Skip to main content
Log in

Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): an artificial neural network approach based on different combinations of meteorological data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Accurate prediction of the reference evapotranspiration (ET0) is vital for estimating the crop water requirements precisely. In this study, we developed multi-layer perceptron artificial neural network (MLP-ANN) models considering different combinations of the meteorological data for predicting the ET0 in the Beas-Sutlej basin of Himachal Pradesh (India). Four climatic locations in the basin namely, Kullu, Mandi, Bilaspur, and Chaba were selected. The meteorological dataset comprised air temperature (maximum, minimum and mean), relative humidity, solar radiation, and wind speed, recorded daily for a period of 35 years (1984–2019). The datasets from 1984 to 2012 and 2013 to 2019 were utilized for training and testing the models, respectively. The performance of the developed models was evaluated using several statistical indices. For each location, the best performed MLP-ANN model was the one with the complete combination of the meteorological data. The architecture of the best performing model for Kullu, Mandi, Bilaspur, and Chaba was (6–2-4–1), (6–5-4–1), (6–5-4–1), and (6–4-6–1), respectively. It was observed, however, that the performance of other models was also relatively good, given the limited meteorological data utilized in those models. Further, to appreciate the relative predictive ability of the developed models, a comparison was performed with four existing established empirical models. The approach adopted in this study can be effectively utilized by water users and field researchers for modelling and predicting ET0 in data-scarce locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Some data, models, or code used during the study are available from the first author and corresponding author by request.

References

  • Adamala, S., Raghuwanshi, N. S., Mishra, A., & Singh, R. (2019). Generalized wavelet neural networks for evapotranspiration modeling in India. ISH Journal of Hydraulic Engineering, 25(2), 119–131.

    Article  Google Scholar 

  • Adeloye, A. J., Rustum, R., & Kariyama, I. D. (2012). Neural computing modeling of the reference crop evapotranspiration. Environmental Modelling & Software, 29(1), 61–73.

    Article  Google Scholar 

  • Adisa, O. M., Botai, J. O., Adeola, A. M., Hassen, A., Botai, C. M., Darkey, D., & Tesfamariam, E. (2019). Application of artificial neural network for predicting maize production in South Africa. Sustain, 11, 1–17. https://doi.org/10.3390/su11041145

  • Akcayol, M. A., & Cinar, C. (2005). Artificial neural network based modeling of heated catalytic converter performance. Applied Thermal Engineering, 25, 2341–2350. https://doi.org/10.1016/j.applthermaleng.2004.12.014

    Article  CAS  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations56(97), e156.

  • Almorox, J., & Grieser, J. (2015). Calibration of the Hargreaves-Samani method for the calculation of reference evapotranspiration in different Köppen climate classes. Hydrology Research, 47(2), 521–531.

    Article  Google Scholar 

  • Antonopoulos, V. Z., & Antonopoulos, A. V. (2017). Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Computers and Electronics in Agriculture, 132, 86–96.

    Article  Google Scholar 

  • Chia, M. Y., Huang, Y. F., Koo, C. H., & Fung, K. F. (2020). Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—A review. Agronomy, 10(1), 101.

    Article  Google Scholar 

  • Dold, C., Heitman, J., Giese, G., Howard, A., Havlin, J., & Sauer, T. (2019). Upscaling evapotranspiration with parsimonious models in a North Carolina Vineyard. Agronomy, 9(3), 152.

    Article  Google Scholar 

  • Elbeltagi, A., Deng, J., Wang, K., & Hong, Y. (2020a). Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt. Agricultural Water Management, 235, 106080. https://doi.org/10.1016/j.agwat.2020.106080

  • Elbeltagi, A., Deng, J., Wang, K., Malik, A., & Maroufpoor, S. (2020b). Modeling long-term dynamics of cropevapotranspiration using deep learning in a semi-arid environment. Agricultural Water Management, 241, 106334. https://doi.org/10.1016/j.agwat.2020.106334

    Article  Google Scholar 

  • Elbeltagi, A., Zhang, L., Deng, J., Juma, A., & Wang, K. (2020c). Modeling monthly crop coefficients of maize basedon limited meteorological data: A case study in Nile Delta, Egypt. Computers and Electronics in Agriculture, 173, 105368. https://doi.org/10.1016/j.compag.2020.105368

  • Elbeltagi, A., Rizwan, M., Malik, A., Mehdinejadiani, B., Srivastava, A., Singh, A., & Deng, J. (2020d). The impact of climate changes on the water footprint of wheat and maize production in the Nile Delta, Egypt. The Science of the Total Environment, 743, 140770. https://doi.org/10.1016/j.scitotenv.2020.140770

  • Elbeltagi, A., Rizwan, M., Mokhtar, A., Deb, P., Abdullahi, G., Kushwaha, N. L., Peroni, L., Malik, A., Kumar, N., & Deng, J. (2020e). Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. Journal of Hydrology, 125662. https://doi.org/10.1016/j.jhydrol.2020.125662

  • Falamarzi, Y., Palizdan, N., Feng, Y., & Shui, T. (2014). Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks ( WNNs ). Agricultural Water Management, 140, 26–36. https://doi.org/10.1016/j.agwat.2014.03.014

    Article  Google Scholar 

  • Fan, J., Wu, L., Zhang, F., Cai, H., Ma, X., & Bai, H. (2019). Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China. Renewable and Sustainable Energy Reviews, 105, 168–186.

    Article  Google Scholar 

  • Fan, J., Wu, L., Zhang, F., Xiang, Y., & Zheng, J. (2016). Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. Journal of Hydrology, 542, 923–937.

    Article  Google Scholar 

  • Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71–78.

    Article  Google Scholar 

  • Ferreira, L. B., da Cunha, F. F., de Oliveira, R. A., & Fernandes Filho, E. I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of Hydrology, 572, 556–570.

    Article  Google Scholar 

  • Jamshidi, S., Zand-Parsa, S., Kamgar-Haghighi, A. A., Shahsavar, A. R., & Niyogi, D. (2020). Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agricultural Water Management227, 105838.

  • Khosravi, K., Mao, L., Kisi, O., Yaseen, Z. M., & Shahid, S. (2018). Quantifying hourly suspended sediment load using datamining models: Case study of a glacierized Andean catchment in Chile. Journal of Hydrology, 567, 165–179.

    Article  Google Scholar 

  • Kisi, O. (2008). The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes: An International Journal, 22(14), 2449–2460.

    Article  Google Scholar 

  • Kose, E. (2008). Modelling of colour perception of different age groups using artificial neural networks. Expert Systems with Applications, 34, 2129–2139. https://doi.org/10.1016/j.eswa.2007.02.036

    Article  Google Scholar 

  • Kumar, M., Raghuwanshi, N. S., & Singh, R. (2011). Artificial neural networks approach in evapotranspiration modeling: A review. Irrigation Science, 29(1), 11–25.

    Article  Google Scholar 

  • Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W., & Pruitt, W. O. (2002). Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering, 128(4), 224–233.

    Article  Google Scholar 

  • Kumar, N., Adeloye, A. J., Shankar, V., & Rustum, R. (2020). Neural computing modelling of the crop water stress index. Agricultural Water Management, 239, 106259.

  • Kumar, R., Jat, M. K., & Shankar, V. (2012). Methods to estimate irrigated reference crop evapotranspiration–a review. Water Science and Technology, 66(3), 525–535.

    Article  CAS  Google Scholar 

  • Luo, Y., Traore, S., Lyu, X., Wang, W., Wang, Y., Xie, Y., Jiao, X., & Fipps, G. (2015). Medium range daily reference evapotranspiration forecasting by using ANN and public weather forecasts. Water Resources Management, 29(10), 3863–3876.

    Article  Google Scholar 

  • Naganna, S. R., Deka, P. C., Ghorbani, M. A., Biazar, S. M., Al-Ansari, N., & Yaseen, Z. M. (2019). Dew point temperature estimation: Application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water, 11(4), 742.

    Article  Google Scholar 

  • Nandagiri, L., & Kovoor, G. M. (2006). Performance evaluation of reference evapotranspiration equations across a range of Indian climates. Journal of Irrigation and Drainage Engineering, 132(3), 238–249.

    Article  Google Scholar 

  • Nema, M. K., Khare, D., & Chandniha, S. K. (2017). Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7, 3903–3910. https://doi.org/10.1007/s13201-017-0543-3

    Article  Google Scholar 

  • Poddar, A., Gupta, P., Kumar, N., Shankar, V., & Ojha, C. S. P. (2018). Evaluation of reference evapotranspiration methods and sensitivity analysis of climatic parameters for sub-humid sub-tropical locations in western Himalayas (India). ISH Journal of Hydraulic Engineering, 1–11. https://doi.org/10.1080/09715010.2018.1551731

  • Sentelhas, P. C., Gillespie, T. J., & Santos, E. A. (2010). Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario Canada. Agricultural Water Management, 97(5), 635-644.

  • Shankar, V., Ojha, C. S. P., Govindaraju, R. S., Prasad, K. H., Adebayo, A.J., Madramoottoo, C. A.,… Singh, K. K. (2017). Optimal use of irrigation water. In C. S. P. Ojha, Y. R. Surampalli, & A. Bardossy (Eds.), Sustainable water resources management (pp. 737–795). Reston, VA: American Society of Civil Engineers.

  • Sudheer, K. P., Gosain, A. K., & Ramasastri, K. S. (2003). Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering, 129(3), 214–218.

    Article  Google Scholar 

  • Tabari, H. (2010). Evaluation of reference crop evapotranspiration equations in various climates. Water resources management, 24(10), 2311-2337.

  • Tabari, H., Grismer, M. E., & Trajkovic, S. (2013). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 31(2), 107–117.

    Article  Google Scholar 

  • Trajkovic, S., & Kolakovic, S. (2009). Evaluation of reference evapotranspiration equations under humid conditions. Water Resources Management, 23(14), 3057–3067.

    Article  Google Scholar 

  • Traore, S., Wang, Y. M., & Kerh, T. (2010). Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agricultural Water Management, 97, 707–714. https://doi.org/10.1016/j.agwat.2010.01.002

    Article  Google Scholar 

  • Yassin, M. A., Alazba, A. A., & Mattar, M. A. (2016). Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, 163, 110–124.

    Article  Google Scholar 

Download references

Funding

The work was supported by National Institute of Technology Hamirpur (India), Shoolini University (India), and Mansoura University (Egypt).

Author information

Authors and Affiliations

Authors

Contributions

Navsal Kumar and Ahmed Elbeltagi conceived the idea of the paper. Ahmed Elbeltagi and Chaitanya B. Pande performed the modelling simulations. Ahmed Elbeltagi compiled the results. Navsal Kumar, Ahmed Elbeltagi and Abhishish Chandel drafted the original manuscript. Abu Reza Md. Towfiqul Islam and Ahmed Awad reviewed the manuscript. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Navsal Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbeltagi, A., Kumar, N., Chandel, A. et al. Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): an artificial neural network approach based on different combinations of meteorological data. Environ Monit Assess 194, 141 (2022). https://doi.org/10.1007/s10661-022-09812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09812-0

Keywords

Navigation