Skip to main content

CTNNA1, a New HDGC Gene: Inactivating Mechanisms and Driven Phenotypes

  • Chapter
  • First Online:
Hereditary Gastric and Breast Cancer Syndrome

Abstract

This chapter focuses on CTNNA1, the second gene to be acknowledged as a hereditary diffuse gastric cancer (HDGC) predisposing gene. CTNNA1 loss of function was first found in a family meeting HDGC criteria in 2013. CTNNA1 loss of function germline variants affect a smaller fraction of HDGC families, as compared to CDH1 variants. CTNNA1 missense germline variants predispose specifically to macular dystrophy patterned 2, an autosomal dominant eye disorder.

Throughout this book chapter, we will deepen the knowledge on CTNNA1 and αE-catenin protein and their involvement in HDGC, we will review CTNNA1 germline variants distribution and association with disease phenotypes, and describe CTNNA1-related mechanisms underlying tumor formation and development in sporadic cancer. In particular, we will address predisposition related to CTNNA1 germline pathogenic variants and development of diffuse gastric cancer, CTNNA1 germline likely pathogenic variants and development of breast cancer of unknown histotype; data available on CTNNA1 germline variants and lobular breast cancer; predisposition related to CTNNA1 germline missense variants, classified as variants of unknown significance for HDGC, and development of macular dystrophy patterned 2; the importance of αE-catenin to connect and stabilize the adherens junction complex and the actin cytoskeleton; the multiple interactions of αE-catenin with different proteins and regulation of several signaling pathways; and the role of αE-catenin dysregulation in different types of sporadic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blair VR, McLeod M, Carneiro F, Coit DG, D’Addario JL, van Dieren JM et al (2020) Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncol 21(8):e386–ee97. https://doi.org/10.1016/S1470-2045(20)30219-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P et al (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392(6674):402–405. https://doi.org/10.1038/32918

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira C, Senz J, Kaurah P, Pinheiro H, Sanges R, Haegert A et al (2009) Germline CDH1 deletions in hereditary diffuse gastric cancer families. Hum Mol Genet 18(9):1545–1555. https://doi.org/10.1093/hmg/ddp046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lobo S, Benusiglio PR, Coulet F, Boussemart L, Golmard L, Spier I et al (2021) Cancer predisposition and germline CTNNA1 variants. Eur J Med Genet 64(10):104316. https://doi.org/10.1016/j.ejmg.2021.104316

    Article  CAS  PubMed  Google Scholar 

  5. Majewski IJ, Kluijt I, Cats A, Scerri TS, de Jong D, Kluin RJ et al (2013) An α-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J Pathol 229(4):621–629. https://doi.org/10.1002/path.4152

    Article  CAS  PubMed  Google Scholar 

  6. Dufour S, Mège R-M, Thiery JP (2013) α-catenin, vinculin, and F-actin in strengthening E-cadherin cell-cell adhesions and mechanosensing. Cell Adhes Migr 7(4):345–350. https://doi.org/10.4161/cam.25139

    Article  Google Scholar 

  7. Takeichi M (2018) Multiple functions of α-catenin beyond cell adhesion regulation. Curr Opin Cell Biol 54:24–29. https://doi.org/10.1016/j.ceb.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  8. Maiden SL, Hardin J (2011) The secret life of α-catenin: moonlighting in morphogenesis. J Cell Biol 195(4):543–552. https://doi.org/10.1083/jcb.201103106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Y, Zhang J, Ma L, α-catenin. (2014) A tumor suppressor beyond adherens junctions. Cell cycle (Georgetown, Tex). 13(15):2334–2339. https://doi.org/10.4161/cc.29765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi HJ, Pokutta S, Cadwell GW, Bobkov AA, Bankston LA, Liddington RC et al (2012) αE-catenin is an autoinhibited molecule that coactivates vinculin. Proc Natl Acad Sci U S A 109(22):8576–8581. https://doi.org/10.1073/pnas.1203906109

    Article  PubMed  PubMed Central  Google Scholar 

  11. McCrea PD, Gottardi CJ (2016) Beyond beta-catenin: prospects for a larger catenin network in the nucleus. Nat Rev Mol Cell Biol 17(1):55–64. https://doi.org/10.1038/nrm.2015.3

    Article  CAS  PubMed  Google Scholar 

  12. Vite A, Li J, Radice GL (2015) New functions for alpha-catenins in health and disease: from cancer to heart regeneration. Cell Tissue Res 360(3):773–783. https://doi.org/10.1007/s00441-015-2123-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biswas KH (2018) Regulation of α-catenin conformation at cadherin adhesions. J Biomech Sci Eng 13(4):17-00699-17. https://doi.org/10.1299/jbse.17-00699

    Article  Google Scholar 

  14. Kobielak A, Fuchs E (2004) Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5(8):614–625. https://doi.org/10.1038/nrm1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benjamin JM, Nelson WJ (2008) Bench to bedside and back again: molecular mechanisms of alpha-catenin function and roles in tumorigenesis. Semin Cancer Biol 18(1):53–64. https://doi.org/10.1016/j.semcancer.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  16. Vestweber D, Kemler R (1984) Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and reacts with specific adult tissues. Exp Cell Res 152(1):169–178. https://doi.org/10.1016/0014-4827(84)90241-6

    Article  CAS  PubMed  Google Scholar 

  17. Vestweber D, Kemler R (1984) Some structural and functional aspects of the cell adhesion molecule uvomorulin. Cell Differ 15(2–4):269–273. https://doi.org/10.1016/0045-6039(84)90084-8

    Article  CAS  PubMed  Google Scholar 

  18. Bays JL, DeMali KA (2017) Vinculin in cell-cell and cell-matrix adhesions. Cellular Mol Life Sci 74(16):2999–3009. https://doi.org/10.1007/s00018-017-2511-3

    Article  CAS  Google Scholar 

  19. Goldmann WH (2016) Role of vinculin in cellular mechanotransduction. Cell Biol Int 40(3):241–256. https://doi.org/10.1002/cbin.10563

    Article  PubMed  Google Scholar 

  20. Leerberg JM, Yap AS (2013) Vinculin, cadherin mechanotransduction and homeostasis of cell-cell junctions. Protoplasma 250(4):817–829. https://doi.org/10.1007/s00709-012-0475-6

    Article  CAS  PubMed  Google Scholar 

  21. Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nat Cell Biol 15(3):261–273. https://doi.org/10.1038/ncb2685

    Article  CAS  PubMed  Google Scholar 

  22. Gloushankova NA, Rubtsova SN, Zhitnyak IY (2017) Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers 5(3):e1356900. https://doi.org/10.1080/21688370.2017.1356900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123(5):889–901. https://doi.org/10.1016/j.cell.2005.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brüser L, Bogdan S (2017) Adherens junctions on the move-membrane trafficking of E-cadherin. Cold Spring Harb Perspect Biol 9(3). https://doi.org/10.1101/cshperspect.a029140

  25. Mège RM, Ishiyama N (2017) Integration of cadherin adhesion and cytoskeleton at Adherens junctions. Cold Spring Harb Perspect Biol 9(5). https://doi.org/10.1101/cshperspect.a028738

  26. Yonemura S (2017) Actin filament association at adherens junctions. J Med Investig 64(1.2):14–19. https://doi.org/10.2152/jmi.64.14

    Article  Google Scholar 

  27. Nelson WJ (2008) Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans 36(Pt 2):149–155. https://doi.org/10.1042/bst0360149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia MA, Nelson WJ, Chavez N (2018) Cell-cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol 10(4). https://doi.org/10.1101/cshperspect.a029181

  29. Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P (2020) Role of Cadherins in cancer-a review. Int J Mol Sci 21(20). https://doi.org/10.3390/ijms21207624

  30. Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI (2001) The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 276(15):12301–12309. https://doi.org/10.1074/jbc.M010377200

    Article  CAS  PubMed  Google Scholar 

  31. Hinck L, Näthke IS, Papkoff J, Nelson WJ (1994) Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol 125(6):1327–1340. https://doi.org/10.1083/jcb.125.6.1327

    Article  CAS  PubMed  Google Scholar 

  32. Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107(Pt 12):3655–3663. https://doi.org/10.1242/jcs.107.12.3655

    Article  CAS  PubMed  Google Scholar 

  33. Davis MA, Ireton RC, Reynolds AB (2003) A core function for p120-catenin in cadherin turnover. J Cell Biol 163(3):525–534. https://doi.org/10.1083/jcb.200307111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sept D, Elcock AH, McCammon JA (1999) Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry1 1Edited by B. Honig. J Mol Biol 294(5):1181–1189. https://doi.org/10.1006/jmbi.1999.3332

    Article  CAS  PubMed  Google Scholar 

  35. Skau CT, Waterman CM (2015) Specification of architecture and function of actin structures by actin nucleation factors. Annu Rev Biophys 44:285–310. https://doi.org/10.1146/annurev-biophys-060414-034308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tobacman LS, Korn ED (1983) The kinetics of actin nucleation and polymerization. J Biol Chem 258(5):3207–3214

    Article  CAS  PubMed  Google Scholar 

  37. Cronin NM, DeMali KA (2022) Dynamics of the actin cytoskeleton at adhesion complexes. Biology 11(1). https://doi.org/10.3390/biology11010052

  38. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263. https://doi.org/10.1152/physrev.00018.2013

    Article  CAS  PubMed  Google Scholar 

  39. Adhikari S, Moran J, Weddle C, Hinczewski M (2018) Unraveling the mechanism of the cadherin-catenin-actin catch bond. PLoS Comput Biol 14(8):e1006399. https://doi.org/10.1371/journal.pcbi.1006399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ et al (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A 109(31):12568–12573. https://doi.org/10.1073/pnas.1204390109

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pinheiro D, Bellaïche Y (2018) Mechanical force-driven adherens junction remodeling and epithelial dynamics. Dev Cell 47(1):3–19. https://doi.org/10.1016/j.devcel.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  42. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123(5):903–915. https://doi.org/10.1016/j.cell.2005.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci U S A 92(19):8813–8817. https://doi.org/10.1073/pnas.92.19.8813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bianchini JM, Kitt KN, Gloerich M, Pokutta S, Weis WI, Nelson WJ (2015) Reevaluating αE-catenin monomer and homodimer functions by characterizing E-cadherin/αE-catenin chimeras. J Cell Biol 210(7):1065–1074. https://doi.org/10.1083/jcb.201411080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci U S A 105(1):13–19. https://doi.org/10.1073/pnas.0710504105

    Article  PubMed  Google Scholar 

  46. Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H et al (2015) Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol 1(1):23–32. https://doi.org/10.1001/jamaoncol.2014.168

    Article  PubMed  Google Scholar 

  47. Pharoah PD, Guilford P, Caldas C (2001) Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121(6):1348–1353. https://doi.org/10.1053/gast.2001.29611

    Article  CAS  PubMed  Google Scholar 

  48. Roberts ME, Ranola JMO, Marshall ML, Susswein LR, Graceffo S, Bohnert K et al (2019) Comparison of CDH1 penetrance estimates in clinically ascertained families vs families ascertained for multiple gastric cancers. JAMA Oncol 5(9):1325–1331. https://doi.org/10.1001/jamaoncol.2019.1208

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xicola RM, Li S, Rodriguez N, Reinecke P, Karam R, Speare V et al (2019) Clinical features and cancer risk in families with pathogenic CDH1 variants irrespective of clinical criteria. J Med Genet 56(12):838–843. https://doi.org/10.1136/jmedgenet-2019-105991

    Article  CAS  PubMed  Google Scholar 

  50. Caldas C, Carneiro F, Lynch HT, Yokota J, Wiesner GL, Powell SM et al (1999) Familial gastric cancer: overview and guidelines for management. J Med Genet 36(12):873–880

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fitzgerald RC, Hardwick R, Huntsman D, Carneiro F, Guilford P, Blair V et al (2010) Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 47(7):436–444. https://doi.org/10.1136/jmg.2009.074237

    Article  CAS  PubMed  Google Scholar 

  52. van der Post RS, Vogelaar IP, Carneiro F, Guilford P, Huntsman D, Hoogerbrugge N et al (2015) Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet 52(6):361–374. https://doi.org/10.1136/jmedgenet-2015-103094

    Article  CAS  PubMed  Google Scholar 

  53. Weren RDA, van der Post RS, Vogelaar IP, van Krieken JH, Spruijt L, Lubinski J et al (2018) Role of germline aberrations affecting CTNNA1, MAP3K6 and MYD88 in gastric cancer susceptibility. J Med Genet 55(10):669–674. https://doi.org/10.1136/jmedgenet-2017-104962

    Article  CAS  PubMed  Google Scholar 

  54. Fewings E, Larionov A, Redman J, Goldgraben MA, Scarth J, Richardson S et al (2018) Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. Lancet Gastroenterol Hepatol 3(7):489–498. https://doi.org/10.1016/s2468-1253(18)30079-7

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gaston D, Hansford S, Oliveira C, Nightingale M, Pinheiro H, Macgillivray C et al (2014) Germline mutations in MAP3K6 are associated with familial gastric cancer. PLoS Genet 10(10):e1004669. https://doi.org/10.1371/journal.pgen.1004669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Benusiglio PR, Colas C, Guillerm E, Canard A, Delhomelle H, Warcoin M et al (2019) Clinical implications of CTNNA1 germline mutations in asymptomatic carriers. Gastric Cancer 22(4):899–903. https://doi.org/10.1007/s10120-018-00907-7

    Article  CAS  PubMed  Google Scholar 

  57. Lee K, Krempely K, Roberts ME, Anderson MJ, Carneiro F, Chao E et al (2018) Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence variants. Hum Mutat 39(11):1553–1568. https://doi.org/10.1002/humu.23650

    Article  PubMed  PubMed Central  Google Scholar 

  58. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–423. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  59. Clark DF, Michalski ST, Tondon R, Nehoray B, Ebrahimzadeh J, Hughes SK et al (2020) Loss-of-function variants in CTNNA1 detected on multigene panel testing in individuals with gastric or breast cancer. Genet Med 22(5):840–846. https://doi.org/10.1038/s41436-020-0753-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shirts BH, Casadei S, Jacobson AL, Lee MK, Gulsuner S, Bennett RL et al (2016) Improving performance of multigene panels for genomic analysis of cancer predisposition. Genet Med 18(10):974–981. https://doi.org/10.1038/gim.2015.212

    Article  CAS  PubMed  Google Scholar 

  61. Khajavi M, Inoue K, Lupski JR (2006) Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 14(10):1074–1081. https://doi.org/10.1038/sj.ejhg.5201649

    Article  CAS  PubMed  Google Scholar 

  62. Karam R, Carvalho J, Bruno I, Graziadio C, Senz J, Huntsman D et al (2008) The NMD mRNA surveillance pathway downregulates aberrant E-cadherin transcripts in gastric cancer cells and in CDH1 mutation carriers. Oncogene 27(30):4255–4260. https://doi.org/10.1038/onc.2008.62

    Article  CAS  PubMed  Google Scholar 

  63. Krempely K, Karam R (2018) A novel de novo CDH1 germline variant aids in the classification of carboxy-terminal E-cadherin alterations predicted to escape nonsense-mediated mRNA decay. Cold Spring Harbor Mol Case Stud 4(4):a003012. https://doi.org/10.1101/mcs.a003012

    Article  CAS  Google Scholar 

  64. Saksens NTM, Krebs MP, Schoenmaker-Koller FE, Hicks W, Yu M, Shi L et al (2016) Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nat Genet 48(2):144–151. https://doi.org/10.1038/ng.3474

    Article  CAS  PubMed  Google Scholar 

  65. Zhu X, Yang M, Zhao P, Li S, Zhang L, Huang L et al (2021) Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling. J Clin Invest 131(6). https://doi.org/10.1172/jci139869

  66. Deutman AF, van Blommestein JD, Henkes HE, Waardenburg PJ, Solleveld-van DE (1970) Butterfly-shaped pigment dystrophy of the fovea. Arch Ophthalmol (Chicago, Ill : 1960) 83(5):558–569. https://doi.org/10.1001/archopht.1970.00990030558006

    Article  CAS  Google Scholar 

  67. Pinckers A (1988) Patterned dystrophies of the retinal pigment epithelium: a review. Ophthalmic Paediatr Genet 9(2):77–114. https://doi.org/10.3109/13816818809031483

    Article  CAS  PubMed  Google Scholar 

  68. Prensky JG, Bresnick GH (1983) Butterfly-shaped macular dystrophy in four generations. Arch Ophthalmol (Chicago, IL: 1960) 101(8):1198–1203. https://doi.org/10.1001/archopht.1983.01040020200005

    Article  CAS  Google Scholar 

  69. van Lith-Verhoeven JJ, Cremers FP, van den Helm B, Hoyng CB, Deutman AF (2003) Genetic heterogeneity of butterfly-shaped pigment dystrophy of the fovea. Mol Vis 9:138–143

    PubMed  Google Scholar 

  70. Marano F, Deutman AF, Aandekerk AL (1996) Butterfly-shaped pigment dystrophy of the fovea associated with subretinal neovascularization. Graefe’s Arch Clin Exp Ophthalmol 234(4):270–274. https://doi.org/10.1007/bf00430421

    Article  CAS  Google Scholar 

  71. Criswick VG, Schepens CL (1969) Familial exudative vitreoretinopathy. Am J Ophthalmol 68(4):578–594. https://doi.org/10.1016/0002-9394(69)91237-9

    Article  CAS  PubMed  Google Scholar 

  72. Collin Rob WJ, Nikopoulos K, Dona M, Gilissen C, Hoischen A, Boonstra FN et al (2013) ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci 110(24):9856–9861. https://doi.org/10.1073/pnas.1220864110

    Article  PubMed  PubMed Central  Google Scholar 

  73. Robitaille J, MacDonald MLE, Kaykas A, Sheldahl LC, Zeisler J, Dubé M-P et al (2002) Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet 32(2):326–330. https://doi.org/10.1038/ng957

    Article  CAS  PubMed  Google Scholar 

  74. Tanner A, Chan HW, Pulido JS, Arno G, Ba-Abbad R, Jurkute N et al (2021) Clinical and genetic findings in CTNNA1-associated macular pattern dystrophy. Ophthalmology 128(6):952–955. https://doi.org/10.1016/j.ophtha.2020.10.032

    Article  PubMed  Google Scholar 

  75. Vasioukhin V (2012) Adherens junctions and cancer. Subcell Biochem 60:379–414. https://doi.org/10.1007/978-94-007-4186-7_16

    Article  CAS  PubMed  Google Scholar 

  76. Shimoyama Y, Nagafuchi A, Fujita S, Gotoh M, Takeichi M, Tsukita S et al (1992) Cadherin dysfunction in a human cancer cell line: possible involvement of loss of alpha-catenin expression in reduced cell-cell adhesiveness. Cancer Res 52(20):5770–5774

    CAS  PubMed  Google Scholar 

  77. Kimura K, Endo Y, Yonemura Y, Heizmann CW, Schafer BW, Watanabe Y et al (2000) Clinical significance of S100A4 and E-cadherin-related adhesion molecules in non-small cell lung cancer. Int J Oncol 16(6):1125–1131. https://doi.org/10.3892/ijo.16.6.1125

    Article  CAS  PubMed  Google Scholar 

  78. Hollestelle A, Elstrodt F, Timmermans M, Sieuwerts AM, Klijn JG, Foekens JA et al (2010) Four human breast cancer cell lines with biallelic inactivating alpha-catenin gene mutations. Breast Cancer Res Treat 122(1):125–133. https://doi.org/10.1007/s10549-009-0545-4

    Article  CAS  PubMed  Google Scholar 

  79. Craig DW, O’Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM et al (2013) Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 12(1):104–116. https://doi.org/10.1158/1535-7163.Mct-12-0781

    Article  CAS  PubMed  Google Scholar 

  80. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005. https://doi.org/10.1038/nature08989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raftopoulos I, Davaris P, Karatzas G, Karayannacos P, Kouraklis G (1998) Level of alpha-catenin expression in colorectal cancer correlates with invasiveness, metastatic potential, and survival. J Surg Oncol 68(2):92–99. https://doi.org/10.1002/(sici)1096-9098(199806)68:2<92::aid-jso4>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  82. Aaltomaa S, Kärjä V, Lipponen P, Isotalo T, Kankkunen JP, Talja M et al (2005) Reduced alpha- and beta-catenin expression predicts shortened survival in local prostate cancer. Anticancer Res 25(6C):4707–4712

    CAS  PubMed  Google Scholar 

  83. Horrigan SK, Arbieva ZH, Xie HY, Kravarusic J, Fulton NC, Naik H et al (2000) Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood 95(7):2372–2377

    Article  CAS  PubMed  Google Scholar 

  84. Ye Y, McDevitt MA, Guo M, Zhang W, Galm O, Gore SD et al (2009) Progressive chromatin repression and promoter methylation of CTNNA1 associated with advanced myeloid malignancies. Cancer Res 69(21):8482–8490. https://doi.org/10.1158/0008-5472.CAN-09-1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20(2):119–125. https://doi.org/10.1016/j.ceb.2008.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang Y, van der Zee M, Fodde R, Blok LJ (2010) Wnt/Β-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 1(7):674–684. https://doi.org/10.18632/oncotarget.101007

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chan DW, Mak CS, Leung TH, Chan KK, Ngan HY (2012) Down-regulation of Sox7 is associated with aberrant activation of Wnt/b-catenin signaling in endometrial cancer. Oncotarget 3(12):1546–1556. https://doi.org/10.18632/oncotarget.667

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pacheco-Pinedo EC, Morrisey EE (2011) Wnt and Kras signaling-dark siblings in lung cancer. Oncotarget 2(7):569–574. https://doi.org/10.18632/oncotarget.305

    Article  PubMed  PubMed Central  Google Scholar 

  89. Allen JE, El-Deiry WS (2013) Calcein-effluxing human colon cancer cells are enriched for self-renewal capacity and depend on β-catenin. Oncotarget 4(2):184–191. https://doi.org/10.18632/oncotarget.883

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jaitner S, Reiche JA, Schäffauer AJ, Hiendlmeyer E, Herbst H, Brabletz T et al (2012) Human telomerase reverse transcriptase (hTERT) is a target gene of β-catenin in human colorectal tumors. Cell Cycle (Georgetown, Tex). 11(17):3331–3338. https://doi.org/10.4161/cc.21790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850. https://doi.org/10.1038/nature03319

    Article  CAS  PubMed  Google Scholar 

  92. Cha YH, Kim NH, Park C, Lee I, Kim HS, Yook JI (2012) MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle (Georgetown, Tex) 11(7):1273–1281. https://doi.org/10.4161/cc.19618

    Article  CAS  PubMed  Google Scholar 

  93. Wang X, Meng X, Sun X, Liu M, Gao S, Zhao J et al (2009) Wnt/beta-catenin signaling pathway may regulate cell cycle and expression of cyclin a and cyclin E protein in hepatocellular carcinoma cells. Cell Cycle (Georgetown, Tex). 8(10):1567–1570. https://doi.org/10.4161/cc.8.10.8489

    Article  CAS  PubMed  Google Scholar 

  94. Ji H, Wang J, Fang B, Fang X, Lu Z (2011) α-Catenin inhibits glioma cell migration, invasion, and proliferation by suppression of β-catenin transactivation. J Neuro-Oncol 103(3):445–451. https://doi.org/10.1007/s11060-010-0413-4

    Article  CAS  Google Scholar 

  95. Choi SH, Estarás C, Moresco JJ, Yates JR 3rd, Jones KA (2013) α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 27(22):2473–2488. https://doi.org/10.1101/gad.229062.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Giannini AL, Vivanco M, Kypta RM (2000) alpha-catenin inhibits beta-catenin signaling by preventing formation of a beta-catenin*T-cell factor*DNA complex. J Biol Chem 275(29):21883–21888. https://doi.org/10.1074/jbc.M001929200

    Article  CAS  PubMed  Google Scholar 

  97. Bassères DS, Baldwin AS (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25(51):6817–6830. https://doi.org/10.1038/sj.onc.1209942

    Article  CAS  PubMed  Google Scholar 

  98. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8(1):33–40. https://doi.org/10.1038/nrd2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E (2001) Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 104(4):605–617. https://doi.org/10.1016/s0092-8674(01)00246-x

    Article  CAS  PubMed  Google Scholar 

  100. Piao HL, Yuan Y, Wang M, Sun Y, Liang H, Ma L (2014) α-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-κB signalling. Nat Cell Biol 16(3):245–254. https://doi.org/10.1038/ncb2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saucedo LJ, Edgar BA (2007) Filling out the Hippo pathway. Nat Rev Mol Cell Biol 8(8):613–621. https://doi.org/10.1038/nrm2221

    Article  CAS  PubMed  Google Scholar 

  102. Zhao B, Tumaneng K, Guan KL (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13(8):877–883. https://doi.org/10.1038/ncb2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R et al (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17(23):2054–2060. https://doi.org/10.1016/j.cub.2007.10.039

    Article  CAS  PubMed  Google Scholar 

  104. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133. https://doi.org/10.1016/j.cell.2007.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS et al (2010) The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A 107(18):8248–8253. https://doi.org/10.1073/pnas.0912203107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q et al (2010) Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A 107(4):1437–1442. https://doi.org/10.1073/pnas.0911427107

    Article  PubMed  PubMed Central  Google Scholar 

  107. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L et al (2010) Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A 107(4):1431–1436. https://doi.org/10.1073/pnas.0911409107

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y et al (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16(5):425–438. https://doi.org/10.1016/j.ccr.2009.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Avruch J, Zhou D, Bardeesy N (2012) YAP oncogene overexpression supercharges colon cancer proliferation. Cell Cycle (Georgetown, Tex). 11(6):1090–1096. https://doi.org/10.4161/cc.11.6.19453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen Q, Zhang N, Gray RS, Li H, Ewald AJ, Zahnow CA et al (2014) A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev 28(5):432–437. https://doi.org/10.1101/gad.233676.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J et al (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 18(10):1511–1517. https://doi.org/10.1038/nm.2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A 109(37):E2441–E2450. https://doi.org/10.1073/pnas.1212021109

    Article  PubMed  PubMed Central  Google Scholar 

  113. Piccolo S (2012) LIF-ting Hippo averts metastasis. Nat Med 18(10):1463–1465. https://doi.org/10.1038/nm.2955

    Article  CAS  PubMed  Google Scholar 

  114. Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD et al (2011) α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4(174):ra33. https://doi.org/10.1126/scisignal.2001823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144(5):782–795. https://doi.org/10.1016/j.cell.2011.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22(18):2454–2472. https://doi.org/10.1101/gad.1693608

    Article  CAS  PubMed  Google Scholar 

  117. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087. https://doi.org/10.1101/gad.938601

    Article  CAS  PubMed  Google Scholar 

  118. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801. https://doi.org/10.1038/287795a0

    Article  PubMed  Google Scholar 

  119. Merchant AA, Matsui W (2010) Targeting Hedgehog--a cancer stem cell pathway. Clin Cancer Res 16(12):3130–3140. https://doi.org/10.1158/1078-0432.CCR-09-2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432(7015):324–331. https://doi.org/10.1038/nature03100

    Article  CAS  PubMed  Google Scholar 

  121. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422(6929):313–317. https://doi.org/10.1038/nature01493

    Article  CAS  PubMed  Google Scholar 

  122. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437(7060):894–897. https://doi.org/10.1038/nature03994

    Article  CAS  PubMed  Google Scholar 

  123. Ruat M, Hoch L, Faure H, Rognan D (2014) Targeting of smoothened for therapeutic gain. Trends Pharmacol Sci 35(5):237–246. https://doi.org/10.1016/j.tips.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  124. Lien WH, Klezovitch O, Fernandez TE, Delrow J, Vasioukhin V (2006) alphaE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science (New York, NY) 311(5767):1609–1612. https://doi.org/10.1126/science.1121449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lobo, S., Pereira, P.S., Benusiglio, P.R., Oliveira, C. (2023). CTNNA1, a New HDGC Gene: Inactivating Mechanisms and Driven Phenotypes. In: Corso, G., Veronesi, P., Roviello, F. (eds) Hereditary Gastric and Breast Cancer Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-031-21317-5_5

Download citation

Publish with us

Policies and ethics