Skip to main content
Log in

Modulation of E-cadherin function and dysfunction by N-glycosylation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Several mechanisms have been proposed to explain the E-cadherin dysfunction in cancer, including genetic and epigenetic alterations. Nevertheless, a significant number of human carcinomas have been seen that show E-cadherin dysfunction that cannot be explained at the genetic/epigenetic level. A substantial body of evidence has appeared recently that supports the view that other mechanisms operating at the post-translational level may also affect E-cadherin function. The present review addresses molecular aspects related to E-cadherin N-glycosylation and evidence is presented showing that the modification of N-linked glycans on E-cadherin can affect the adhesive function of this adhesion molecule. The role of glycosyltransferases involved in the remodeling of N-glycans on E-cadherin, including N-acetylglucosaminyltransferase III (GnT-III), N-acetylglucosaminyltransferase V (GnT-V), and the α1,6 fucosyltransferase (FUT8) enzyme, is also discussed. Finally, this review discusses an alternative functional regulatory mechanism for E-cadherin operating at the post-translational level, N-glycosylation, that may underlie the E-cadherin dysfunction in some carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GnT-III:

N-Acetylglucosaminyltransferase III

GnT-V:

N-Acetylglucosaminyltransferase V

FUT8:

α1,6 Fucosyltransferase

GnT-IV:

N-Acetylglucosaminyltransferase IV

EC:

Extracellular domain

AJ:

Adherens-junction

ECM:

Extracellular matrix

References

  1. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634

    Article  CAS  PubMed  Google Scholar 

  2. Tamura K, Shan WS, Hendrickson WA, Colman DR, Shapiro L (1998) Structure–function analysis of cell adhesion by neural (N-) cadherin. Neuron 20:1153–1163

    Article  CAS  PubMed  Google Scholar 

  3. Shi QM, Maruthamuthu V, Li F, Leckband D (2010) Allosteric cross talk between cadherin extracellular domains. Biophys J 99:95–104

    Article  CAS  PubMed  Google Scholar 

  4. Nelson WJ (2008) Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochem Soc Trans 36:149–155

    Article  CAS  PubMed  Google Scholar 

  5. Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci U S A 105:13–19

    Article  CAS  PubMed  Google Scholar 

  6. Berx G, Becker KF, Hofler H, van RF (1998) Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12:226–237

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira C, Sousa S, Pinheiro H, Karam R, Carrico R, Senz J, Kaurah P, Carvalho J, Pereira R, Gusmao L, Xiaogang W, Yokota J, Carneiro F, Huntsman D, Seruca R (2009) Quantification of epigenetic and genetic 2nd hits in CDH1 during hereditary diffuse gastric cancer syndrome progression. Gastroenterology 136:2137–2148

    Article  CAS  PubMed  Google Scholar 

  8. Alves CC, Carneiro F, Hoefler H, Becker KF (2009) Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci 14:3035–3050

    Article  PubMed  Google Scholar 

  9. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  10. Lickert H, Bauer A, Kemler R, Stappert J (2000) Casein kinase II phosphorylation of E-cadherin increases E-cadherin/β-catenin interaction and strengthens cell–cell adhesion. J Biol Chem 275:5090–5095

    Article  CAS  PubMed  Google Scholar 

  11. Zhu W, Leber B, Andrews DW (2001) Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J 20:5999–6007

    Article  CAS  PubMed  Google Scholar 

  12. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  PubMed  Google Scholar 

  13. Pinho SS, Osorio H, Nita-Lazar M, Gomes J, Lopes C, Gartner F, Reis CA (2009) Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochem Biophys Res Commun 379:1091–1096

    Article  CAS  PubMed  Google Scholar 

  14. Ioffe E, Stanley P (1994) Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A 91:728–732

    Article  CAS  PubMed  Google Scholar 

  15. Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7:537–551

    Article  CAS  PubMed  Google Scholar 

  16. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  17. Zhou F, Su J, Fu L, Yang Y, Zhang L, Wang L, Zhao H, Zhang D, Li Z, Zha X (2008) Unglycosylation at Asn-633 made extracellular domain of E-cadherin folded incorrectly and arrested in endoplasmic reticulum, then sequentially degraded by ERAD. Glycoconj J 25:727–740

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Liang Y, Xu Z, Wang L, Zhou F, Li Z, Jin J, Yang Y, Fang Z, Hu Y, Zhang L, Su J, Zha X (2008) N-glycosylation affects the adhesive function of E-cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J Cell Biochem 104:162–175

    Article  CAS  PubMed  Google Scholar 

  19. Liwosz A, Lei T, Kukuruzinska MA (2006) N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J Biol Chem 281:23138–23149

    Article  CAS  PubMed  Google Scholar 

  20. Vagin O, Tokhtaeva E, Yakubov I, Shevchenko E, Sachs G (2008) Inverse correlation between the extent of N-glycan branching and intercellular adhesion in epithelia. Contribution of the Na, K-ATPase β1 subunit. J Biol Chem 283:2192–2202

    Article  CAS  PubMed  Google Scholar 

  21. Narasimhan S (1982) Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide β 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in β 1–4 linkage to the β-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem 257:10235–10242

    CAS  PubMed  Google Scholar 

  22. Brockhausen I, Narasimhan S, Schachter H (1988) The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 70:1521–1533

    Article  CAS  PubMed  Google Scholar 

  23. Uozumi N, Yanagidani S, Miyoshi E, Ihara Y, Sakuma T, Gao CX, Teshima T, Fujii S, Shiba T, Taniguchi N (1996) Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-β-d-glucosaminide α1-- > 6fucosyltransferase. J Biol Chem 271:27810–27817

    Article  CAS  PubMed  Google Scholar 

  24. Taniguchi N, Miyoshi E, Gu J, Honke K, Matsumoto A (2006) Decoding sugar functions by identifying target glycoproteins. Curr Opin Struct Biol 16:561–566

    Article  CAS  PubMed  Google Scholar 

  25. Taniguchi N, Miyoshi E, Ko JH, Ikeda Y, Ihara Y (1999) Implication of N-acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling mechanism. Biochim Biophys Acta 1455:287–300

    CAS  PubMed  Google Scholar 

  26. Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56:5309–5318

    CAS  PubMed  Google Scholar 

  27. Zhao Y, Nakagawa T, Itoh S, Inamori K, Isaji T, Kariya Y, Kondo A, Miyoshi E, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on α3β1 integrin-mediated cell migration. J Biol Chem 281:32122–32130

    Article  CAS  PubMed  Google Scholar 

  28. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N (1995) Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci U S A 92:8754–8758

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimura M, Ihara Y, Matsuzawa Y, Taniguchi N (1996) Aberrant glycosylation of E-cadherin enhances cell–cell binding to suppress metastasis. J Biol Chem 271:13811–13815

    Article  CAS  PubMed  Google Scholar 

  30. Kitada T, Miyoshi E, Noda K, Higashiyama S, Ihara H, Matsuura N, Hayashi N, Kawata S, Matsuzawa Y, Taniguchi N (2001) The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of β-catenin. J Biol Chem 276:475–480

    Article  CAS  PubMed  Google Scholar 

  31. Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N (2004) Introduction of bisecting GlcNAc into integrin α5β1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem 279:19747–19754

    Article  CAS  PubMed  Google Scholar 

  32. Sato Y, Isaji T, Tajiri M, Yoshida-Yamamoto S, Yoshinaka T, Somehara T, Fukuda T, Wada Y, Gu J (2009) An N-glycosylation site on the β-propeller domain of the integrin α5 subunit plays key roles in both its function and site-specific modification by β1, 4-N-acetylglucosaminyltransferase III. J Biol Chem 284:11873–11881

    Article  CAS  PubMed  Google Scholar 

  33. Pinho SS, Reis CA, Paredes J, Magalhaes AM, Ferreira AC, Figueiredo J, Xiaogang W, Carneiro F, Gartner F, Seruca R (2009) The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet 18:2599–2608

    Article  CAS  PubMed  Google Scholar 

  34. Iijima J, Zhao Y, Isaji T, Kameyama A, Nakaya S, Wang X, Ihara H, Cheng X, Nakagawa T, Miyoshi E, Kondo A, Narimatsu H, Taniguchi N, Gu J (2006) Cell–cell interaction-dependent regulation of N-acetylglucosaminyltransferase III and the bisected N-glycans in GE11 epithelial cells. Involvement of E-cadherin-mediated cell adhesion. J Biol Chem 281:13038–13046

    Article  CAS  PubMed  Google Scholar 

  35. Gu J, Sato Y, Kariya Y, Isaji T, Taniguchi N, Fukuda T (2009) A mutual regulation between cell–cell adhesion and N-glycosylation: implication of the bisecting GlcNAc for biological functions. J Proteome Res 8:431–435

    Article  CAS  PubMed  Google Scholar 

  36. Akama R, Sato Y, Kariya Y, Isaji T, Fukuda T, Lu L, Taniguchi N, Ozawa M, Gu J (2008) N-acetylglucosaminyltransferase III expression is regulated by cell–cell adhesion via the E-cadherin–catenin-actin complex. Proteomics 8:3221–3228

    Article  CAS  PubMed  Google Scholar 

  37. Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 99:10231–10233

    Article  CAS  PubMed  Google Scholar 

  38. Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M (2002) Aberrant N-glycosylation of β1 integrin causes reduced α5β1 integrin clustering and stimulates cell migration. Cancer Res 62:6837–6845

    CAS  PubMed  Google Scholar 

  39. Guo HB, Lee I, Kamar M, Pierce M (2003) N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell–cell adhesion and intracellular signaling pathways. J Biol Chem 278:52412–52424

    Article  CAS  PubMed  Google Scholar 

  40. Guo HB, Johnson H, Randolph M, Pierce M (2009) Regulation of homotypic cell–cell adhesion by branched N-glycosylation of N-cadherin extracellular EC2 and EC3 domains. J Biol Chem 284:34986–34997

    Article  CAS  PubMed  Google Scholar 

  41. Taketa K, Endo Y, Sekiya C, Tanikawa K, Koji T, Taga H, Satomura S, Matsuura S, Kawai T, Hirai H (1993) A collaborative study for the evaluation of lectin-reactive α-fetoproteins in early detection of hepatocellular carcinoma. Cancer Res 53:5419–5423

    CAS  PubMed  Google Scholar 

  42. Miyoshi E, Uozumi N, Noda K, Hayashi N, Hori M, Taniguchi N (1997) Expression of α1–6 fucosyltransferase in rat tissues and human cancer cell lines. Int J Cancer 72:1117–1121

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Itoh S, Wang X, Isaji T, Miyoshi E, Kariya Y, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) Deletion of core fucosylation on α3β1 integrin down-regulates its functions. J Biol Chem 281:38343–38350

    Article  CAS  PubMed  Google Scholar 

  44. Osumi D, Takahashi M, Miyoshi E, Yokoe S, Lee SH, Noda K, Nakamori S, Gu J, Ikeda Y, Kuroki Y, Sengoku K, Ishikawa M, Taniguchi N (2009) Core fucosylation of E-cadherin enhances cell–cell adhesion in human colon carcinoma WiDr cells. Cancer Sci 100:888–895

    Article  CAS  PubMed  Google Scholar 

  45. Hu P, Shi B, Geng F, Zhang C, Wu W, Wu XZ (2008) E-cadherin core fucosylation regulates nuclear β-catenin accumulation in lung cancer cells. Glycoconj J 25:843–850

    Article  CAS  PubMed  Google Scholar 

  46. Geng F, Shi BZ, Yuan YF, Wu XZ (2004) The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell Res 14:423–433

    Article  CAS  PubMed  Google Scholar 

  47. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  48. Mendelsohn RD, Helmerhorst EJ, Cipollo JF, Kukuruzinska MA (2005) A hypomorphic allele of the first N-glycosylation gene, ALG7, causes mitochondrial defects in yeast. Biochim Biophys Acta 1723:33–44

    CAS  PubMed  Google Scholar 

  49. Wu X, Rush JS, Karaoglu D, Krasnewich D, Lubinsky MS, Waechter CJ, Gilmore R, Freeze HH (2003) Deficiency of UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type ij. Hum Mutat 22:144–150

    Article  CAS  PubMed  Google Scholar 

  50. Kukuruzinska MA, Apekin V, Lamkin MS, Hiltz A, Rodriguez A, Lin CC, Paz MA, Oppenheim FG (1994) Antisense RNA to the first N-glycosylation gene, ALG7, inhibits protein N-glycosylation and secretion by Xenopus oocytes. Biochem Biophys Res Commun 198:1248–1254

    Article  CAS  PubMed  Google Scholar 

  51. Nita-Lazar M, Noonan V, Rebustini I, Walker J, Menko AS, Kukuruzinska MA (2009) Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res 69:5673–5680

    Article  CAS  PubMed  Google Scholar 

  52. Nita-Lazar M, Rebustini I, Walker J, Kukuruzinska MA (2010) Hypoglycosylated E-cadherin promotes the assembly of tight junctions through the recruitment of PP2A to adherens junctions. Exp Cell Res 316:1871–1884

    Article  CAS  PubMed  Google Scholar 

  53. Oguri S, Minowa MT, Ihara Y, Taniguchi N, Ikenaga H, Takeuchi M (1997) Purification and characterization of UDP-N-acetylglucosamine: α1, 3-d-mannoside β1, 4-N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase-IV) from bovine small intestine. J Biol Chem 272:22721–22727

    Article  CAS  PubMed  Google Scholar 

  54. Takamatsu S, Oguri S, Minowa MT, Yoshida A, Nakamura K, Takeuchi M, Kobata A (1999) Unusually high expression of N-acetylglucosaminyltransferase-IVa in human choriocarcinoma cell lines: a possible enzymatic basis of the formation of abnormal biantennary sugar chain. Cancer Res 59:3949–3953

    CAS  PubMed  Google Scholar 

  55. Ide Y, Miyoshi E, Nakagawa T, Gu J, Tanemura M, Nishida T, Ito T, Yamamoto H, Kozutsumi Y, Taniguchi N (2006) Aberrant expression of N-acetylglucosaminyltransferase-IVa and IVb (GnT-IVa and b) in pancreatic cancer. Biochem Biophys Res Commun 341:478–482

    Article  CAS  PubMed  Google Scholar 

  56. D’Arrigo A, Belluco C, Ambrosi A, Digito M, Esposito G, Bertola A, Fabris M, Nofrate V, Mammano E, Leon A, Nitti D, Lise M (2005) Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 115:256–262

    Article  PubMed  Google Scholar 

  57. Zhang Y, Zhao JH, Zhang XY, Guo HB, Liu F, Chen HL (2004) Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions. Mol Cell Biochem 260:137–146

    Article  CAS  PubMed  Google Scholar 

  58. Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107

    CAS  PubMed  Google Scholar 

  59. Moremen KW (2002) Golgi α-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta 1573:225–235

    CAS  PubMed  Google Scholar 

  60. van den Elsen JM, Kuntz DA, Rose DR (2001) Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J 20:3008–3017

    Article  PubMed  Google Scholar 

  61. Tulsiani DR, Harris TM, Touster O (1982) Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem 257:7936–7939

    CAS  PubMed  Google Scholar 

  62. Goss PE, Reid CL, Bailey D, Dennis JW (1997) Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin Cancer Res 3:1077–1086

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Leonor David for the helpful suggestions regarding the manuscript. We also thank Dr. Masaki Kato of the Systems Glycobiology Research Group, RIKEN, Japan, for the technical support regarding Fig. 2b. This work was supported by grants from the Portuguese Foundation for Science and Technology (FCT), project grants [PTDC/CVT/65537/2006; PIC/IC/82716/2007; PTDC/CVT/111358/2009] and a grant in aid for Scientific Research (A) from MEXT, Japan for financial support. S.S.P. also acknowledges FCT [SFRH/BPD/63094/2009], and the Luso-American Foundation (FLAD). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education, and is partially supported by FCT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoyuki Taniguchi or Celso A. Reis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinho, S.S., Seruca, R., Gärtner, F. et al. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell. Mol. Life Sci. 68, 1011–1020 (2011). https://doi.org/10.1007/s00018-010-0595-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0595-0

Keywords

Navigation