  53. R. Sardar and J.S. Shumaker-Parry, J. Am. Chem. Soc. 133, 8179 (2011).

    CAS  Google Scholar 

  54. S. Li, Y. Jiang, B. Wang, D. Wu, J. Li, Y. Zhang, B. Yang, X. Ding, H. Zhou, and H. Zhong, Micro Nano Lett. 11, 2311 (2011).

    Google Scholar 

  55. H. Jeon, J. Ding, A.V. Nurmillo, W. Xie, D.C. Grillo, M. Kobayashi, R.L. Gunshor, G.C. Hua, and N. Otsuka, Appl. Phys. Lett. 60, 2045 (1992).

    CAS  Google Scholar 

  56. T. Miyajima, H. Okuyama, and K. Akimoto, Jpn. J. Appl. Phys. 31, L1743 (1992).

    CAS  Google Scholar 

  57. C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, Sens. Actuators B 255, 1569 (2018).

    CAS  Google Scholar 

  58. E. Traversa, Sens. Actuators B Chem. 23, 135 (1995).

    CAS  Google Scholar 

  59. P.A. Thiel and T.E. Madey, Surf. Sci. Rep. 7, 211 (1987).

    CAS  Google Scholar 

  60. J. Canivet, A. Fateeva, Y. Guo, B. Coasne, and D. Farrusseng, Chem. Soc. Rev. 43, 5594 (2014).

    CAS  Google Scholar 

  61. B.E. Conway, J.O. Bockris, and H. Linton, J. Chem. Phys. 24, 834 (1956).

    CAS  Google Scholar 

  62. R. Srivastava and B. Yadav, Adv. Mater. Lett. 3, 197 (2012).

    CAS  Google Scholar 

  63. Z. Chen and C. Lu, Sens. Lett. 3, 274 (2005).

    CAS  Google Scholar 

  64. S. Kurosaki and J. Gel, Phys. Chem. 58, 320 (1954).

    CAS  Google Scholar 

  65. A. Bearzotti, I. Fratoddi, L. Palummo, S. Petrocco, A. Furlani, C.L. Sterzo, and M.V. Russo, Sens. Actuators B 76, 316 (2001).

    CAS  Google Scholar 

  66. T. Seiyama, N. Yamazoe, and H. Arai, Sens. Actuators 4, 85 (1983).

    CAS  Google Scholar 

  67. Z. Zhang, C. Hu, Y. Xiong, R. Yang, and Z.L. Wang, Nanotechnology 18, 465504 (2007).

    Google Scholar 

  68. N. Uzar, S. Okur, and M.C. Arıkan, Sens. Actuators A 167, 188 (2011).

    Google Scholar 

  69. R. Demir, S. Okur, and M. Seke, Ind. Eng. Chem. Res. 51, 3309 (2012).

    CAS  Google Scholar 

  70. Y.-C. Liang and S.-L. Liu, Nanoscale Res. Lett. 9, 647 (2014).

    Google Scholar 

  71. Q. Chen, M. Nie, and Y. Guo, Sens. Actuators B Chem. 254, 30 (2018).

    CAS  Google Scholar 

  72. S. Turkdogan, J. Mater. Sci. Mater. Electron. 30, 10427 (2019).

    CAS  Google Scholar 

  73. D. Zhang, X. Zong, Z. Wu, and Y. Zhang, ACS Appl. Mater. Interfaces 10, 32631 (2018).

    CAS  Google Scholar 

  74. D. Zhang, J. Tong, B. Xia, and Q. Xue, Sens. Actuators B 203, 263 (2014).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Jagtap.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhari, U., Jagtap, S. Hydrothermally Synthesized ZnSe Nanoparticles for Relative Humidity Sensing Application. J. Electron. Mater. 49, 5903–5916 (2020). https://doi.org/10.1007/s11664-020-08320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08320-6

Keywords

Navigation