Skip to main content

Integral Transforms and Special Functions

  • Chapter
  • First Online:
An Introduction to Anomalous Diffusion and Relaxation

Part of the book series: PoliTO Springer Series ((PTSS))

  • 543 Accesses

Abstract

This chapter provides the essential mathematical tools to be used in the subsequent chapters, and is intended to make the book as self-contained as possible. The first part of the chapter is dedicated to review some useful properties of the integral transforms of Fourier and Laplace, illustrating their applicability with a few examples of physical problems. The second part of the chapter reviews some basic properties of the gamma and related functions. In connection with these special functions, we introduce the definition of the mathematical Mellin transform, with a short discussion on the Mellin-Barnes integral representation, to be used later on to face the problems of fractional diffusion. The last part of the chapter is dedicated to a concise introduction to some special functions of the fractional calculus, like the Mittag-Leffler function, with its generalizations, the Wright function, the Meijer \({\text {G}}\)–function, and the \({\text {H}}-\)function of Fox .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B.J. Fourier, Théorie analytique de la chaleur (Didot, Paris, 1822), p. 525

    Google Scholar 

  2. T. Myint-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers, 4th edn (Birkhäuser, Boston, 2007)

    Google Scholar 

  3. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 1 (McGraw-Hill, New York, 1953)

    Google Scholar 

  4. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fractional Calc. Appl. Anal. 4, 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  5. E. Butkov, Mathematical Physics (Addison-Wesley, Boston, 1968)

    MATH  Google Scholar 

  6. I.S. Sokolnikoff, R.M. Redheffer, Mathematics of Physics and Modern Engineering (McGraw-Hill, New York, 1958)

    Book  MATH  Google Scholar 

  7. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  8. J. Lützen, Joseph Liouville’s contribution to the theory of integral equations. Historia Mathematica 9, 373–391 (1982)

    Article  MathSciNet  Google Scholar 

  9. R.V. Churchill, Complex Variables and Applications (McGraw-Hill, New York, 1960)

    MATH  Google Scholar 

  10. M. Godefroy, La fonction Gamma: Théorie, Histoire, Bibliographie (Gauthier-Villars, Paris, 1901)

    MATH  Google Scholar 

  11. P. Sebah, X. Gourdon, Introduction to the Gamma Function. http://numbers.computation.free.fr/Constants/Constants.html

  12. Lettre III. Euler à Goldbach. See, e.g., www.eulerarchive.maa.org (00717)

  13. Lettre I. Euler à Goldbach. See, e.g., www.eulerarchive.maa.org (00715)

  14. C.F. Gauss, Disquisitiones generalem circa seriam infinitam.... Werke, vol. 3 (Königlichen Gesellschaft der Wissenschaften, Gottingen, 1866-1933), pp. 123–162

    Google Scholar 

  15. A.M. Legendre, Mémoires de la classe des sciences mathématiques et physiques de l’Institute de France (Paris, 1809), pp. 477, 485, 490

    Google Scholar 

  16. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964)

    MATH  Google Scholar 

  17. G. Nemes, New asymptotic expansion for the gamma function. Archiv der Mathematik 95, 161–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. E.E. Kummer, Über die hypergeometrische Reihe \(F(a;b;x)\). J. reine angew. Math. 15, 39–83 (1836)

    MathSciNet  Google Scholar 

  19. F.G. Tricomi, Fonctions Hypergéométriques Confluentes (Gauthier-Villars, Paris, 1960)

    Google Scholar 

  20. H. Buchholz,The Confluent Hypergeometric Function with Special Emphasis on its Applications (Springer-Verlag, New York, 1969)

    Google Scholar 

  21. J. Binet, Mémoire sur les intégrales définies Eulériennes et sur leur application à la théorie des suites; ainsi qu’à l’évaluation des fonctions des grands nombres. Journal de l’École polytechnique 16, 123–343 (1839)

    Google Scholar 

  22. M. Evans, N. Hastings, B. Peacock, Statistical Distributions, 3rd edn (Wiley, New York, 2000). (Chap. 5)

    Google Scholar 

  23. H.M. Edwards, Riemann’s Zeta Function (Academic Press, New York, 1974)

    Google Scholar 

  24. S.J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  25. J. Bertrand, P. Bertrand, J. Ovarlez, The Mellin Transform in The Transforms and Applications Handbook, 2nd edn, ed. by A.D. Poularikas (CRC Press, Boca Raton, 2000)

    Google Scholar 

  26. B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebener Grösse, Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass’, herausgegeben under Mitwirkung von Richard Dedekind, von Heinrich Weber (B. G. Teubner, Leipzig, 1892), pp. 145–153

    Google Scholar 

  27. E. Cahen, Sur la fonction \(\zeta\, (s)\) de Riemann et sur des fonctions analogues Annales scientifiques de l’École Normale Supérieure 11, 75–164 (1894)

    Google Scholar 

  28. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon Press, Oxford, 1975)

    Google Scholar 

  29. G. Fikioris, Mellin Transform Method for Integral Evaluation-Introduction and Applications to Electromagnetics (Morgan & Claypool, San Rafael, 2007)

    Book  Google Scholar 

  30. L.R. Evangelista, E.K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge University Press, Cambridge, 2018)

    Book  MATH  Google Scholar 

  31. E.C. de Oliveira, F. Mainardi, J. Vaz, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Euro. Phys. J. Spec. Top. 193, 161–171 (2011)

    Article  Google Scholar 

  32. F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial review. Fractional Calc. Appl. Anal. 10, 269–308 (2007)

    MathSciNet  MATH  Google Scholar 

  33. H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 1–51 (2011), ID 298628

    Google Scholar 

  34. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions: Related Topics and Applications (Springer-Verlag, Berlin, 2014)

    MATH  Google Scholar 

  35. G.M. Mittag-Leffler, Sur l’intégrale de Laplace-Abel. Comptes Rendus Acad. Sci. Paris 136, 937–939 (1902)

    MATH  Google Scholar 

  36. G.M. Mittag-Leffler, Une généralisation de l’intégrale de Laplace-Abel. Comptes Rendus Acad. Sci. Paris 137, 537–539 (1903)

    MATH  Google Scholar 

  37. G.M. Mittag-Leffler, Sur la nouvelle fonction \({\rm E }_{\alpha }(x)\). Comptes Rendus Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  38. G.M. Mittag-Leffler, Sopra la funzione \({\rm E }_{\alpha }(x)\). Rend. Acc. Lincei 13, 3–5 (1904)

    MATH  Google Scholar 

  39. G.M. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une fonction monogène. Acta Mathematica 29, 101–181 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Wiman, Über den fundamentalsatz in der teorie der funktion \({\rm E }_{\alpha }(x)\). Acta Math. 29, 191–201 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Wiman, Über die nulstellen der funktion \({\rm E }_{\alpha }(x)\). Acta Math. 29, 217–234 (1905)

    Article  MathSciNet  Google Scholar 

  42. R. P. Agarwal, A propos d’une note de M. Pierre Humbert, Comptes Rendus Acad. Sci. Paris 236, 2031–2032 (1953)

    Google Scholar 

  43. P. Humbert, Quelques résultats relatifs à la fonction de Mittag-Leffler. Comptes Rendus Acad. Sci. Paris 236, 1467–1468 (1953)

    MathSciNet  MATH  Google Scholar 

  44. P. Humbert, R.P. Agarwal, Sur la fonction de Mittag-Leffleret quelques-unes de ses généralisations. Bull. Sci. Math. 77(2), 180–185 (1953)

    MathSciNet  MATH  Google Scholar 

  45. M.M. Dzherbashyan, Integral Transform Representations of Functions in the Complex Domain (Nauka, Moscow, 1966)

    Google Scholar 

  46. A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi Higher Transcendental Functions, vol. 1–3 (McGraw-Hill, New York, 1953)

    Google Scholar 

  47. R.K. Saxena, A.M. Mathai, H.J. Haubold, On fractional kinetic equations. Astrophys. Space Sci. 282, 281–287 (2002)

    Article  Google Scholar 

  48. T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  49. A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  50. E.M. Wright, On the coefficients of power series having essential singularities. J. London Math. Soc. 8, 71–80 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  51. E.M. Wright, The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. 38, 257–270 (1934)

    MathSciNet  MATH  Google Scholar 

  52. E.M. Wright, The generalized Bessel function of order greater than one. Quart. J. Math. Oxford Ser. 11, 36–48 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Gorenflo, Y. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, 383–414 (1999)

    MathSciNet  MATH  Google Scholar 

  54. G. Pagnini and E. Scalas, Historical notes on the M-Wright/Mainardi function. Comm. Appl. Ind. Math. 6/1, e-495 (2015)

    Google Scholar 

  55. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models (Imperial College Press, London, 2010)

    Book  MATH  Google Scholar 

  56. R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comp. Appl. Math. 118, 175–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. C. Fox, The \(G\) and \(H\) functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc. 98, 395–429 (1961)

    MathSciNet  MATH  Google Scholar 

  58. A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function: Theory and Applications (Springer, Heidelberg, 2009)

    MATH  Google Scholar 

  59. R.K. Saxena, In Memorium of Charles Fox. Fractional Calculus and Applied Mathematics 12, 337–344 (2009)

    MathSciNet  MATH  Google Scholar 

  60. C. S. Meijer, Über Whittakersche bzw. Besselsche Funktionen und deren Produkte (in German), Nieuw Arch. Wiskunde 18, 10–39 (1936)

    Google Scholar 

  61. I.S. Gradshtein, I.M. Ryzhik, Table of Integrals, Series, and Products, 6th edn (Academic Press, San Diego, 2000)

    Google Scholar 

  62. Y.L. Luke, The Special Functions and their Approximations (Academic Press, New York, 1969)

    MATH  Google Scholar 

  63. A.M. Mathai, A Handbook of Generalized Special Functions for Statistical and Physical Sciences (Oxford University Press, New York, 1993)

    MATH  Google Scholar 

  64. A.P. Prudnikov, O.I. Marichev, Y.A. Brychkov, Integrals and Series (Gordon & Breach, New Jersey, 1986–1992)

    Google Scholar 

  65. A. Pishkoo, M. Darus, Translation, creation ad annihilation of poles and zeros with the Biernacki and Ruscheweyh operators acting on Meijer’s G-functions. Chin. J. Math. (2014). Article ID716718

    Google Scholar 

  66. V. Kiriyakova, Generalized Fractional Calculus and Applications (Longman, Harlow, 1994)

    Google Scholar 

  67. B.L.J. Braaksma, Asymptotic expansions and analytical continuations for a class of Barnes-integrals. Compositio Math. 15, 239–341 (1962–1963)

    Google Scholar 

  68. W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  69. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Roberto Evangelista .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evangelista, L.R., Lenzi, E.K. (2023). Integral Transforms and Special Functions. In: An Introduction to Anomalous Diffusion and Relaxation. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-031-18150-4_1

Download citation

Publish with us

Policies and ethics