Skip to main content
Log in

Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District

  • Classic Ground: Central and Western Europe
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This paper reviews the results of experimental manipulations, carried out during the period 1977–1983, on the phytoplankton maintained in the limnetic enclosures at Blelham Tarn, English Lake District. Three categories of manipulations are considered.

The effects of variation in the scale and frequency of phosphorus loading (range: 0.3 to 2.5 g P m−2 a−1) upon the mean phytoplankton biomass, its seasonal distribution and specific dominance are shown to conform to well-established patterns and relationships observed in natural lakes. Much of the seasonal variability in species dominance occurred independently of nutrient ratios, though carbon availability has been critical at times. Attempts to manipulate the rates of removal of phytoplankton by grazing have confirmed that they act selectively against certain smaller species only, that they alter the rate of successional change, rather than its direction, and that they have little lasting influence upon the total phytoplankton standing crop. Attempts to manipulate rates of sinking loss through artificial enlargement of the epilimnetic circulation also regulated the light-conditions experienced by suspended phytoplankton.

Growth-rate relationships to an index of light exposure and to temperature fluctuation are also derived for several species and are related to morphological and physiological characters of the organisms concerned. These interpretations are briefly reviewed in relation to periodic cycles in natural lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T. F. H. & J. F. Koonce, 1973. Multivariate approaches to algal stratagems in systems analysis of phytoplankton. Ecology 54: 1234–1247.

    Google Scholar 

  • Crumpton, W. G. & R. G. Wetzel, 1982. Effects of differential growth and mortality in the seasonal succession of phytoplankton populations in Lawrence Lake, Michigan. Ecology 63: 1729–1739.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Google Scholar 

  • Ferguson, A. J. D., J. M. Thompson & C. S. Reynolds, 1982. Structure and dynamics of zooplankton communities maintained in closed systems, with special reference to the algal food supply. J. Plankton Res. 4: 523–543.

    Google Scholar 

  • Gächter, R., 1979. MELIMEX, an experimental heavy metal pollution study: goals, experimental design and major findings. Schweiz. Z. Hydrol. 41: 169–176.

    Google Scholar 

  • George, D. G., 1983. Interactions between zooplankton and phytoplankton distribution profiles in two large limnetic enclosures. J. Plankton Res. 5: 457–475.

    Google Scholar 

  • Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebn. Limnol. 10: 1–163.

    Google Scholar 

  • Harris, G. P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Can. J. Fish. aquat. Sci. 37: 877–900.

    Google Scholar 

  • Harris, G. P., 1983. Mixed layer physics and phytoplankton populations: studies in equilibrium and non-equilibrium ecology. Prog. Phycol. Res. 2: 1–52.

    Google Scholar 

  • Harris, G. P. & B. B. Piccinin, 1980. Physical variability and phytoplankton communites, 4. Temporal changes in the phytoplankton community of a physically variable lake. Arch. Hydrobiol. 89: 447–473.

    Google Scholar 

  • Heaney, S. I., D. V. Chapman & H. R. Morison, 1983. The role of the cyst stage in the seasonal growth of the dinoflagellate Ceratium hirundinella within a small productive lake. Br. phycol. J. 18: 47–59.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology. Vol. 2. Introduction to lake biology and the limnoplankton. Wiley-Interscience, N.Y., 1115 pp.

    Google Scholar 

  • Irish, A. E. & R. T. Clarke, 1984. Sampling designs for the estimation of phytoplankton abundance in limnetic environments. Br. phycol. J. 19: 57–66.

    Google Scholar 

  • Jaworski, G. H. M., J. F. Talling & S. I. Heaney, 1981. The influence of carbon dioxide-depletion on growth and sinking rate of two planktonic diatoms in culture. Br. phycol. J. 16: 395–410.

    Google Scholar 

  • Johnson, W. E. & J. R. Vallentyne, 1971. Rationale, background and development of experimental lake studies in northwestern Ontario. J. Fish. Res. Bd Can. 28: 123–128.

    Google Scholar 

  • Jones, R. A. & G. F. Lee, 1982. Recent advances in assessing impact of phosphorus loads on eutrophication-related water quality. Wat. Res. 16: 503–515.

    Google Scholar 

  • Kilham, P., 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnol. Oceanogr. 16: 10–18.

    Google Scholar 

  • Knoechel, R. & J. Kalff, 1978. An in situ study of the productivity and population dynamics of five freshwater plankton diatom species. Limnol. Oceanogr. 23: 195–218.

    Google Scholar 

  • Lack, T. J. & J. W. G. Lund, 1974. Observations and experiments on the phytoplankton of Blelham Tarn, English Lake District 1. The experimental tubes. Freshwat. Biol. 4: 399–415.

    Google Scholar 

  • Lampert, W. & U. Schober, 1980. The importance of ‘threshold’ food concentrations. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover, New Hampshire: 264–267.

    Google Scholar 

  • Lean, D. R. S., M. N. Charlton, B. K. Burnison, T. P. Murphy, S. E. Millards & K. R. Young, 1975. Phosphorus: changes in ecosystem metabolism from reduced loading. Verh. int. Ver. theor. angew. Limnol. 19: 249–257.

    Google Scholar 

  • Lee, G. F., W. Rast & R. A. Jones, 1978. Eutrophication of water bodies: insights for an age-old problem. Envir. Sci. Technol. 12: 900–908.

    Google Scholar 

  • Lehman, J. T., 1976. Ecological and nutritional studies on Dinobryon Ehrenb.: seasonal periodicity and the phosphate toxicity problem. Limnol. Oceanogr. 21: 646–658.

    Google Scholar 

  • Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J. Ecol. 66: 849–880.

    Google Scholar 

  • Lund, J. W. G., 1965. The ecology of the freshwater phytoplankton. Biol. Rev. 40: 231–293.

    Google Scholar 

  • Lund, J. W. G., 1971. An artificial alteration of the seasonal cycle of the plankton diatom Melosira italica subsp. subarctica in an English lake. J. Ecol. 59: 521–533.

    Google Scholar 

  • Lund, J. W. G., 1972. Preliminary observations on the use of large experimental tubes in lakes. Verh. int. Ver. theor. angew. Limnol. 18: 71–77.

    Google Scholar 

  • Lund, J. W. G., 1975. The use of large experimental tubes in lakes. In R. E. Youngman (ed.), The effects of storage on water quality. Wat. Res. Cent., Medmemham, England: 291–312.

    Google Scholar 

  • Lund, J. W. G., 1978. Changes in the phytoplankton of an English lake, 1945–1977. Hydrobiol. J. 14(1): 6–21.

    Google Scholar 

  • Lund, J. W. G., 1981. Investigations on phytoplankton, with special reference to water usage. Occ. Publs Freshwat. Biol. Ass. 13: 64 pp.

  • Lund, J. W. G., G. H. M. Jaworski & C. Butterwick, 1975. Algal bioassay of water from Blelham Tarn, English Lake District, and the growth of planktonic diatoms. Arch. Hydrobiol., Suppl. 49: 49–69.

    Google Scholar 

  • Lund, J. W. G. & C. S. Reynolds, 1982. The development and operation of large limnetic enclosures in Blelham Tarn, English Lake, District, and their contribution to phytoplankton ecology. Prog. phycol. Res. 1: 1–65.

    Google Scholar 

  • Margalef, R., 1958. Temporal succession and spatial heterogeneity in phytoplankton. In A. A. Buzzati-Traverso (eds.), Perspectives in marine biology. University of California Press, Berkeley: 323–349.

    Google Scholar 

  • Margalef, R., 1961. Communication of structure in planktonic populations. Limnol. Oceanogr. 6: 124–128.

    Google Scholar 

  • Menzel, D. W. & J. Case, 1977. Controlled ecosystem pollution experiment: concept and design. Bull. mar. Sci. 27: 1–7.

    Google Scholar 

  • Rast, W., A. Jones & G. F. Lee, 1983. Predictive capability of U.S. OECD phosphorus loading eutrophication response models. J. Wat. Pollut. Cont. Fed. 55: 990–1003.

    Google Scholar 

  • Reynolds, C. S., 1971. Investigations on the phytoplankton of Crose Mere and other standing waters of the Shropshire-Cheshire Plain. PhD Thesis, Univ. Lond., 201 pp.

  • Reynolds, C. S., 1980a. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarc. Ecol. 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1980b. Processes controlling the quantities of biogenic materials in lakes and reservoirs subject to cultural eutrophication. Pollut. Rep. Dep. Envir. U.K. 8: 45–62.

    Google Scholar 

  • Reynolds, C. S., 1982. Phytoplankton periodicity: its motivation, mechanisms and manipulation. Rep. Freshwat. biol. Ass. 50: 60–75.

    Google Scholar 

  • Reynolds, C. S., 1983a. Growth-rate responses of Volvox aureus Ehrenb. (Chlorophyta, Volvocales) to variability in the physical environment. Br. phycol. J. 18: 433–442.

    Google Scholar 

  • Reynolds, C. S., 1983b. A physiological interpretation of the dynamic responses of a planktonic diatom to physical variability of the environment. New Phytol. 95: 41–53.

    Google Scholar 

  • Reynolds, C. S., 1984a. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, England, 384 pp.

    Google Scholar 

  • Reynolds, C. S., 1984b. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Google Scholar 

  • Reynolds, C. S., 1984c. Artificial induction of surface blooms of Cyanobacteria. Verh. int. Ver. theor. angew. Limnol. 22: 638–643.

    Google Scholar 

  • Reynolds, C. S. & C. Butterwick, 1979. Algal bioassay of unfertilized and artifically fertilized lake water maintained in Lund Tubes. Arch. Hydrobiol., Suppl. 56: 166–183.

    Google Scholar 

  • Reynolds, C. S., J. M. Thompson, A. J. D. Ferguson & S. W. Wiseman, 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. J. Plankton Res. 4: 561–600.

    Google Scholar 

  • Reynolds, C. S. & A. E. Walsby, 1975. Water blooms. Biol. Rev. 50: 437–481.

    Google Scholar 

  • Reynolds, C. S. & S. W. Wiseman, 1982. Sinking losses of phytoplankton maintained in closed limnetic systems. J. Plankton Res. 4, 489–522.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman & M. J. O. Clarke, 1984. Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J. appl. Ecol. 21: 11–39.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics of phytoplankton in large limnetic enclosures. J. Plankton Res. 5: 203–234.

    Google Scholar 

  • Rhee, G.-Y., 1978. Effects of N:P atomic ratios and nitrate limitation and algal growth, cell composition and nitrate uptake. Limnol. Oceanogr. 23: 10–25.

    Google Scholar 

  • Rhee, G.-Y., 1982. Effect of environmental factors and their interactions on phytoplankton growth. In K. D. Marshall (ed.), Advances in microbial ecology, 6. Plenum Press, Lond.: 33–74.

    Google Scholar 

  • Rhee, G.-Y. & I. J. Gotham, 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16: 486–489.

    Google Scholar 

  • Rhee, G.-Y. & I. J. Gotham, 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26: 635–648.

    Google Scholar 

  • Rodhe, W., 1948. Environmental requirements of freshwater plankton algae. Symb. bot. ups. 10: 5–149.

    Google Scholar 

  • Round, F. E., 1971. The growth and succession of algal populations in freshwaters. Mitt. int. Ver. theor. angew. Limnol. 19: 70–99.

    Google Scholar 

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Smyly, W. J. P., 1976. Some effects of enclosure on the zooplankton in a small lake. Freshwat. Biol. 6: 241–251.

    Google Scholar 

  • Sommer, U., 1981. The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta oecol. 2: 327–342.

    Google Scholar 

  • Sommer, U., 1984. The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow through cultures. Limnol. Oceanogr. 29: 633–636.

    Google Scholar 

  • Sournia, A., 1982. Form and function in marine phytoplankton. Biol. Rev. 57: 347–394.

    Google Scholar 

  • Stephenson, G. L., P. Hamilton, N. K. Kaushik, J. B. Robinson & K. R. Solomon, 1984. Spatial distribution of plankton in enclosures of three sizes. Can. J. Fish. aquat. Sci. 41: 1048–1054.

    Google Scholar 

  • Talling, J. F., 1962. Freshwater algae. In R. A. Lewin (ed.), Physiology and biochemistry of algae. Academic Press, Lond.: 743–757.

    Google Scholar 

  • Talling, J. F., 1976. The depletion of carbon dioxide from lake waters by phytoplankton. J. Ecol. 64: 79–121.

    Google Scholar 

  • Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.

    Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–348.

    Google Scholar 

  • Tilman, D. & S. S. Kilman, 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12: 375–383.

    Google Scholar 

  • Tilman, D., S. S. Kilman & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Google Scholar 

  • Trimbee, A. M. & G. P. Harris, 1984. Phytoplankton population dynamics of a small reservoir: effect of intermittent mixing on phytoplankton succession and the growth of blue-green algae. J. Plankton Res. 6: 699–713.

    Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol. 33: 53–83.

    Google Scholar 

  • Vollenweider, R. A. & J. Kerekes, 1980. The loading concept as basis for controlling eutrophication philosophy and preliminary results of the OECD programme on eutrophication. Prog. Wat. Technol. 12(2): 5–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C.S. Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia 138, 43–64 (1986). https://doi.org/10.1007/BF00027231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027231

Keywords

Navigation