Skip to main content
Log in

Vinculin, cadherin mechanotransduction and homeostasis of cell–cell junctions

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

An Erratum to this article was published on 19 April 2013

Abstract

Cell adhesion junctions characteristically arise from the cooperative integration of adhesion receptors, cell signalling pathways and the cytoskeleton. This is exemplified by cell–cell interactions mediated by classical cadherin adhesion receptors. These junctions are sites where cadherin adhesion systems functionally couple to the dynamic actin cytoskeleton, a process that entails physical interactions with many actin regulators and regulation by cell signalling pathways. Such integration implies a potential role for molecules that may stand at the interface between adhesion, signalling and the cytoskeleton. One such candidate is the cortical scaffolding protein, vinculin, which is a component of both cell–cell and cell–matrix adhesions. While its contribution to integrin-based adhesions has been extensively studied, less is known about how vinculin contributes to cell–cell adhesions. A major recent advance has come with the realisation that cadherin adhesions are active mechanical structures, where cadherin serves as part of a mechanotransduction pathway by which junctions sense and elicit cellular responses to mechanical stimuli. Vinculin has emerged as an important element in cadherin mechanotransduction, a perspective that illuminates its role in cell–cell interactions. We now review its role as a cortical scaffold and its role in cadherin mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altman D, Sweeney HL, Spudich JA (2004) The mechanism of myosin vi translocation and its load-induced anchoring. Cell 116:737–749

    Article  PubMed  CAS  Google Scholar 

  • Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Graig SW, Liddington RC (2004) Structural basis for vinculin activation at sites of cell adhesion. Nature 430:583–586

    Article  PubMed  CAS  Google Scholar 

  • Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472

    Article  PubMed  CAS  Google Scholar 

  • Bass MD, Smith BJ, Prigent SA, Critchley DR (1999) Talin contains three similar vinculin-binding sites predicted to form an amphipathic helix. Biochem J 341(Pt 2):257–263

    Article  PubMed  CAS  Google Scholar 

  • Bathe M, Heussinger C, Claessens MM, Bausch AR, Frey E (2008) Cytoskeletal bundle mechanics. Biophys J 94:2955–2964

    Article  PubMed  CAS  Google Scholar 

  • Bear JE, Krause M, Gertler FB (2001) Regulating cellular actin assembly. Curr Opin Cell Biol 13:158–166

    Article  PubMed  CAS  Google Scholar 

  • Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521

    Article  PubMed  CAS  Google Scholar 

  • Bois PR, Borgon RA, Vonrhein C, Izard T (2005) Structural dynamics of alpha-actinin–vinculin interactions. Mol Cell Biol 25:6112–6122

    Article  PubMed  CAS  Google Scholar 

  • Bois PR, ÒHara BP, Nietlispach D, Kirkpatrick J, Izard T (2006) The vinculin binding sites of talin and alpha-actinin are sufficient to activate vinculin. J Biol Chem 281:7228–7236

    Article  PubMed  CAS  Google Scholar 

  • Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci U S A 107:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ, Dunn AR (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A 109:12568–12573

    Article  PubMed  CAS  Google Scholar 

  • Borgon RA, Vonrhein C, Bricogne G, Bois PR, Izard T (2004) Crystal structure of human vinculin. Structure 12:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Bourdet-Sicard R, Rüdiger M, Jockusc BM, Gounon P, Sansonetti PJ, Tran Van Nhuei G (1999) Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J 18:5853–5862

    Article  PubMed  CAS  Google Scholar 

  • Brieher WM, Yap, AS (2012) Cadherin junctions and their cytoskeleton(s). Curr Opin Cell Biol. doi:10.1016/j.ceb.2012.10.010

  • Brindle NP, Holt MR, Davies JE, Price CJ, Critchley DR (1996) The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochem J 318(Pt 3):753–757

    PubMed  CAS  Google Scholar 

  • Burridge K, Feramisco JR (1980) Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fobronectin. Cell 19:587–595

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Mangeat P (1984) An interaction between vinculin and talin. Nature 308:744–746

    Article  PubMed  CAS  Google Scholar 

  • Carisey A, Ballestrem C (2011) Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 90:157–163

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekar I, Stradal TE, Holt MR, Entschladen F, Jockusch BM, Ziegler WH (2005) Vinculin acts as a sensor in lipid regulation of adhesion-site turnover. J Cell Sci 118:1461–1472

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Choudhury DM, Craig SW (2006) Coincidence of actin filaments and talin is required to activate vinculin. J Biol Chem 281:40389–40398

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Cohen DM, Choudhury DM, Kioka N, Craig SW (2005) Spatial distribution and functional significance of activated vinculin in living cells. J Cell Biol 169:459–470

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Dokholyan NV (2006) Insights into allosteric control of vinculin funcution from its large scale conformational dynamics. J Biol Chem 281:29148–29154

    Article  PubMed  CAS  Google Scholar 

  • Chesarone MA, Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Pokutta S, Cadwell GW, Bobkov AA, Bankston LA, Liddington RC, WEIS WI (2012) alphaE-catenin is an autoinhibited molecule that coactivates vinculin. Proc Natl Acad Sci U S A 109:8576–8581

    Article  PubMed  CAS  Google Scholar 

  • Cohen DM, Chen H, Johnson RP, Choudhury B, Craig SW (2005) Two distinct head–tail interfaces cooperate to suppress activation of vinculin by talin. J Biol Chem 280:17109–17117

    Article  PubMed  CAS  Google Scholar 

  • Cohen DM, Kutscher B, Chen H, Murphy DB, Craig SW (2006) A conformational switch in vinculin drives formation and dynamics of a talin–vinculin complex at focal adhesions. J Biol Chem 281:16006–16015

    Article  PubMed  CAS  Google Scholar 

  • Coutu MD, Craig SW (1988) cDNA-derived sequence of chicken embryo vinculin. Proc Natl Acad Sci U S A 85:8535–8539

    Article  PubMed  CAS  Google Scholar 

  • Craig SW, Chen H (2003) Lamellipodia protrusion: moving interactions of vinculin and Arp2/3. Curr Biol 13:R236–R238

    Article  PubMed  CAS  Google Scholar 

  • del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641

    Article  PubMed  CAS  Google Scholar 

  • Demali KA, Barlow CA, Burridge K (2002) Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 159:881–891

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gonzalez R, Simoes Sde M, Roper JC, Eaton S, Zallen JA (2009) Myosin II dynamics are regulated by tension in intercalating cells. Dev Cell 17:736–743

    Article  PubMed  CAS  Google Scholar 

  • Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705

    Article  PubMed  CAS  Google Scholar 

  • Geiger B (1979) A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205

    Article  PubMed  CAS  Google Scholar 

  • Geiger B, Tokuyasu KT, Dutton AH, Singer SJ (1980) Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A 77:4127–4131

    Article  PubMed  CAS  Google Scholar 

  • Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P (1996) Mena, a relative of VASP and Drosophila enabled, is implicated in the control of microfilament dynamics. Cell 87:227–239

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AP, Burridge K (1996) Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381:531–535

    Article  PubMed  CAS  Google Scholar 

  • Gomez GA, McLachlan RW, Yap AS (2011) Productive tension: force-sensing and homeostasis of cell–cell junctions. Trends Cell Biol 21:499–505

    Article  PubMed  CAS  Google Scholar 

  • Hansen SD, Mullins RD (2010) VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J Cell Biol 191:571–584

    Article  PubMed  CAS  Google Scholar 

  • Hazan RB, Kang L, Roe S, Borgen PI, Rimm DL (1997) Vinculin is associated with the E-cadherin adhesion complex. J Biol Chem 272:32448–32453

    Article  PubMed  CAS  Google Scholar 

  • Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179:1043–1057

    Article  PubMed  CAS  Google Scholar 

  • Huttelmaier S, Bubeck P, Rudiger M, Jockusch BM (1997) Characterization of two F-actin-binding and oligomerization sites in the cell-contact protein vinculin. Eur J Biochem 247:1136–1142

    Article  PubMed  CAS  Google Scholar 

  • Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H, de Rooij J (2012) Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol 196:641–652

    Article  PubMed  CAS  Google Scholar 

  • Isenberg G, Leonard K, Jockusch BM (1982) Structural aspects of vinculin–actin interactions. J Mol Biol 158:231–249

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AI, Bachar M, Babbin BA, Adelstein RS, Nusrat A, Parkos CA (2007) A unique role for nonmuscle myosin heavy chain IIA in regulation of epithelial apical junctions. PLoS One 2:e658

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AI, Hunt D, Utech M, Nusrat A, Parkos CA (2005) Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell 16:2636–2650

    Article  PubMed  CAS  Google Scholar 

  • Izard T, Evans G, Borgon RA, Rush CL, Bricogne G, Bois PR (2004) Vinculin activation by talin through helical bundle conversion. Nature 427:171–175

    Article  PubMed  CAS  Google Scholar 

  • Izard T, Vonrhein C (2004) Structural basis for amplifying vinculin activation by talin. J Biol Chem 279:27667–27678

    Article  PubMed  CAS  Google Scholar 

  • Janssen ME (2010) Structure details and mechanism of filamentous actin organization by the isoforms vinculin and metavinculin. Doctor of Philosophy, University of California

  • Janssen MEW, Kim E, Liu H, Fujimoto LM, Bobkov A, Volkmann N, Hanein D (2006) Three-dimensional structure of vinculin bound to actin filaments. Mol Cell 21:271–281

    Article  PubMed  CAS  Google Scholar 

  • Jockusch BM, Isenberg G (1982) Vinculin and alpha-actinin: interaction with actin and effect on microfilament network formation. Cold Spring Harb Symp Quant Biol 46(Pt 2):613–623

    Article  PubMed  Google Scholar 

  • Jockusch BM, Rudiger M (1996) Crosstalk between cell adhesion molecules: vinculin as a paradigm for regulation by conformation. Trends Cell Biol 6:311–315

    Article  PubMed  CAS  Google Scholar 

  • Johnson RP, Craig SW (1994) An intramolecular association between the head and tail domains of vinculin modulates talin binding. J Biol Chem 269:12611–12619

    PubMed  CAS  Google Scholar 

  • Johnson RP, Craig SW (1995a) F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373:261–264

    Article  PubMed  CAS  Google Scholar 

  • Johnson RP, Craig SW (1995b) The carboxy-terminal tail domain of vinculin contains a cryptic binding site for acidic phospholipids. Biochem Biophys Res Commun 210:159–164

    Article  PubMed  CAS  Google Scholar 

  • Johnson RP, Craig SW (2000) Actin activates a cryptic dimerization potential of the vinculin tail domain. J Biol Chem 275:95–105

    Article  PubMed  CAS  Google Scholar 

  • Johnson RP, Niggli V, Durrer P, Craig SW (1998) A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Biochemistry 37:10211–10222

    Article  PubMed  CAS  Google Scholar 

  • Kelly DF, Taylor DW, Bakolitsa C, Bobkov AA, Bankston L, Liddington RC, Taylor KA (2006) Structure of the alpha-actinin–vinculin head domain complex determined by cryo-electron microscopy. J Mol Biol 357:562–573

    Article  PubMed  CAS  Google Scholar 

  • Kioka N, Sakata S, Kawauchi T, Amachi T, Akiyama SK, Okazaki K, Yaen C, Yamada KM, Aota S (1999) Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. J Cell Biol 144:59–69

    Article  PubMed  CAS  Google Scholar 

  • Kiuchi T, Nagai T, Ohashi K, Mizuno K (2011) Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol 193:365–380

    Article  PubMed  CAS  Google Scholar 

  • Kovacs EM, Verma S, Ali RG, Ratheesh A, Hamilton NA, Akhmanova A, Yap AS (2011) N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nat Cell Biol 13:934–943

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski, L. 2007–2012. Isoelectric Point Calculator. http://isoelectric.ovh.org

  • Kroemker M, Rudiger AH, Jockusch BM, Rudiger M (1994) Intramolecular interactions in vinculin control alpha-actinin binding to the vinculin head. FEBS Lett 355:259–262

    Article  PubMed  CAS  Google Scholar 

  • Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98:534–542

    Article  PubMed  CAS  Google Scholar 

  • le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115

    Article  PubMed  Google Scholar 

  • Lee S, Otto JJ (1997) Vinculin and talin: kinetics of entry and exit from the cytoskeletal pool. Cell Motil Cytoskeleton 36:101–111

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell–cell junctions. Proc Natl Acad Sci U S A 107:9944–9949

    Article  PubMed  CAS  Google Scholar 

  • Maddugoda MP, Crampton MS, Shewan AM, Yap AS (2007) Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell–cell contacts in mammalian epithelial cells. J Cell Biol 178:529–540

    Article  PubMed  CAS  Google Scholar 

  • Magie CR, Martindale MQ (2008) Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 214:218–232

    Google Scholar 

  • Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell–cell contacts. Proc Natl Acad Sci U S A 108:4708–4713

    Article  PubMed  CAS  Google Scholar 

  • McGregor A, Blanchard AD, Rowe AJ, Critchley DR (1994) Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin. Biochem J 301(Pt 1):225–233

    PubMed  CAS  Google Scholar 

  • Milam LM (1985) Electron microscopy of rotary shadowed vinculin and vinculin complexes. J Mol Biol 184:543–545

    Article  PubMed  CAS  Google Scholar 

  • Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S (2006) Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 312:1637–1650

    Article  PubMed  CAS  Google Scholar 

  • Moiseyeva EP, Weller PA, Zhidkova NI, Corben EB, Patel B, Jasinska I, Koteliansky VE, Critchley DR (1993) Organization of the human gene encoding the cytoskeletal protein vinculin and the sequence of the vinculin promoter. J Biol Chem 268:4318–4325

    PubMed  CAS  Google Scholar 

  • Molony L, Burridge K (1985) Molecular shape and self-association of vinculin and metavinculin. J Cell Biochem 29:31–36

    Article  PubMed  CAS  Google Scholar 

  • Nhieu GT, Izard T (2007) Vinculin binding in its closed conformation by a helix addition mechanism. EMBO J 26:4588–4596

    Article  PubMed  CAS  Google Scholar 

  • Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM (2010) Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 188:877–890

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Cuff LE, Lawton CD, Demali KA (2010) Vinculin regulates cell-surface E-cadherin expression by binding to {beta}-catenin. J Cell Sci 123:567–577

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Maiers J L, Choudhury D, Craig SW & Demali KA (2012) Alpha catenin uses a novel mechanism to activate vinculin. J Biol Chem 287:7728–7737

    Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  • Price GJ, Jones P, Davison MD, Patel B, Bendori R, Geiger B, Critchley DR (1989) Primary sequence and domain structure of chicken vinculin. Biochem J 259:453–461

    PubMed  CAS  Google Scholar 

  • Rangarajan ES, Izard T (2012) The cytoskeletal protein alpha-catenin unfurls upon binding to vinculin. J Biol Chem 287:18492–18499

    Article  PubMed  CAS  Google Scholar 

  • Ratheesh A, Gomez GA, Priya R, Verma S, Kovacs EM, Jiang K, Brown NH, Akhmanova A, Stehbens SJ, Yap AS (2012) Centralspindlin and alpha-catenin regulate Rho signalling at the epithelial zonula adherens. Nat Cell Biol 14:818–828

    Article  PubMed  CAS  Google Scholar 

  • Ratheesh A, Yap AS (2012) A bigger picture: classical cadherins and the dynamic actin cytoskeleton. Nat Rev Mol Cell Biol 13:673–679

    Article  PubMed  CAS  Google Scholar 

  • Reinhard M, Rudiger M, Jockusch BM, Walter U (1996) VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Lett 399:103–107

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54

    Article  PubMed  CAS  Google Scholar 

  • Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142

    Article  PubMed  Google Scholar 

  • Scott JA, Shewan AM, den Elzen NR, Loureiro JJ, Gertler FB, Yap AS (2006) Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol Biol Cell 17:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, Yap AS (2005) Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell–cell contacts. Mol Biol Cell 16:4531–4542

    Article  PubMed  CAS  Google Scholar 

  • Smutny M, Cox HL, Leerberg JM, Kovacs EM, Conti MA, Ferguson C, Hamilton NA, Parton RG, Adelstein RS, Yap AS (2010) Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12:696–702

    Article  PubMed  CAS  Google Scholar 

  • Steimle PA, Hoffert JD, Adey NB, Craig SW (1999) Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J Biol Chem 274:18414–18420

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Mitsushima M, Okada N, Ito T, Aizawa S, Akahane R, Umemoto T, Ueda K, Kioka N (2005) Role of interaction with vinculin in recruitment of vinexins to focal adhesions. Biochem Biophys Res Commun 336:239–246

    Article  PubMed  CAS  Google Scholar 

  • Tang VW, BRIEHER WM (2012) alpha-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J Cell Biol 196:115–130

    Article  PubMed  CAS  Google Scholar 

  • Tran van Nhieu G, Ben-zèv A, Sansonetti PJ (1997) Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J 16:2717–2729

    Article  Google Scholar 

  • Verma S, Han SP, Michael M, Gomez GA, Yang Z, Teasdale RD, Ratheesh A, Kovacs EM, Ali RG, Yap AS (2012) A WAVE2-Arp2/3 actin nucleator apparatus supports junctional tension at the epithelial zonula adherens. Mol Biol Cell 23:4601–4610

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Shewan AM, Scott JA, Helwani FM, den Elzen NR, Miki H, Takenawa T, Yap AS (2004) Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J Biol Chem 279:34062–34070

    Article  PubMed  CAS  Google Scholar 

  • Wachsstock DH, Wilkins JA, Lin S (1987) Specific interaction of vinculin with alpha-actinin. Biochem Biophys Res Commun 146:554–560

    Article  PubMed  CAS  Google Scholar 

  • Watabe-Uchida M, Uchida N, Imamura Y, Nagafuchi A, Fujimoto K, Uemura T, Vermeulen S, Van Roy F, Adamson ED, Takeichi M (1998) alpha-Catenin–vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142:847–857

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Hosoya H, Yonemura S (2007) Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells. Mol Biol Cel 18:605–616

    Article  CAS  Google Scholar 

  • Weekes J, Barry ST, Critchley DR (1996) Acidic phospholipids inhibit the intramolecular association between the N- and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem J 314(Pt 3):827–832

    PubMed  CAS  Google Scholar 

  • Weiss EE, Kroemker M, Rudiger AH, Jockusch BM, Rudiger M (1998) Vinculin is part of the cadherin–catenin junctional complex: complex formation between alpha-catenin and vinculin. J Cell Biol 141:755–764

    Article  PubMed  CAS  Google Scholar 

  • Weller PA, Ogryzko EP, Corben EB, Zhidkova NI, Patel B, Price GJ, Spurr NK, Koteliansky VE, Critchley DR (1990) Complete sequence of human vinculin and assignment of the gene to chromosome 10. Proc Natl Acad Sci U S A 87:5667–5671

    Article  PubMed  CAS  Google Scholar 

  • Wen KK, Rubenstein PA, Demali KA (2009) Vinculin nucleates actin polymerization and modifies actin filament structure. J Biol Chem 284:30463–30473

    Article  PubMed  CAS  Google Scholar 

  • Winkler J, Lunsdorf H, Jockusch BM (1996) The ultrastructure of chicken gizzard vinculin as visualized by high-resolution electron microscopy. J Struct Biol 116:270–277

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin–catenin–actin complex. Cell 123:889–901

    Article  PubMed  CAS  Google Scholar 

  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  PubMed  CAS  Google Scholar 

  • Ziegler WH, Liddington RC, Critchley DR (2006) The structure and regulation of vinculin. Trends Cell Biol 16:453–460

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in our group is funded by projects grants from the National Health and Medical Research Council of Australia (631377) and Australian Research Council (DP120104667). JL is supported by an Australian Postgraduate Award and ASY is a Research Fellow of the NHMRC (631383).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpha S. Yap.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leerberg, J.M., Yap, A.S. Vinculin, cadherin mechanotransduction and homeostasis of cell–cell junctions. Protoplasma 250, 817–829 (2013). https://doi.org/10.1007/s00709-012-0475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0475-6

Keywords

Navigation