Skip to main content

Future Hydroclimatic Variability Projections Using Combined Statistical Downscaling Approach and Rainfall-Runoff Model: Case of Sebaou River Basin (Northern Algeria)

  • Chapter
  • First Online:
Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems

Part of the book series: Springer Climate ((SPCL))

Abstract

Due to its location in the Mediterranean basin, Algeria is one of the most countries vulnerable to the effects of climate change. The aim of this study is to assess future flow rate projections of Sebaou basin (Northern Algeria), using the coupling of statistical downscaling approach (SDSM) based on the general circulation model Hadley Centre Coupled Model version 3 (GCM-HadCM3) of the Royaume-Uni with an anthropogenic forcing SRES A2a (pessimist) and SRES B2a (optimistic) and GR2M model for rainfall-runoff transformation. The use of GR2M rainfall-runoff model has been able to control the hydrological functioning of the basin with very satisfactory performance values expressed by the Nash values over 80% for most subbasins, except for the degradation the Nash coefficient after the commissioning of the Taksebt dam in the Oued Aissi subbasin after 2001. The combining approach showed, on one hand, a decrease in rainfall ranging from 18% to 14% and that the maximum, average, and minimum temperatures could continue to increase with a maximum of 1.1–0.65 °C, 1.1–1.25 °C, and 2.7–3.4 °C, respectively, for the H3A2 and H3B2 emission scenarios until the long-term horizon 2080. On the other hand, the model indicated that these climatic changes have an effect on decreases in the basin’s water resources and that the 2050 and 2080 horizons are the most deficient with a decrease in flows estimated from −35% to −49% for A2 and from −45 to −57% for B2 scenarios, respectively, which represents approximately 500–300 Hm3 by the end of the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abda Z, Zerouali B, Chettih M, Guimaraes Santos CA, de Farias CAS, Elbeltagi A (2022) Assessing machine learning models for streamflow estimation: A case study in Oued Sebaou watershed (Northern Algeria). Hydrol Sci J 67(9):1328–341

    Google Scholar 

  • Almazroui M, Khalid MS, Islam MN, Saeed S (2020) Seasonal and regional changes in temperature projections over the Arabian Peninsula based on the CMIP5 multi-model ensemble dataset. Atmos Res 104913. https://doi.org/10.1016/j.atmosres.2020.104913

  • Ardoin-Bardin S (2004) Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrogra-phiques en zone soudano-sahélienne, Doctoral dissertation, Université de Montpellier II, France, 337 p

    Google Scholar 

  • Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob Environ Chang 14:31–52. https://doi.org/10.1016/j.gloenvcha.2003.10.006

    Article  Google Scholar 

  • Bader D, Covey C, Gutowski W, Held I, Kunkel K, Miller R, Tokmakian R, Zhang M (2008) Climate models: an assessment of strengths and limitations. A report by the US Climate Change Science Program and the Subcommittee on Global Change Research, Office of Biological and Environmental Research, Department of Energy, Washington, DC

    Google Scholar 

  • Bayatvarkeshi M, Zhang B, Fasihi R, Adnan RM, Kisi O, Yuan X (2020) Investigation into the effects of climate change on reference evapotranspiration using the HadCM3 and LARS-WG. Water 12(3):666. https://doi.org/10.3390/w12030666

    Article  Google Scholar 

  • Beldring S, Engen-Skaugen T, Førland EJ, Roald LA (2008) Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus A Dyn Meteorol Oceanogr 60(3):439–450. https://doi.org/10.1111/j.1600-0870.2007.00306.x

    Article  Google Scholar 

  • Berthier C-H (2005) Quantification des incertitudes des débits calculés par un modèle pluie-débit empirique. Mémoire de Master en Sciences de la terre. Université Paris sud 11

    Google Scholar 

  • Bodian A, Dezetter A, Dacosta H (2012) Apport de la modélisation pluie-débit pour la connaissance de la ressource en eau: application au haut bassin du fleuve Sénégal. Climatologie 9:109–125

    Article  Google Scholar 

  • Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Change. https://doi.org/10.2166/wcc.2020.207

  • Bucak T, Trolle D, Andersen HE, Thodsen H, Erdoğan Ş, Levi EE et al (2017) Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Sci Total Environ 581:413–425. https://doi.org/10.1016/j.scitotenv.2016.12.149

    Article  ADS  CAS  PubMed  Google Scholar 

  • Cherkaoui A (2012) Désagrégation statistique des via l’outil SDSM pour la projection des changements climatiques futurs dans la haute Moulouya. Thèse d’Ingénieur d’Etat: Génie des Procédés et d’Environnement. Université Hassan II Mohammadia –Casablanca

    Google Scholar 

  • Chourghal N, Lhomme JP, Huard F et al (2016) Climate change in Algeria and its impact on durum wheat. Reg Environ Chang 16:1623–1634. https://doi.org/10.1007/s10113-015-0889-8

    Article  Google Scholar 

  • Duan W, He B, Takara K, Luo P, Nover D, Hu M (2017) Impacts of climate change on the hydro-climatology of the upper Ishikari river basin, Japan. Environ Earth Sci 76(14):490. https://doi.org/10.1007/s12665-017-6805-4

    Article  ADS  Google Scholar 

  • Duong PC (2016) Assessment of climate change impact on river flow regimes to support decision-making in water resources Management in the Red River Delta, Vietnam: A Case Study of Nhue-day River Basin. J Nat Resour Dev 06:81–91. https://doi.org/10.5027/jnrd.v6i0.09

    Article  Google Scholar 

  • El Meddahi Y (2016) Les changements climatiques et leurs impacts sur les ressources en eau, cas du bassin du Cheliff. Thèse de doctorat en Hydraulique. Universite Hassiba Ben Bouali – Chlef (245 p)

    Google Scholar 

  • El Meddahi Y, Issaadi A, Mahmoudi H, Tahar Abbes M, Mattheus FAG (2014) Effect of climate change on water resources of the Algerian middle Cheliff basin. Desalin Water Treat 52:2073–2081. https://doi.org/10.1080/19443994.2013.8317

    Article  Google Scholar 

  • Elbeltagi A, Kumar N, Chandel A et al (2022a) Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): an artificial neural network approach based on diffèrent combinations of meteorological data. Environ Monit Assess 194:141. https://doi.org/10.1007/s10661-022-09812-0

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagi A, Nagy A, Mohammed S, Pande CB, Kumar M, Bhat SA, Zsembeli J, Huzsvai L, Tamás J, Kovács E, Harsányi E, Juhász C (2022b) Combination of limited meteorological data for predicting reference crop evapotranspiration using artificial neural network method. Agronomy 12(2):516. https://doi.org/10.3390/agronomy12020516

    Article  Google Scholar 

  • Elbeltagi A, Pande CB, Kouadri S et al (2022c) Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India. Environ Sci Pollut Res 29:17591–17605. https://doi.org/10.1007/s11356-021-17064-7

    Article  CAS  Google Scholar 

  • Elbeltagi A, Zerouali B, Bailek N et al (2022d) Optimizing hyperparameters of deep hybrid learning for rainfall prediction: a case study of a Mediterranean basin. Arab J Geosci 15:933. https://doi.org/10.1007/s12517-022-10098-2

  • Elmeddahi Y, Ragab R (2019) Assessing the climate change impact on water resources and adaptation strategies in Al-gerian Cheliff Basin. In: Negm, A.M., Bouderbala, A., Chenchouni, H., Barceló, D. (eds) Water Resources in Algeria - Part I. The handbook of environmental chemistry, vol 97. Springer, Cham. https://doi.org/10.1007/698_2019_398

  • Galdies C, Lau HS (2020) Urban Heat Island effect, extreme temperatures and climate change: a case study of Hong Kong SAR. In: Climate change, hazards and adaptation options. Springer, Cham, pp 369–388. https://doi.org/10.1007/978-3-030-37425-9_20

    Chapter  Google Scholar 

  • Hassan Z, Shamsudin S, Harun S, Malek MA, Hamidon N (2015) Suitability of ANN applied as a hydrological model coupled with statistical downscaling model: a case study in the northern area of Peninsular Malaysia. Environ Earth Sci 74(1):463–477. https://doi.org/10.1007/s12665-015-4054-y

    Article  ADS  Google Scholar 

  • Haziza E (2003) Modélisation mensuelle pluie-débit/apports de la spatialisation: cas des données de sols. Thèse de Docto-rat en Sciences de l'Eau et de la Terre. Université Montpellier II

    Google Scholar 

  • IPCC (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, p 996

    Google Scholar 

  • Kaas E, Frich P (1995) Diurnal temperature range and cloud cover in the Nordic countries: observed trends and estimates for the future. Atmos Res 37:211–228. https://doi.org/10.1016/0169-8095(94)00078-R

    Article  Google Scholar 

  • Kabiri R (2014) Assessment of climate change impact on runoff and peak flow: a case study on Klang. Philosophy PhD thesis, University of Nottingham (316 p)

    Google Scholar 

  • Kanber R, Ünlü M, Kapur B, Özekici B, Donma S (2019) Adaptation of contemporary irrigation systems to face the challenges of future climate changes in the Mediterranean region: a case study of the lower Seyhan irrigation system. In: Watanabe T, Kapur S, Aydın M, Kanber R, Akça E (eds) Climate change impacts on basin agro-ecosystems. The Anthropocene: Politik—economics—society—science, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-01036-2_7

    Chapter  Google Scholar 

  • Khorshidi MS, Nikoo MR, Sadegh M, Nematollahi B (2019) A multi-objective risk-based game theoretic approach to reservoir operation policy in potential future drought condition. Water Resour Manag 33(6):1999–2014. https://doi.org/10.1007/s11269-019-02223-w

    Article  Google Scholar 

  • Kouadri S, Pande CB, Panneerselvam B, Moharir KN, Elbeltagi A (2021) Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. J Environ Sci Pollut Res, Springer Publication, Impact Factor 4:22. https://doi.org/10.1007/s11356-021-17084-3

    Article  CAS  Google Scholar 

  • Kouamẻ KF, Kouassi AM et al (2013) Analyse de tendances dans la relation pluie-débit dans un con-texte de changements climatiques: cas du bassin versant du N’zo-Sassandra (Ouest de la Côte d’Ivoire). Int J Innov Appl Stud 2:92–103

    Google Scholar 

  • Lefebvre G, Redmond L, Germain C, Palazzi E, Terzago S, Willm L, Poulin B (2019) Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Sci Total Environ 692:546–555. https://doi.org/10.1016/j.scitotenv.2019.07.263

    Article  ADS  CAS  PubMed  Google Scholar 

  • Madsen H (2000) Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J Hydrol 235:276–288. https://doi.org/10.1016/S0022-1694(00)00279-1

    Article  Google Scholar 

  • Meenu R, Rehana S, Mujumdar PP (2013) Assessment of hydrologic impacts of climate change in TungaBhadra river basin, India with HEC-HMS and SDSM. Hydrol Process 27(11):1572–1589. https://doi.org/10.1002/hyp.9220

    Article  ADS  Google Scholar 

  • Mouelhi S (2003) Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier. Thèse de Doctorat, ENGREF, Cemagref Antony, France, 323, p 16

    Google Scholar 

  • Mouelhi S, Michel C, Perrin C, Andreassian V (2006) Linking stream flow to rainfall at the annual time step: the Manabe bucket model revisited. J Hydrol 328:283–296. https://doi.org/10.1016/j.jhydrol.2005.12.022

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Ouyang W, Hao F, Shi Y et al (2019) Predictive ability of climate change with the automated statistical downscaling method in a freeze–thaw agricultural area. Clim Dyn 52:7013–7028. https://doi.org/10.1007/s00382-018-4560-1

    Article  Google Scholar 

  • Pande CB, Kadam SA, Jayaraman R, Gorantiwar S, Shinde M (2022) J Saudi Soc Agric Sci 21(1):21–28

    Google Scholar 

  • Perrin C (2000) Vers une amélioration d'un modèle global pluie-débit (Doctoral dissertation, Institut National Polytech-nique de Grenoble-INPG)

    Google Scholar 

  • Perrin C, Oudin L, Andreassian V, Rojas-Serna C, Michel C, Mathevet T (2007) Impact of limited streamflow data on the efficiency and the parameters of rainfall—runoff models. Hydrolog Sci J 52(1):131–151. https://doi.org/10.1623/hysj.52.1.131

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model - HadCM3. Clim Dyn 16:123–146. https://doi.org/10.1007/s003820050009

    Article  Google Scholar 

  • Ragab R, Prudhomme C (2002) Climate change and water resources management in arid and semi-arid regions: Prospec-tive and challenges for the 21st century. Biosyst Eng 81(1):3–34. https://doi.org/10.1006/bioe.2001.0013

    Article  Google Scholar 

  • Raghavan SV, Vu MT, Liong SY (2012) Assessment of future stream flow over the Sesan catchment of the lower Mekong Basin in Vietnam. Hydrol Process 26(24):3661–3668. https://doi.org/10.1002/hyp.8452

    Article  ADS  Google Scholar 

  • Remini B (1997) Envasement des retenues de barrages en Algérie: importance, mécanismes et moyen de lutte par la tech-nique du soutirage. Doctorat d’état, Ecole Nationale Polytechnique d’Alger

    Google Scholar 

  • Sambaran J, Mantu D, Debasri R, Subhasish D, Asis M (2015) Simulation of climate change impact in a river basin in Eastern India. Int J Hydrol Sci Technol 5(4):2015. https://doi.org/10.1504/IJHST.2015.072631

    Article  Google Scholar 

  • Şen Z (2019) Climate change expectations in the upper Tigris River basin, Turkey. Theor Appl Climatol 137:1569–1585. https://doi.org/10.1007/s00704-018-2694-z

  • Sigdel M, Ma Y (2016) Evaluation of future precipitation scenario using statistical downscaling model over humid, subhumid, and arid region of Nepal—a case study. Theor Appl Climatol 123(3–4):453–460. https://doi.org/10.1007/s00704-014-1365-y

    Article  ADS  Google Scholar 

  • Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Glob Planet Chang 63(2–3):112–126. https://doi.org/10.1016/j.gloplacha.2007.10.003

    Article  ADS  Google Scholar 

  • Taibi S, Meddi M, Mahé G (2019) Seasonal rainfall variability in the southern Mediterranean border: observations, regional model simulations and future climate projections. Atmósfera 32(1):39–54. https://doi.org/10.20937/atm.2019.32.01.04

    Article  Google Scholar 

  • Tramblay Y, Jarlan L, Hanich L, Somot S (2018) Future scenarios of surface water resources availability in north African dams. Water Resour Manag. https://doi.org/10.1007/s11269-017-1870-8

  • Wang Q, Xu Y, Wang Y, Zhang Y, Xiang J, Xu Y, Wang J (2020) Individual and combined impacts of future land-use and climate conditions on extreme hydrological events in a representative basin of the Yangtze River Delta, China. Atmos Res 236:104805. https://doi.org/10.1016/j.atmosres.2019.104805

    Article  Google Scholar 

  • Wilby RL, Dawson CW (2007) SDSM 4.2-A decision support tool for the assessment of regional climate change im-pacts. United Kingdom

    Google Scholar 

  • Yang C, Wang N, Wang S (2017) A comparison of three predictor selection methods for statistical downscaling. Int J Climatol 37(3):1238–1249. https://doi.org/10.1007/s00704-016-1956-x

    Article  Google Scholar 

  • Yilmaz AG, Imteaz MA (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol Sci J 56(7):1265–1279. https://doi.org/10.1080/02626667.2011.609173

    Article  Google Scholar 

  • Zerouali B, Chettih M, Abda Z et al (2020) The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophys 68:1443–1460. https://doi.org/10.1007/s11600-020-00466-5

    Article  ADS  Google Scholar 

  • Zerouali B, Chettih M, Abda Z et al (2021a) Spatiotemporal meteorological drought assessment in a humid Mediterranean re-gion: case study of the Oued Sebaou basin (Northern Central Algeria). Nat Hazards 108:689–709. https://doi.org/10.1007/s11069-021-04701-0

    Article  Google Scholar 

  • Zerouali B, Chettih M, Alwetaishi M, Abda Z, Elbeltagi A, Augusto Guimarães Santos C, Hussein EE (2021b) Evaluation of karst spring discharge response using time-scale-based methods for a Mediterranean Basin of Northern Algeria. Water 13:2946. https://doi.org/10.3390/w13212946

    Article  Google Scholar 

  • Zerouali B, Elbeltagi A, Al-Ansari N et al (2022) Improving the visualization of rainfall trends using various innovative trend methodologies with time–frequency-based methods. Appl Water Sci 12:207. https://doi.org/10.1007/s13201-022-01722-3

  • Zittis G, Hadjinicolaou P, Klangidou M et al (2019) A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg Environ Chang 19:2621–2635. https://doi.org/10.1007/s10113-019-01565-w

    Article  Google Scholar 

  • Zkhiri W, Tramblay Y, Hanich L et al (2019) Spatiotemporal characterization of current and future droughts in the high atlas basins (Morocco). Theor Appl Climatol 135:593–605. https://doi.org/10.1007/s00704-018-2388-6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilel Zerouali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zerouali, B., Chettih, M., Abda, Z., Mesbah, M. (2023). Future Hydroclimatic Variability Projections Using Combined Statistical Downscaling Approach and Rainfall-Runoff Model: Case of Sebaou River Basin (Northern Algeria). In: Pande, C.B., Moharir, K.N., Singh, S.K., Pham, Q.B., Elbeltagi, A. (eds) Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-19059-9_11

Download citation

Publish with us

Policies and ethics