Skip to main content

Plankton Communities

  • Chapter
  • First Online:
Plitvice Lakes

Part of the book series: Springer Water ((SPWA))

Abstract

The spatial and temporal distributions of phytoplankton and zooplankton assemblages in the different limnological gradients of two Plitvice lakes (Kozjak and Prošće) are presented. The lakes are dimictic and oligo-mesotrophic. The phytoplankton community consists of 128 taxa belonging to the groups of Bacillariophyta, Charophyta, Chlorophyta Ochrophyta, Cyanobacteria, Cryptophyta and Miozoa, while the zooplankton community consists of 43 open water zone species: 35 Rotatoria, four Cladocera and four Copepoda. The main environmental factors affecting the phytoplankton community are nutrients (TP, TN) and conductivity. Chlorophyll a concentration is three times lower and total phytoplankton biomass is two times lower in Lake Kozjak than in Lake Prošće. Diatoms are the dominant component of phytoplankton in both lakes, while co-dominance of Ochhrophyta and Chlorophyta can be observed in Lake Prošće. A total of 18 Reynolds FGs are represented in Plitvice Lakes, with FGs A, B, C, D and P being the most represented in Lake Kozjak and B, C, D, E and F in Lake Prošće. The main environmental and spatial factors affecting zooplankton composition were compared to quantify shifts in their relative importance over time and to identify any factors affecting temporal changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson TR, Hesen DO (2005) Threshold elemental ratios for carbon versus phosphorus limitation in Daphnia. Freshw Biol 50:2063–2075

    Article  Google Scholar 

  • Antoniou MG, de La Cruz AA, Pelaez MA et al (2014) Practices that prevent the formation of cyanobacterial blooms in water resources and remove cy-anotoxins during physical treatment of drinking water. In: Ahuja S (ed) Comprehensive Water Quality and Purification. Elsevier, Waltham, pp 173–195

    Chapter  Google Scholar 

  • Berman T, Yacobi YZ, Pollingher U (1992) Lake Kinneret phytoplankton: Stability and variability during twenty years (1970–1989). Aquat Sci 54:104–127

    Article  Google Scholar 

  • Bresciani M, Cazzaniga I, Austoni M et al (2018) Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 824:197–214

    Article  CAS  Google Scholar 

  • Brunnthaler J (1900) Planktonstudien: Prošćansko jezero (Kroatien). Verhandlungen der kaiserlich-königlicheu zoologisch - botanischen Gesellschaft in Wien, Wien

    Google Scholar 

  • Car L (1906) Das Microplancton der Seen des Karstes. Ann Biol Lacustre 1:7

    Google Scholar 

  • Caron DA, Sanders RW, Lim EL et al (1993) Light-dependent phagotrophy in the freshwater mixotrophic chrysophyte Dinobryon cylindricum. Microb Ecol 25:93–111

    Article  CAS  PubMed  Google Scholar 

  • Caroni R, Free G, Visconti A et al (2012) Phytoplankton functional traits and seston stable isotopes signature: a functional-based approach in a deep, subalpine lake, Lake Maggiore (N. Italy). J Limnol 71:e8

    Google Scholar 

  • Dos Santos ACA, Calijuri MC (1998) Survival strategies of some species of the phytoplankton community in the Barra Bonita Reservoir (São Paulo, Brazil). Hydrobiologia 367:139–151

    Article  Google Scholar 

  • Dražina T (2012) Functional role of meiofauna in bryophytic microhabitats of karst running waters. PhD (In Croatian) PMF, Zagreb

    Google Scholar 

  • Dražina T, Špoljar M, Primc B et al (2013) Small-scale patterns of meiofauna in a bryophyte covered tufa barrier (Plitvice Lakes, Croatia). Limnologica 43:405–416

    Article  Google Scholar 

  • Dražina T, Špoljar M, Primc B et al (2017) Distribution of rotifers and other meiofauna in the bryophytes and hyporheic zone of a karst hydrosystem – an example of nested community. Mar Freshw Res 68:43–52

    Article  Google Scholar 

  • Dujmović A (2011) Seasonal changes in interactions between phytoplankton and microzooplankton in the lake Kozjak, Plitvice Lakes. PhD (In Croatian) PMF, Zagreb

    Google Scholar 

  • Emili H (1958) Hidrobiološka istraživanja na Plitvičkim jezerima. In: Petrik M Šafar, J (eds) Nacionalni park Plitvička jezera. Zagreb. p 173–226

    Google Scholar 

  • Erben R (1987) Rotifer fauna in the periphyton of Karst rivers in Croatia, Yugoslavia. Hyrobiologia 147:103–105

    Article  Google Scholar 

  • Erben R (1991) Vertical distribution of the rotifer fauna and its seasonal changes in the Plitvice Lakes, Croatia-Yugoslavia. Verh Internat Verein Limnol 24:1066–1068

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Fantin-Cruz I, Pedrollo O, Bonecker CC et al (2015) Key factors in vertical mixing processes in a reservoir bordering the Pantanal floodplain, Brazil. Hydrol Sci J 60:1508–1519

    Article  Google Scholar 

  • Fonseca BM, Bicudo CEDM (2010) How important can the presence/absence of macrophytes be in determining phytoplankton strategies in two tropical shallow reservoirs with different trophic status? J Plankton Res 32:31–46

    Article  Google Scholar 

  • Gaedke U (1998) Functional and taxonomical properties of the phytoplankton community of large and deep Lake Constance: interannual variability and response to reoligotrophication (1979–93). Arch Hydrobiol, (Special Issue) 53:119–141

    Google Scholar 

  • Gligora Udovič M, Žutinić P, Kralj Borojević K et al (2015) Co-occurrence of functional groups in phytoplankton assemblages dominated by diatoms, chrysophytes and dinoflagellates. Fundam Appl Limnol 187:101–111

    Article  Google Scholar 

  • Habdija I, Šoštarec V, Primc B, Durut D (1989) Vertical stratification of macrozooplankton in lake Kozjak (Plitvice lakes) in relation to trophic factors. Studija 1988, Prirodoslovno-matematički fakultet – Biological department, Zagreb, 105 p

    Google Scholar 

  • Habdija I, Primc-Habdija B, Erben R, Radanović I (1993) Trophic role of rotifers in the plankton of Lake Kozjak (Plitvice Lakes). Hydrobiologia 257:101–106

    Article  Google Scholar 

  • Iwabuchi T, Urabe J (2010) Phosphorus acquisition and competitive abilities of two herbivorous zooplankton, Daphnia pulex and Ceriodaphnia quadrangula. Ecol Res 25:619–627

    Article  Google Scholar 

  • Javornický P (2003) Taxonomic notes on some freshwater planktonic Cryptophyceae based on light microscopy. Hydrobiologia 502:271–283

    Article  Google Scholar 

  • Kamjunke N, Henrichs T, Gaedke U (2007) Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. J Plankton Res 29:39–46

    Article  CAS  Google Scholar 

  • Karabin A (1985) Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. II. Modifyng effect of biotic agents. Ecol Pol 33:617–644

    Google Scholar 

  • Komárek J, Kaštovský J, Jezberová J (2011) Phylogenetic and taxonomic delimitation of the cyanobacterial genus Aphanothece and description of Anathece gen. nov. Eur J Phycol 46:315–326

    Article  Google Scholar 

  • Krmpotić I (1913) Prilog mikrofauni Plitvičkih jezera. Glasnik Hrvatskoga prirodoslovnoga društva

    Google Scholar 

  • Kruk C, Mazzeo N, Lacerot G, Reynolds CS (2002) Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. J Plankton Res 24:901–912

    Article  Google Scholar 

  • Kuczyńska-Kippen N (2020) Biodiversity of Zooplankton in Polish Small Water Bodies. In: E. Korzeniewska E, Harnisz M (eds) Polish River Basins and Lakes Part II, The Handbook of Environmental Chemistry 87. Springer, Berlin, pp 56–76

    Google Scholar 

  • Kuczyńska-Kippen N, Špoljar M, Zhang C et al (2020) Zooplankton functional traits as a tool to assess latitudinal variation in the northern-southem temperate European regions during spring and autumn seasons. Ecol Indic 117:106629. https://doi.org/10.1016/j.ecolind.2020.106629

    Article  CAS  Google Scholar 

  • Madgwick G, Jones ID, Thackeray SJ et al (2006) Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water. Freshw Biol 51:1798–1810

    Article  Google Scholar 

  • Maloseja Ž (1985) Vertikalni raspored fitoplanktona u jezeru Kozjak (Nacionalni park Plitvička jezera). Ekologija 20:67–74

    Google Scholar 

  • Maloseja Ž (1987) Istraživanja algi u sedimentu Prošćanskog jezera. In: Zbornik sažetaka priopćenja Trećeg kongresa biologa Hrvatske/Proceedings of abstracts of the papers presented at the third Congress of Croatian Biologists. Hrvatsko biološko društvo, Mali Lošinj, pp 150–150

    Google Scholar 

  • Maloseja Ž (1989) Algae in the Sediment of Prošćansko Lake (National Park Plitvice Lakes). Period Biol 9:90–90

    Google Scholar 

  • Maloseja Ž, Plenković-Moraj A (1986) Sezonska vertikalna distribucija fitoplanktona u Prošćanskom jezeru i jezeru Kozjak. In: Proceedings of the Second Congress of Yugoslavian Biologists. Budva, pp 135–135

    Google Scholar 

  • Matoničkin I, Pavletić Z (1963) Predhodna ekološka-biocenološka istraživanja opskrbnih voda Plitvičkih jezera. Acta Bot Croat 22:141–174

    Google Scholar 

  • Matoničkin I, Pavletić Z (1964) Prilozi tipologiji biocenoza na sedrenim slapovima jugoslavenskih krških rijeka. Acta Mus Mac Sc Nat 9:121–146

    Google Scholar 

  • Matoničkin I, Pavletić Z (1965) Les formes zoogénes de tufs et leur formation dans la région des Lacs de Plitvice en Yougoslavie. Hydrobiologia 4:292–300

    Article  Google Scholar 

  • Matoničkin I, Pavletić Z (1967) Hidrologija potočnog sistema Plitvičkih jezera i njegove ekološko-biocenološke značajke. Krš Jugoslavije 5:83–126

    Google Scholar 

  • Mitra A, Flynn KJ, Burkholder JM et al (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005. https://doi.org/10.5194/bg-11-995-2014

    Article  ADS  CAS  Google Scholar 

  • Munawar M, Munawar IF (2013) Phytoplankton dynamics in the North American Great Lakes: Volumes 1 and 2,. Aquatic Ecosystem Health & Mgmt Soc Burlington, Ontario.

    Google Scholar 

  • Naselli-Flores L, Barone R (2012) Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698:147–159. https://doi.org/10.1007/s10750-012-1059-3

    Article  CAS  Google Scholar 

  • Naselli-Flores L, Padisák J, Dokulil MT et al (2003) Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502:395–403. https://doi.org/10.1023/B:HYDR.0000004297.52645.59

    Article  Google Scholar 

  • Niesel V, Hoehn E, Sudbrack R et al (2007) The occurrence of the Dinophyte species Gymnodinium uberrimum and Peridinium willei in German reservoirs. J Plankton Res 29:347–357. https://doi.org/10.1093/plankt/fbm017

    Article  Google Scholar 

  • Novarino G (2012) Cryptomonad taxonomy in the 21st century: The first 200 years. In: Wolowski K, Kaczmarska I, Ehrman JM et al (eds) Current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective. W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, p 34

    Google Scholar 

  • Olsen Y, Jensen A, Reinertsen H (1986) Dependence of the rate of release of phosphorus by zoo- plankton on the P: C ratio in the food supply, as calculated by a recycling model. Limnol Oceanogr 31:34–44

    Article  ADS  Google Scholar 

  • Padisák J, Crossetti L, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19. https://doi.org/10.1007/s10750-008-9645-0

    Article  Google Scholar 

  • Padisák J, Scheffler W, Sípos C et al (2003) Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Arch Hydrobiol 58:135–155

    Google Scholar 

  • Pevalek I (1919) Prilog poznavanju alga Hrvatske i Slavonije. Prirodoslovno Istraživanje Hrvatske i Slavonije 14:153–162

    Google Scholar 

  • Plenković-Moraj A (1981) Algološka istraživanja u protočnim i jezerskim biotopima Plitvičkih jezera. BSc Thesis, University of Zagreb

    Google Scholar 

  • Pollingher U (1988) Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 134–174

    Google Scholar 

  • Primc-Habdija B, Plenković-Moraj A, Ternjej I et al (2011) Plankton. In: Mihaljević Z Kerovec M Mrakovčić M et al. (eds), Studija testiranje bioloških metoda ocjene ekološkog stanja (Okvirna direktiva o vodama (2000/60/EC) u reprezentativnim slivovima Panonske i Dinaridske ekoregije. PMF, Zagreb

    Google Scholar 

  • Reynolds CS (1993) Scales of disturbance and their role in plankton ecology. Hydrobiologia 249:157–171. https://doi.org/10.1007/BF00008851

    Article  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf Luhe, p 371

    Google Scholar 

  • Reynolds CS (1998) What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369–370:11–26. https://doi.org/10.1023/A:1017062213207

    Article  Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reynolds CS (1986) Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia 138:43–64. https://doi.org/10.1007/BF00027231

    Article  Google Scholar 

  • Reynolds CS, Huszar VL de M, Kruk C et al (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. https://doi.org/10.1093/plankt/24.5.417

  • Rottberger J (2013) Ecophysiology of mixotrophic flagellates. University of Konstanz, Konstanz

    Google Scholar 

  • Rühland KM, Paterson AM, Hargan K et al (2010) Reorganization of algal communities in the Lake of the Woods (Ontario, Canada) in response to turn-of-the-century damming and recent warming. Limnol Oceanogr 55:2433–2451. https://doi.org/10.4319/lo.2010.55.6.2433

    Article  ADS  Google Scholar 

  • Sabater S (2009) Diatoms. In: Likens GE (ed) Encyclopedia of Inland Waters. Academic Press, Oxford, pp 149–156

    Chapter  Google Scholar 

  • Salmaso N, Buzzi F, Cerasino L et al (2014) Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731:31–48. https://doi.org/10.1007/s10750-013-1659-6

    Article  CAS  Google Scholar 

  • Salmaso N, Mosello R, Garibaldi L et al (2003) Vertical mixing as a determinant of trophic status in deep lakes: a case study from two lakes south of the Alps (Lake Garda and Lake Iseo). J Limnol 62:33–41. https://doi.org/10.4081/jlimnol.2003.s1.33

    Article  Google Scholar 

  • Salmaso N, Naselli-Flores L, Padisák J (2012) Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia 698:375–384. https://doi.org/10.1007/s10750-012-1253-3

    Article  Google Scholar 

  • Shumka S, Špoljar M, Tasevska O (2018) The Zooplankton of Lake Skadar/Shkodra: 1 Species Diversity and Abundance. In: Pešić V, Kostianoy AG, Karaman GS (eds) The Skadar/Shkodra Lake Environment. Springer, Berlin, pp 239–254

    Chapter  Google Scholar 

  • Sommer U (ed) (1989) Plankton ecology: succession in plankton communities. Springer Verlag, New York

    Google Scholar 

  • Šoštarić, D (1889) Die Entomostraken der Plitvicer Seen und des Blata-Sees (Croatien) gesammelt von Dr. R. Sturany (1895). Annalen des K. K. Naturhistorischen Hofmuseums in Wien 13:162–171

    Google Scholar 

  • Špoljar M (2003) Transport of seston in the cascading system of the Plitvice Lakes. PhD (In Croatian) PMF, Zagreb

    Google Scholar 

  • Špoljar M (2013) Microaquatic communities as indicators of environmental changes in lake ecosystems. J Eng Res 1:29–42

    Google Scholar 

  • Špoljar M, Dražina T, Habdija I, Meseljević M, Grčić Z (2011) Contrasting Zooplankton Assemblages in Two Oxbow Lakes with Low Transparencies and Narrow Emergent Macrophyte Belts. Krapina River. Croatia. Int. Rev. Hydrobiol. 96:175–190

    Article  ADS  Google Scholar 

  • Špoljar M, Dražina T, Lajtner J, Duić Sertić M, Radanović I, Wallace R, Matulić D, Tomljanović T (2018) Zooplankton assemblage in four temperate shallow waterbodies in association with habitat heterogeneity and alternative states. Limnologica 71:51–61

    Article  Google Scholar 

  • Špoljar M, Habdija I, Primc-Habdija B (2007a) Transport of seston in the karstic hydrosystem of the Plitvice Lakes (Croatia). Hydrobiologia 579:199–209

    Article  Google Scholar 

  • Špoljar M, Primc-Habdija B, Habdija I (2007b) The Influence of the lotic and lentic stretches on the zooseston flux through the Plitvice Lakes (Croatia). Ann Limnol Int J Limnol 43:29–40

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, New Jersey, Princeton (NJ)

    Google Scholar 

  • Stamou G, Katsiapi M, Moustaka-Gouni M et al (2019) Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 844:83–103

    Article  CAS  Google Scholar 

  • Takano Y, Horiguchi T (2004) Surface ultrastructure and molecular phylogenetics of four unarmored heterotrophic dinoflagellates, including the type species of the genus Gyrodinium (Dinophyceae). Phycol Res 52:107–116. https://doi.org/10.1111/j.1440-183.2004.00332.x

    Article  CAS  Google Scholar 

  • Tardio M, Tolotti M, Novarino G et al (2003) Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps). Hydrobiologia 502:285–296. https://doi.org/10.1023/B:HYDR.0000004286.28881.75

    Article  Google Scholar 

  • Tasevska O, Špoljar M, Gušeska D et al (2017) Zooplankton in ancient and oligotrophic Lake Ohrid (Europe) in association with environmental variables. CJF 75:95–103

    Article  Google Scholar 

  • Tolotti M, Corradini F, Boscaini A et al (2007) Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578:147–156. https://doi.org/10.1007/s10750-006-0441-4

    Article  Google Scholar 

  • Unrein F, O’Farrell I, Izaguirre I et al (2010) Phytoplankton response to pH rise in a N-limited floodplain lake: relevance of N2-fixing heterocystous cyanobacteria. Aquat Sci 72:179–190. https://doi.org/10.1007/s00027-009-0115-1

    Article  CAS  Google Scholar 

  • Urabe J, Gurung TB, Yoshida T et al (2000) Diel changes in phagotrophy by Cryptomonas in Lake Biwa. Limnol Oceanogr 45:1558–1563. https://doi.org/10.4319/lo.2000.45.7.1558

    Article  ADS  Google Scholar 

  • Urabe J, Watanabe Y (1992) Possibility of N or P limitation for planktonic cladocerans: An experimental test. Limnol Oceanogr 37:244–251

    Article  ADS  CAS  Google Scholar 

  • Wallace R, Snell T, Ricci C et al (2006) Rotifera. 1. Biology, Ecology and Systematics: Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Kenobi Productions, Ghent

    Google Scholar 

  • Watson SB, Satchwill T, Dixon E et al (2001) Under-ice blooms and source-water odour in a nutrient-poor reservoir: biological, ecological and applied perspectives. Freshw Biol 46:1553–1567. https://doi.org/10.1046/j.1365-2427.2001.00769.x

    Article  CAS  Google Scholar 

  • Weithoff G (2003) The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology? Freshw Biol 48:1669–1675. https://doi.org/10.1046/j.1365-2427.2003.01116.x

    Article  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc Biol Sci 276:427–435. https://doi.org/10.1098/rspb.2008.1200

    Article  PubMed  Google Scholar 

  • Wunsam S, Schmidt R, Klee R (1995) Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat Sci 57:360–386. https://doi.org/10.1007/BF00878399

    Article  Google Scholar 

  • Žutinić P, Gligora Udovič M, Kralj Borojević K et al (2014) Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740:147–166. https://doi.org/10.1007/s10750-014-1950-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivančica Ternjej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ternjej, I., Špoljar, M., Stanković, I., Udovič, M.G., Žutinić, P. (2023). Plankton Communities. In: Miliša, M., Ivković, M. (eds) Plitvice Lakes. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-20378-7_10

Download citation

Publish with us

Policies and ethics