Skip to main content

Revisiting the Biological and Clinical Impact of CDH1 Missense Variants

  • Chapter
  • First Online:
Hereditary Gastric and Breast Cancer Syndrome

Abstract

E-cadherin, encoded by CDH1, plays an undisputable role in mechanical and biochemical signals that are crucial for cell integrity and tissue organization. Hence, E-cadherin deregulation results in severe tissue imbalances as those seen in cancer and congenital disorders. In particular, hereditary diffuse gastric cancer, lobular breast cancer, cleft lip/palate, and the blepharocheilodontic syndrome have been recognized as CDH1-associated entities. Among a plethora of CDH1 genetic alterations identified in disease contexts, missense variants represent a huge burden for genetic counselling and patient management. Indeed, establishment of their biological and clinical impact is not always straightforward, contributing to misestimation and inaccurate classification. Herein, we provide an overview of the state of the art concerning CDH1 missense variants, their geographical distribution and their relevance in distinct clinical spectra. We highlight the unequivocal value of an integrative pipeline to assess functional significance of variants, encompassing familial and population data analysis, in silico modelling, in vitro assays and in vivo studies. Importantly, we discuss how this strategy may improve genetic counselling of patients and their families, whilst opening up avenues of research addressing the aetiology of E-cadherin-mediated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliveira C et al (2015) Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol 16(2):e60–e70

    Article  PubMed  Google Scholar 

  2. Guilford P et al (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392(6674):402–405

    Article  CAS  PubMed  Google Scholar 

  3. Hansford S et al (2015) Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol 1(1):23–32

    Article  PubMed  Google Scholar 

  4. Blair VR et al (2020) Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncol 21(8):e386–e397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gamble LA, Heller T, Davis JL (2021) Hereditary diffuse gastric cancer syndrome and the role of CDH1 a review. JAMA Surg 156(4):387–392

    Article  PubMed  Google Scholar 

  6. van der Post RS et al (2015) Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet 52(6):361–374

    Article  PubMed  Google Scholar 

  7. Gamble LA, Davis JL (2022) Surveillance and surgical considerations in hereditary diffuse gastric cancer. Gastrointest Endosc Clin N Am 32(1):163–175

    Article  PubMed  Google Scholar 

  8. Caldas C et al (1999) Familial gastric cancer: overview and guidelines for management. J Med Genet 36(12):873–880

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Figueiredo J et al (2019) Clinical spectrum and pleiotropic nature of CDH1 germline mutations. J Med Genet 56(4):199–208

    Article  CAS  PubMed  Google Scholar 

  10. Melo S et al (2017) Predicting the functional impact of CDH1 missense mutations in hereditary diffuse gastric cancer. Int J Mol Sci 18(12)

    Google Scholar 

  11. Corso G et al (2012) Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature. BMC Cancer 12:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lecuit T, Yap AS (2015) E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 17(5):533–539

    Article  CAS  PubMed  Google Scholar 

  13. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65(23):3756–3788

    Article  CAS  PubMed  Google Scholar 

  14. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rubsam M et al (2017) E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun 8(1):1250

    Article  PubMed  PubMed Central  Google Scholar 

  16. Corso G et al (2018) Hereditary lobular breast cancer with an emphasis on E-cadherin genetic defect. J Med Genet 55(7):431–441

    Article  CAS  PubMed  Google Scholar 

  17. Oliveira C et al (2013) E-cadherin alterations in hereditary disorders with emphasis on hereditary diffuse gastric cancer. Prog Mol Biol Transl Sci 116:337–359

    Article  CAS  PubMed  Google Scholar 

  18. Molinaro V et al (2014) Complementary molecular approaches reveal heterogeneous CDH1 germline defects in Italian patients with hereditary diffuse gastric cancer (HDGC) syndrome. Genes Chromosomes Cancer 53(5):432–445

    Article  CAS  PubMed  Google Scholar 

  19. Schrader KA et al (2011) Germline mutations in CDH1 are infrequent in women with early-onset or familial lobular breast cancers. J Med Genet 48(1):64–68

    Article  CAS  PubMed  Google Scholar 

  20. Vogelaar IP et al (2013) Identification of germline mutations in the cancer predisposing gene CDH1 in patients with orofacial clefts. Hum Mol Genet 22(5):919–926

    Article  CAS  PubMed  Google Scholar 

  21. Ghoumid J et al (2017) Blepharocheilodontic syndrome is a CDH1 pathway-related disorder due to mutations in CDH1 and CTNND1. Genet Med 19(9):1013–1021

    Article  CAS  PubMed  Google Scholar 

  22. Kievit A et al (2018) Variants in members of the cadherin-catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome. Eur J Hum Genet 26(2):210–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corso G et al (2021) Geographical distribution of E-cadherin germline mutations in the context of diffuse gastric cancer: a systematic review. Cancers (Basel) 13(6)

    Google Scholar 

  24. Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  25. Guilford PJ et al (1999) E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat 14(3):249–255

    Article  CAS  PubMed  Google Scholar 

  26. Corso G et al (2022) Global distribution of prophylactic total gastrectomy in E-cadherin (CDH1) mutations. Semin Oncol 49:130

    Article  CAS  PubMed  Google Scholar 

  27. Corso G et al (2020) Hereditary gastric and breast cancer syndromes related to CDH1 germline mutation: a multidisciplinary clinical review. Cancers (Basel) 12(6)

    Google Scholar 

  28. Santucci C et al (2020) Progress in cancer mortality, incidence, and survival: a global overview. Eur J Cancer Prev 29(5):367–381

    Article  PubMed  Google Scholar 

  29. Lee K et al (2018) Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence variants. Hum Mutat 39(11):1553–1568

    Article  PubMed  PubMed Central  Google Scholar 

  30. Figueiredo J, Seruca J (2013) Germline missense mutants in hereditary diffuse gastric cancer. Spotlight Familial Hereditary Gastric Cancer 7:77–86

    Article  Google Scholar 

  31. Suriano G et al (2006) A model to infer the pathogenic significance of CDH1 germline missense variants. J Mol Med 84(12):1023–1031

    Article  CAS  PubMed  Google Scholar 

  32. Fitzgerald RC, Caldas C (2004) Clinical implications of E-cadherin associated hereditary diffuse gastric cancer. Gut 53(6):775–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Figueiredo J et al (2021) Germline CDH1 G212E missense variant: combining clinical. In vitro and in vivo strategies to unravel disease burden. Cancers (Basel) 13(17)

    Google Scholar 

  34. Pena-Couso L et al (2018) Clinical and functional characterization of the CDH1 germline variant c.1679C>G in three unrelated families with hereditary diffuse gastric cancer. Eur J Hum Genet 26(9):1348–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang L et al (2014) The germline CDH1 c.48 G>C substitution contributes to cancer predisposition through generation of a pro-invasive mutation. Mutat Res 770:106–111

    Article  CAS  PubMed  Google Scholar 

  38. Barber ME et al (2008) Histopathological and molecular analysis of gastrectomy specimens from hereditary diffuse gastric cancer patients has implications for endoscopic surveillance of individuals at risk. J Pathol 216(3):286–294

    Article  CAS  PubMed  Google Scholar 

  39. Simoes-Correia J et al (2012) E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer. PLoS One 7(3):e33783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  41. Adzhubei IA et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi Y et al (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7(10):e46688–e46688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saunders CT, Baker D (2002) Evaluation of structural and evolutionary contributions to deleterious mutation prediction. J Mol Biol 322(4):891–901

    Article  CAS  PubMed  Google Scholar 

  44. Schymkowitz J et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220(1):49–65

    Article  CAS  PubMed  Google Scholar 

  46. Hebsgaard SM et al (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24(17):3439–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suriano G et al (2003) Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum Mol Genet 12(5):575–582

    Article  CAS  PubMed  Google Scholar 

  48. Figueiredo J et al (2013) The importance of E-cadherin binding partners to evaluate the pathogenicity of E-cadherin missense mutations associated to HDGC. Eur J Hum Genet 21(3):301–309

    Article  CAS  PubMed  Google Scholar 

  49. Sanches JM et al (2015) Quantification of mutant E-cadherin using bioimaging analysis of in situ fluorescence microscopy. A new approach to CDH1 missense variants. Eur J Hum Genet 23(8):1072–1079

    Article  CAS  PubMed  Google Scholar 

  50. Mestre T et al (2016) Quantification of topological features in cell meshes to explore E-cadherin dysfunction. Sci Rep 6:25101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Figueiredo J et al (2018) E-cadherin signal sequence disruption: a novel mechanism underlying hereditary cancer. Mol Cancer 17(1):112

    Article  PubMed  PubMed Central  Google Scholar 

  52. Simoes-Correia J et al (2008) Endoplasmic reticulum quality control: a new mechanism of E-cadherin regulation and its implication in cancer. Hum Mol Genet 17(22):3566–3576

    Article  CAS  PubMed  Google Scholar 

  53. Carvalho S et al (2016) Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene 35(13):1619–1631

    Article  CAS  PubMed  Google Scholar 

  54. Figueiredo J et al (2018) Geometric compensation applied to image analysis of cell populations with morphological variability: a new role for a classical concept. Sci Rep 8(1):10266

    Article  PubMed  PubMed Central  Google Scholar 

  55. Suriano G et al (2003) E-cadherin germline missense mutations and cell phenotype: evidence for the independence of cell invasion on the motile capabilities of the cells. Hum Mol Genet 12(22):3007–3016

    Article  CAS  PubMed  Google Scholar 

  56. Boterberg T et al (2001) Cell aggregation assays. Methods Mol Med 58:33–45

    CAS  PubMed  Google Scholar 

  57. Kluijt I et al (2011) CDH1-related hereditary diffuse gastric cancer syndrome: clinical variations and implications for counseling. Int J Cancer

    Google Scholar 

  58. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386

    Article  CAS  PubMed  Google Scholar 

  59. Kleinman HK et al (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21(24):6188–6193

    Article  CAS  PubMed  Google Scholar 

  60. Humar B et al (2009) E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res 69(5):2050–2056

    Article  CAS  PubMed  Google Scholar 

  61. Mimata A et al (2011) Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer. Cancer Sci 102(5):942–950

    Article  CAS  PubMed  Google Scholar 

  62. Shimada S et al (2012) Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer. Gut 61(3):344–353

    Article  CAS  PubMed  Google Scholar 

  63. Caldeira J et al (2009) Using fruitflies to help understand the molecular mechanisms of human hereditary diffuse gastric cancer. Int J Dev Biol 53(8–10):1557–1561

    Article  CAS  PubMed  Google Scholar 

  64. Pereira PS et al (2006) E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and notch pathways in Drosophila epithelia. Hum Mol Genet 15(10):1704–1712

    Article  CAS  PubMed  Google Scholar 

  65. Figueiredo J et al (2022) Integrin beta1 orchestrates the abnormal cell-matrix attachment and invasive behaviour of E-cadherin dysfunctional cells. Gastric Cancer 25(1):124–137

    Article  CAS  PubMed  Google Scholar 

  66. Caldeira J et al (2015) E-cadherin-defective gastric cancer cells depend on laminin to survive and invade. Hum Mol Genet 24(20):5891–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Simoes-Correia J et al (2014) DNAJB4 molecular chaperone distinguishes WT from mutant E-cadherin, determining their fate in vitro and in vivo. Hum Mol Genet 23(8):2094–2105

    Article  CAS  PubMed  Google Scholar 

  68. Figueiredo J et al (2011) ADP-ribosylation factor 6 mediates E-cadherin recovery by chemical chaperones. PLoS One 6(8):e23188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pinho SS et al (2011) Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci 68(6):1011–1020

    Article  CAS  PubMed  Google Scholar 

  70. Mateus AR et al (2007) EGFR regulates RhoA-GTP dependent cell motility in E-cadherin mutant cells. Hum Mol Genet 16(13):1639–1647

    Article  CAS  PubMed  Google Scholar 

  71. Mateus AR et al (2009) E-cadherin mutations and cell motility: a genotype-phenotype correlation. Exp Cell Res 315(8):1393–1402

    Article  CAS  PubMed  Google Scholar 

  72. Ferreira P et al (2005) Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro. Exp Cell Res 310(1):99–104

    Article  CAS  PubMed  Google Scholar 

  73. Ferreira AC et al (2012) E-cadherin impairment increases cell survival through notch-dependent upregulation of Bcl-2. Hum Mol Genet 21(2):334–343

    Article  CAS  PubMed  Google Scholar 

  74. Guilford P, Humar B, Blair V (2010) Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer 13(1):1–10

    Article  CAS  PubMed  Google Scholar 

  75. Suriano G et al (2005) Characterization of a recurrent germ line mutation of the E-cadherin gene: implications for genetic testing and clinical management. Clin Cancer Res 11(15):5401–5409

    Article  CAS  PubMed  Google Scholar 

  76. Shinmura K et al (1999) Familial gastric cancer: clinicopathological characteristics, RER phenotype and germline p53 and E-cadherin mutations. Carcinogenesis 20(6):1127–1131

    Article  CAS  PubMed  Google Scholar 

  77. Guindalini RSC et al (2019) Frequency of CDH1 germline variants and contribution of dietary habits in early age onset gastric cancer patients in Brazil. Gastric Cancer 22(5):920–931

    Article  PubMed  PubMed Central  Google Scholar 

  78. More H et al (2007) Identification of seven novel germline mutations in the human E-cadherin (CDH1) gene. Hum Mutat 28(2):203

    Article  CAS  PubMed  Google Scholar 

  79. Avizienyte E et al (2001) E-cadherin is not frequently mutated in hereditary gastric cancer. J Med Genet 38(1):49–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Corso G et al (2011) E-cadherin genetic screening and clinico-pathologic characteristics of early onset gastric cancer. Eur J Cancer 47(4):631–639

    Article  CAS  PubMed  Google Scholar 

  81. Petrova YI, Schecterson L, Gumbiner BM (2016) Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell 27(21):3233–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaurah P et al (2007) Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA 297(21):2360–2372

    Article  CAS  PubMed  Google Scholar 

  83. Kim S et al (2013) Searching for E-cadherin gene mutations in early onset diffuse gastric cancer and hereditary diffuse gastric cancer in Korean patients. Familial Cancer 12(3):503–507

    Article  CAS  PubMed  Google Scholar 

  84. Yoon KA et al (1999) Germline mutations of E-cadherin gene in Korean familial gastric cancer patients. J Hum Genet 44(3):177–180

    Article  CAS  PubMed  Google Scholar 

  85. Ikonen T et al (2001) Association of E-cadherin germ-line alterations with prostate cancer. Clin Cancer Res 7(11):3465–3471

    CAS  PubMed  Google Scholar 

  86. Brooks-Wilson AR et al (2004) Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet 41(7):508–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Betes M et al (2017) A multidisciplinary approach allows identification of a new pathogenic CDH1 germline missense mutation in a hereditary diffuse gastric cancer family. Dig Liver Dis 49(7):825–826

    Article  CAS  PubMed  Google Scholar 

  88. Oliveira C et al (2002) Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred. Hum Mutat 19(5):510–517

    Article  CAS  PubMed  Google Scholar 

  89. Corso G et al (2007) Characterization of the P373L E-cadherin germline missense mutation and implication for clinical management. Eur J Surg Oncol 33(9):1061–1067

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y et al (2003) Ile-Leu substitution (I415L) in germline E-cadherin gene (CDH1) in Japanese familial gastric cancer. Jpn J Clin Oncol 33(1):17–20

    Article  CAS  PubMed  Google Scholar 

  91. Keller G et al (2004) Germline mutations of the E-cadherin(CDH1) and TP53 genes, rather than of RUNX3 and HPP1, contribute to genetic predisposition in German gastric cancer patients. J Med Genet 41(6):e89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ascano JJ et al (2001) Inactivation of the E-cadherin gene in sporadic diffuse-type gastric cancer. Mod Pathol 14(10):942–949

    Article  CAS  PubMed  Google Scholar 

  93. Adib E et al (2022) CDH1 germline variants are enriched in patients with colorectal cancer, gastric cancer, and breast cancer. Br J Cancer 126(5):797–803

    Article  CAS  PubMed  Google Scholar 

  94. Chen QH et al (2013) Novel CDH1 germline mutations identified in Chinese gastric cancer patients. World J Gastroenterol 19(6):909–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garziera M et al (2013) A novel CDH1 germline missense mutation in a sporadic gastric cancer patient in north-east of Italy. Clin Exp Med 13(2):149–157

    Article  CAS  PubMed  Google Scholar 

  96. Garziera M et al (2013) Identification and characterization of CDH1 germline variants in sporadic gastric cancer patients and in individuals at risk of gastric cancer. PLoS One 8(10):e77035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sarrio D et al (2003) Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer 106(2):208–215

    Article  CAS  PubMed  Google Scholar 

  98. Stuebs F et al (2018) CDH1 mutation screen in a BRCA1/2-negative familial breast-/ovarian cancer cohort. Arch Gynecol Obstet 297(1):147–152

    Article  CAS  PubMed  Google Scholar 

  99. Kim HC et al (2000) The E-cadherin gene (CDH1) variants T340A and L599V in gastric and colorectal cancer patients in Korea. Gut 47(2):262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Salahshor S et al (2001) A germline E-cadherin mutation in a family with gastric and colon cancer. Int J Mol Med 8(4):439–443

    CAS  PubMed  Google Scholar 

  101. Jonsson BA et al (2002) Germline mutations in E-cadherin do not explain association of hereditary prostate cancer, gastric cancer and breast cancer. Int J Cancer 98(6):838–843

    Article  CAS  PubMed  Google Scholar 

  102. Forster A et al (2021) Rare germline variants in the E-cadherin gene CDH1 are associated with the risk of brain tumors of neuroepithelial and epithelial origin. Acta Neuropathol 142(1):191–210

    Article  PubMed  PubMed Central  Google Scholar 

  103. Du S et al (2019) A novel CDH1 mutation causing reduced E-cadherin dimerization is associated with nonsyndromic cleft lip with or without cleft palate. Genet Test Mol Biomarkers 23(11):759–765

    Article  CAS  PubMed  Google Scholar 

  104. Cox LL et al (2018) Mutations in the epithelial cadherin-p120-catenin complex cause Mendelian non-syndromic cleft lip with or without cleft palate. Am J Hum Genet 102(6):1143–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brito LA et al (2015) Rare variants in the epithelial cadherin gene underlying the genetic etiology of nonsyndromic cleft lip with or without cleft palate. Hum Mutat 36(11):1029–1033

    Article  CAS  PubMed  Google Scholar 

  106. Ittiwut R et al (2016) Variants of the CDH1 (E-cadherin) gene associated with oral clefts in the Thai population. Genet Test Mol Biomarkers 20(7):406–409

    Article  CAS  PubMed  Google Scholar 

  107. Nishi E et al (2016) Exome sequencing-based identification of mutations in non-syndromic genes among individuals with apparently syndromic features. Am J Med Genet A 170(11):2889–2894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to pay a tribute to Raquel Seruca, our forever inspiring mentor. To infinity and beyond.

Funding

This work was financed by FEDER funds through the Operational Programme for Competitiveness Factors (COMPETE 2020), Programa Operacional de Competitividade e Internacionalização (POCI) and Programa Operacional Regional do Norte (Norte 2020); and by National Funds through the Portuguese Foundation for Science and Technology (FCT projects PTDC/MED-GEN/30356/2017, EXPL/MED-ONC/0386/2021, 2022.02665.PTDC, and doctoral grant SFRH/BD/143533/2019-JP). We acknowledge the American Association of Patients with Hereditary Gastric Cancer “No Stomach for Cancer” for funding Seruca’s research, and the project “P.CCC: Centro Compreensivo de Cancro do Porto” - NORTE-01-0145-FEDER-072678, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, J., Melo, S., Carneiro, P., Fernandes, M.S., Figueiredo, J., Seruca, R. (2023). Revisiting the Biological and Clinical Impact of CDH1 Missense Variants. In: Corso, G., Veronesi, P., Roviello, F. (eds) Hereditary Gastric and Breast Cancer Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-031-21317-5_6

Download citation

Publish with us

Policies and ethics