Skip to main content

Urban Heat Island Effect, Extreme Temperatures and Climate Change: A Case Study of Hong Kong SAR

  • Chapter
  • First Online:
Climate Change, Hazards and Adaptation Options

Part of the book series: Climate Change Management ((CCM))

Abstract

The Urban Heat Island (UHI) effect is analyzed using LANDSAT8 satellite data acquired on two episodes of heatwaves over Hong Kong and processed using the split-window algorithm to retrieve the Land Surface Temperature (LST) over this area. The in situ ambient air temperatures measured by a number of local weather stations of the Hong Kong Observatory were used to validate the acquired LST. Regional temperature changes for the Hong Kong area for the 21st century generated using the climate scenario generator tool MAGICC/SCENGEN and constrained to SRES A2AIM project a rise in temperatures of between +0.9 and +5.4 °C. The results show the existence of severe UHI effects between urban and sub-urban localities during two severe heatwave events. Geospatial analysis of this local UHI problem quantifies how urban parks can minimize the UHI effect and a number of adaptation measures related to urban spatial planning are being recommended in view of a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman B (1985) Temporal march of the Chicago heat Island. J Clim Appl Meteorol 24(6):547–554

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Article  Google Scholar 

  • Baldinelli G, Bonafoni S (2015) Analysis of albedo influence on surface urban heat island by spaceborne detection and airborne thermography. In: Murino V, Puppo E, Sona D, Cristani M, Sansone C (eds) New trends in image analysis and processing—ICIAP 2015 workshops. Springer International Publishing, Genoa, Italy, pp 95–102

    Google Scholar 

  • Becker F, Li Z-L (1990) Toward a local split window method over land surface. Int J Remote Sens 3:369–393

    Article  Google Scholar 

  • Bhatnagar A, Livingston WC (2005) Fundamentals of solar astronomy, vol 6. World Scientific

    Google Scholar 

  • Bonan G (2008) Ecological climatology: concepts and applications, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Chapman S, Watson JEM, Salazar A, McAlpine MTCA (2017) The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecol. https://doi.org/10.1007/s10980-017-0561-4

  • Coll C, Caselles V, Valor E, Niclòs R (2012) Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data. Remote Sens Environ 117:199–210

    Article  Google Scholar 

  • Corredor X (2018) Cloud Masking Qgis plugin (Version x.x), SMByC-IDEAM and FAO. Available: https://smbyc.bitbucket.io/qgisplugins/cloudmasking. Last accessed Apr 2019

  • Doick K, Hutchings T (2013) Air temperature regulation by urban trees and green infrastructure. Research Note. Forestry Comission, UK. https://www.forestry.gov.uk/forestresearch. Last accessed 8 Dec 2019

  • Estoque RC, Murayama Y, Myint SW (2017) Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia. Sci Total Environ 577:349–359

    Article  Google Scholar 

  • Fang G (2015) Prediction and analysis of urban heat island effect in Dangshan by remote sensing. Int J Smart Sens Intell Syst 8(4):2195–2211

    Google Scholar 

  • Finkl CW, Makowski C (2014) Remote sensing and modeling: advances in coastal and marine resources, vol 9. Coastal Research Library. Springer

    Google Scholar 

  • Fordham DA, Wigley TML, Watts MJ, Brook BW (2012) Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography 35:4–8

    Article  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2012) The climate near the ground. Springer Science and Business Media. ISBN: 3322865827, 9783322865823

    Google Scholar 

  • Givoni B (1998) Impact of green areas on site and urban climates (chap 9). In: Givoni B (ed) Climate considerations in building and urban design. Wiley, New York, pp 303–330

    Google Scholar 

  • Gutman G, Ignatov A (1998) The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int J Remote Sens 19:1533–1543

    Article  Google Scholar 

  • Hoffmann P, Krueger O, Schluenzen KH (2012) A statistical model for the urban heat island and its application to a climate change scenario. Int J Climatol 32(8):1238–1248

    Article  Google Scholar 

  • Hoffmann P, Schluenzen KH (2013) Weather pattern classification to represent the urban heat island in present and future climate. J Appl Meteorol Climatol 52(12):2699–2714

    Article  Google Scholar 

  • Hong Kong Observatory (2019). https://www.hko.gov.hk/ Last accessed Apr 2019

  • Hui YG (2000) The case in Hong Kong. Ageing Int 2000:47

    Article  Google Scholar 

  • Honjo T, Takakura T (1990) Simulation of thermal effects of urban green areas on their surrounding areas. Energy Build 15:443–446

    Article  Google Scholar 

  • Kikon N, Singh P, Singh SK, Vyas A (2016) Assessment of urban heat islands (UHI) of Noida city, India using multi-temporal satellite data. Sustain Cities Soc 22:19–28

    Article  Google Scholar 

  • Kubota T, Lee HS, Trihamdani AR, Phuong TTT, Tanaka T, Matsuo K (2017) Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: part 1. Cooling effects of proposed green strategies. Sustain Cities Soc 32:295–317

    Article  Google Scholar 

  • Lee T, Tong H, Chan H (2014) Climate projections for Hong Kong based on IPCC AR5. Hong Kong Observatory. WMO. http://www.wmo.int/pages/prog/wcp/ccl/ccl16/teco/documents/ppt/TECO-Presentations-PDF/02-07-2014/Session9/1200-1220/1-PostPresentation_ClimProj_tclee_HKO.pdf. Last accessed Apr 2019

  • Loikith PC, Waliser DE, Lee H, Neelin JD, Lintner BR, McGinnis SA, Mearns LO, Kim J (2015) Evaluation of large-scale meteorological patterns associated with temperature extremes in the NARCCAP regional climate model simulations. Clim Dyn 45:3257–3274

    Article  Google Scholar 

  • Loue S, Sajatovic M (eds) (2012) Encyclopedia of immigrant health. Springer, Berlin

    Google Scholar 

  • Lubchenco J (2011) National oceanic and atmospheric administration united states department of commerce: What is NOAA? http://www.legislative.noaa.gov/policybriefs/What%20is%20NOAA%202011%20-%20FINAL.pdf. Last accessed Apr 2019

  • Markert BA, Breure AM, Zechmeister HG (2003) Bioindicators and biomonitors, vol 6. Gulf Professional Publishing

    Google Scholar 

  • McCarthy M, Best M, Betts R, Hendry M (2009) Climate change, cities, and the urban heat island. In: AMS 21st conference on climate variability and change, Phoenix

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Meinshausen M, Raper SCB, Wigley TML (2011a) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos Chem Phys 11:1417–1456. https://doi.org/10.5194/acp-11-1417-2011

    Article  Google Scholar 

  • Meinshausen M, Wigley TML, Raper SCB (2011b) Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 2: applications. Atmos Chem Phys 11:1457–1471. https://doi.org/10.5194/acp-11-1457-2011

    Article  Google Scholar 

  • Mendelsohn R, Kurukulasuriya P, Basist A, Kogan F, Williams C (2007) Climate analysis with satellite versus weather station data. Clim Change 81:71–83

    Article  Google Scholar 

  • Nichol J, Hang TP, Ng E (2014) Temperature projection in a tropical city using remote sensing and dynamic modeling. Clim Dyn 42:2921–2929. https://doi.org/10.1007/s00382-013-1748-2

    Article  Google Scholar 

  • Nichol JE, Hang Pui HT (2012) Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS J Photogrammetry Remote Sens 74:153–162

    Article  Google Scholar 

  • Oleson K (2012) Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J Clim 25(5):1390–1412

    Article  Google Scholar 

  • Oke TR (1979) Review of urban climatology 1973–1976. World Meteorological Organization, Geneva

    Google Scholar 

  • Ongsomwang S, Dasananda S, Prasomsup W (2018) Spatio-temporal urban heat island phenomena assessment using LANDSAT imagery: a case study of Bangkok metropolitan and its vicinity, Thailand. Environ Nat Resour J 16(2):299–344

    Google Scholar 

  • Qiao Z, Tian T, Zhang L, Xu X (2014) Influences of urban expansion on urban heat island in Beijing during 1989–2010. Adv Meteorol 11

    Google Scholar 

  • Plocoste T, Jacoby-Koaly S, Molinié J, Petit RH (2014) Urban climate, vol 10, Part 4, pp 745–757. https://doi.org/10.1016/j.uclim.2014.03.007. Last accessed Apr 2019

  • Rajeshwari A, Mani ND (2014) Estimation of land surface temperature of Dindigul district using LANDSAT8 data. Int J Res Eng Technol 3(05):122–126

    Article  Google Scholar 

  • Rao PK (1972) Remote sensing of urban heat islands from an environmental satellite. Bull Am Meteorol Soc 53:647–648

    Google Scholar 

  • Roth M (2013) Urban heat islands. In: Fernando HJS (ed) Handbook of environmental fluid dynamics volume 2: systems, pollution, modeling, and measurements. Taylor and Francis Group, New York, pp 143–159

    Google Scholar 

  • Saito I (1990) Study of the effect of green areas on the thermal environment in an urban area. Energy Build 15:493–498

    Article  Google Scholar 

  • Santamouris M, Cartalis C, Synnefa A, Kolokotsa D (2015) On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—a review. Energy Build 98:119–124. https://doi.org/10.1016/j.enbuild.2014.09.052

    Article  Google Scholar 

  • Santer BD, Wigley TML (2010) Progress in detection and attribution research. In: Schneider SH et al (eds) Climate change science and policy. Island Press, pp 28–43

    Google Scholar 

  • Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) Developing climate scenarios from equilibrium GCM results. Max-Planck-Inst. für Meteorologie, Report no. 47

    Google Scholar 

  • Shashua-Bar L, Tzamir Y, Hoffman ME (2004) Thermal effects of building geometry and spacing on the urban canopy layer microclimate in a hot-humid climate in summer. Int J Climatol 24(13):1729–1742

    Article  Google Scholar 

  • Skokovic D, Sobrino JA, Jimenez-Muñoz JC, Soria G, Julien Y, Mattar C, Jordi C (2014) Calibration and validation of land surface temperature for LANDSAT8 TIRS sensor. Land product validation and evolution, ESA/ESRIN Frascati (Italy), pp 6–9

    Google Scholar 

  • Singh P, Kikon N, Verma P (2017) Impact of land use change and urbanization on urban heat islands in Lucknow city, central India: a remote sensing based estimate. Sustain Cities Soc 32:100–114

    Article  Google Scholar 

  • Sobrino JA, Raissouni N (2000) Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. Int J Remote Sens 21(2):353–366

    Article  Google Scholar 

  • Sobrino JA, Caselles V, Coll C (1993) Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C 16(3):219–236

    Article  Google Scholar 

  • Taha H (1999) Modifying a mesoscale meteorological model to better incorporate urban heat storage: a bulk-parameterization approach. J Appl Meteorol 38:466–473

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Vera L, Parra CJ, Morales L, Mattar C, Jorquera-Fontena E (2010) Comparative analysis of split-window algorithms for estimating soil temperature. RC Suelo Nutr Veg 10(1):35–39

    Google Scholar 

  • Voelkel J, Shandas V, Haggerty B (2016) Developing high-resolution descriptions of urban heat islands: a public health imperative. Prev Chronic Dis 13:160099. http://dx.doi.org/10.5888/pcd13.160099

  • Walawender JP, Szymanowski M, Hajto MJ, Bokwa A (2014) Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from landsat-7/ETM+ data. Pure Appl Geophys 171(6):913–940

    Google Scholar 

  • Wang M, Heb G, Zhang Z, Wang G, Wang Z, Yin R, Cuib S, Wub Z, Cao X (2018) A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data International. Int J Appl Earth Observations Geoinf 76:204–217

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483

    Article  Google Scholar 

  • WMO (2019) https://cpdb.wmo.int/hong-kong-china. Last accessed 8 Dec 2019

  • Wong JKW, Lau LS-K (2013) From the ‘urban heat island’ to the ‘green island’—a preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat Int 39:25–35

    Article  Google Scholar 

  • World Bank (2019) https://data.worldbank.org/indicator/SP.POP.TOTL?locations=HK. Last accessed 8 Dec 2019

  • Yan YY (2007) Surface wind characteristics and variability in Hong Kong. Royal Meterological Soc 62(11):312–316

    Google Scholar 

  • Yao L, Wanga L, Huang X, Zhanga W, Lid J, Niua Z (2018) Interannual variations in surface urban heat island intensity and associated drivers in China. J Environ Manage 222:86–94

    Article  Google Scholar 

  • Zhang J, Wang Y, Li Y (2006) A C++ program for retrieving land surface temperature from the data of LANDSAT TM/ETM + band6. Comput Geosci 32(10):1796–1805

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Climate Research Unit, University of East Anglia, Norwich, UK and the National Communications Support Program, UNDP/GEF, New York, USA for providing MAGICC/SCENGEN 5.3 code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Galdies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galdies, C., Lau, H.S. (2020). Urban Heat Island Effect, Extreme Temperatures and Climate Change: A Case Study of Hong Kong SAR. In: Leal Filho, W., Nagy, G., Borga, M., Chávez Muñoz, P., Magnuszewski, A. (eds) Climate Change, Hazards and Adaptation Options. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-37425-9_20

Download citation

Publish with us

Policies and ethics