Skip to main content

Biologics in Craniofacial Reconstruction: Morphogens and Stem Cells

  • Chapter
  • First Online:
The Embryologic Basis of Craniofacial Structure
  • 480 Accesses

Abstract

Bioengineering of bone represents a rapidly evolving frontier of craniofacial reconstruction. The combination of powerful morphogens, scaffolds, templates, and mesenchymal cells capable of assuming an osteogenic fate can produce a biomaterial which can induce its own blood supply and thereby escape the constraints of vascularized bone flaps. This chapter describes selected aspects of this field from a perspective derived from early work with recombinant human bone morphogenetic protein-2 and connecting forward to autologous adipose-derived mesenchymal cells. This discussion is designed to serve as a springboard for further innovation by readers with an interest in stem cell biology and tissue engineering. The learning objective is to unleash your own imagination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carstens MH, Gomez AF, Cortes R, Turner E, Perez C, Ocon M, Correa D. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res. 2017;18:14–21.

    Article  PubMed  Google Scholar 

  2. Carstens MH, Chin M. Regeneration of 10 cm mandibular defect in pig using recombinant human bone morphogenetic protein-2 and Helistat® absorbable collagen sponge. J Craniofac Surg. 2005;16(6):1033–42.

    Article  PubMed  Google Scholar 

  3. Chen B, Lin H, Wang J, Zhao Y, Wang B, Zhao W, Sun W, Dai J. Homogenous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials. 2007;28:1027–35.

    Article  CAS  PubMed  Google Scholar 

  4. Leindeckel S, Jodicke A, Heidinger K, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread calvarial defects: case report. J Craniomaxillofac Surg. 2004;32:370–3.

    Article  Google Scholar 

  5. Warnke PH, Springer IN, Witfang J, et al. Growth and transplantation of a custom vascularized bone graft in a man. Lancet. 2004;364:766–70.

    Article  CAS  PubMed  Google Scholar 

  6. Markus AF, Delaire J, Smith WP. Facial balance in cleft lip and palate. I. Normal development and cleft palate. Br J Oral Maxillofac Surg. 1992;30:290.

    Google Scholar 

  7. Bura A, Planat-Benard V, Bourin P, Silvestre J-S, Gross F, Grolleau J-L, Saint-Lebese B, Peyrafitte J-A, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16:245–57.

    Article  CAS  PubMed  Google Scholar 

  8. Walker JC Jr, Collito MB, Mancuso-Ungaro A, Meijer R. Physiologic considerations in cleft lip closure. The C-W technique. Plast Reconstr Surg. 1966;37:552

    Google Scholar 

  9. Bardach J, Kelly KM. The influence of lip repair with and without soft tissue undermining on facial growth in beagles. Plast Reconstr Surg. 1988;82:747.

    Article  CAS  PubMed  Google Scholar 

  10. Leipziger LS, Schnapp DS, Haworth RD, et al. Facial growth after timed soft-tissue undermining. Plast Reconstr Surg. 1992;89:809.

    Article  CAS  PubMed  Google Scholar 

  11. Ross RB. Treatment variable affecting facial growth in unilateral cleft lip and palate: 3. Alveolus repair and bone grafting. Cleft Palate J. 1987;24:33.

    Google Scholar 

  12. Bishara SE, Jakobsen JR, Krause JC, Sos-Martinez R. Cephalometric comparisons of individuals from India and Mexico with unoperated cleft lip and palate. Cleft Palate J. 1986;23:116.

    CAS  PubMed  Google Scholar 

  13. Ortiz-Monasterio F, Rebeil AF, Valderrama M, Cruz R. Cephalometric measurements on adult patients with non-operated cleft palates. Plast Reconstr Surg. 1959;24:53.

    Article  CAS  Google Scholar 

  14. Ortiz-Monasterio F, Serrano A, Barrera G, RodriguezHoffman H. A study of untreated adult cleft palate patients. Plast Reconstr Surg. 1966;38:36.

    Article  CAS  PubMed  Google Scholar 

  15. Kapucu MR, Guler Gursu K, Enacar A, Aras S. Effect of cleft lip repair on maxillary morphology in patients with unilateral complete cleft lip and palate. Plast Reconstr Surg. 1996;97:1371.

    Article  CAS  PubMed  Google Scholar 

  16. Siebert JW, Angrigiani C, McCarthy JG, Longaker MT. Blood supply of the LeFort I maxillary segment: an anatomic study. Plast Reconstr Surg. 1997;100:8434.

    Article  Google Scholar 

  17. De Lacure MD. Physiology of bone healing and bone grafts. Otolaryngol Clin N Am. 1994;27:859.

    Article  Google Scholar 

  18. Muir IFK. Repair of the cleft alveolus. Br J Plast Surg. 1966;19:30.

    Article  CAS  PubMed  Google Scholar 

  19. Backdahl M, Nordin KE. Replacement of the maxillary bone defect in cleft palate. A new procedure. Acta Chir Scand. 1961;122:131.

    CAS  PubMed  Google Scholar 

  20. Johnsson G, Stenstrom S, Thilander B. The use of a vomer flap covered by an autogenous skin graft as part of the palatal repair in children with unilateral cleft lip and palate. Arch dimensions and occlusions up to the age of five. Scand J Plast Reconstr Surg. 1980;14:13.

    Google Scholar 

  21. Ritsala V, Alhuporo S, Gylling U, Rintala A. The use of free periosteum for bone formation in congenital clefts of the maxilla. Scand J Plast Reconstr Surg. 1972;6:57.

    Google Scholar 

  22. El Deeb ME, Hinrichs JE, Waite DE, et al. Repair of alveolar cleft defects with autogenous bone grafting. Periodontal evaluation. Cleft Palate J. 1986;23:126.

    Google Scholar 

  23. Vanarsdell RL, Corn H. Soft tissue management of labially positioned unerupted teeth. Am J Orthod. 1977;72:53.

    Article  Google Scholar 

  24. Steedle SR, Profitt WR. The pattern and control of eruptive tooth movements. Am J Orthod. 1985;87:56.

    Article  CAS  PubMed  Google Scholar 

  25. Wolfe SA, Price GW, Stuzin JM, Berkowitz S. Alveolar and anterior palatal clefts. In: McCarthy JG, Wood RJ, Grayson BH, Cutting CB, editors. Gingivoperiosteoplasty and midfacial growth, vol. 34. New York: Springer; 1997. p. 17.

    Google Scholar 

  26. Rintala AE, Ranta R. Periosteal flaps and grafts in primary cleft repair: a follow up study. Plast Reconstr Surg. 1989;83:17.

    Article  CAS  PubMed  Google Scholar 

  27. Šmahel Z, Mullerova Z. Effects of primary periosteoplasty on facial growth in unilateral lip and palate: a 10-year follow-up. Cleft Palate J. 1988;25(4):356–61.

    PubMed  Google Scholar 

  28. Šmahel Z, Mullerova Z. Facial growth in unilateral cleft lip and palate prior to the eruption of permanent incisors after primary bone grafting and periosteoplasty. Acta Chir Plast. 1996;38(1):30–6.

    PubMed  Google Scholar 

  29. Cohen M, Polley JW, Figueroa AA. Secondary (intermediate) alveolar bone grafting. Clin Plast Surg. 1993;20:691.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen SR, Figueroa AA, Aduss H. The role of gingival mucoperiosteal flaps in the repair of alveolar clefts. Plast Reconstr Surg. 1989;83:812.

    Article  CAS  PubMed  Google Scholar 

  31. Cohen SR, Kalinowski J, LaRossa D, Randall P. Cleft palate fistula: a multivariate statistical analysis of prevalence, etiology, and surgical management. Plast Reconstr Surg. 1991;87:1041.

    Article  CAS  PubMed  Google Scholar 

  32. Brusati R, Mannucci N. The early gingivoalveoloplasty. Preliminary results. Scand J Plast Reconstr Surg Hand Surg. 1992;26:65.

    Article  CAS  PubMed  Google Scholar 

  33. Dixit UB, Kelly KM, Squier MA, Bardach J. Periosteum in regeneration of palatal defects. Cleft Palate J. 1995;32:228.

    Article  CAS  Google Scholar 

  34. Massei A. Reconstruction of the cleft maxilla with periosteoplasty. Scand J Plast Reconstr. 1986;20(1):41–4.

    Article  CAS  Google Scholar 

  35. Santoni-Rugiu P. Periosteal flaps and grafts in primary cleft repair; a follow-up study. Plast Reconstr Surg. 1989;83:23.

    Article  Google Scholar 

  36. Friede H, Johansen B. A follow-up study of cleft children treated with primary bone grafting. Scand J Plast Reconstr Surg. 1974;8:88.

    CAS  PubMed  Google Scholar 

  37. Lehman JA, Curtin P, Haas DG. Closure of anterior palatal fistulae. Cleft Palate J. 1978;15:33.

    PubMed  Google Scholar 

  38. Lehman JA, Douglans BK, Ho WC, Husami TW. One-stage closure of the entire primary palate. Plast Reconstr Surg. 1990;86:675.

    Article  PubMed  Google Scholar 

  39. Badran HA, Maher H, El Barbary A. Experience with the use of primary periosteoplasty in the repair of alveolar clefts. Presented at the PSEF international symposium on surgical techniques in cleft lip and palate: long-term results. San Francisco, CA. September 19, 1997

    Google Scholar 

  40. Dado DV, Kerhahan DA. Anatomy of the orbicularis oris muscle in incomplete unilateral cleft lip based on histological examination. Ann Plast Surg. 1984;15:90.

    Article  Google Scholar 

  41. Fara M. Anatomy and arteriography of cleft lips in still-born children. Plast Reconstr Surg. 1968;42:29.

    Article  CAS  PubMed  Google Scholar 

  42. Kernahan DA, Dado DV, Bauer BS. Functional cleft lip repair: a sequential, layered closure with orbicularis muscle realignment. Plast Reconstr Surg. 1983;72:459.

    Article  CAS  PubMed  Google Scholar 

  43. Kernahan DA, Dado DV, Bauer BS. The anatomy of the orbicularis oris muscle in unilateral cleft lip based on a threedimensional histologic reconstruction. Plast Reconstr Surg. 1984;73:875.

    Article  CAS  PubMed  Google Scholar 

  44. Delaire J, Precious DS. Influence of the nasal septum on maxillo-nasal growth in patients with congenital labiomaxillary cleft. Cleft Palate J. 1986;23:270.

    CAS  PubMed  Google Scholar 

  45. Delaire J. Theoretical principles and technique of functional closure of the lip and nasal aperture. J Maxillofac Surg. 1978;6:109.

    Article  CAS  PubMed  Google Scholar 

  46. Precious DA, Delaire J. Surgical considerations in patients with cleft deformities. In: Bell WH, editor. Modern practice in orthognathic and reconstructive surgery. Philadelphia: Saunders; 1992. p. 390–425.

    Google Scholar 

  47. Wang Y-C, Liao Y-F, Chen PKT. Comparative outcomes of primary gingivoperiosteoplasty and secondary alveolar bone grafting in patients with unilateral cleft lip and palate. Plast Reconstr Surg. 2016;137:a218–27.

    Article  Google Scholar 

  48. Bergland O, Semb G, Abyholm FE. Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment. Cleft Palate J. 1986;23:175.

    CAS  PubMed  Google Scholar 

  49. Moss ML, Vilman H, Das Gupta G, Salak R. Craniofacial growth in space-time. In: Carlson BR, editor. Craniofacial biology. Ann Arbor: University of Michigan; 1981.

    Google Scholar 

  50. Opitz JM. Errors of morphogenesis and developmental field theory. Am J Med Genet. 1998;76:291–6.

    Article  PubMed  Google Scholar 

  51. Chin M, Boyne P, et al. Distraction osteogenesis with bone morphogenetic protein enhancement in the extension of edentulous bone. In: Proceedings of the 3rd international congress on cranial and facial distraction processes, Paris, France, 2001, pp. 19–22.

    Google Scholar 

  52. Gilbert SF. Developmental biology. 11th ed. Sunderland: Sinauer; 2016.

    Google Scholar 

  53. Carstens MH. Functional matrix cleft repair: principles and techniques. Clin Plast Surg. 2004a;31:159–89.

    Article  PubMed  Google Scholar 

  54. Morriss-Kay GM. Derivation of the mammalian skull vault. Development. 2001;199:143–51.

    CAS  Google Scholar 

  55. Barghusen HR, Hopson JA. The endoskeleton: comparative anatomy of the skull and visceral skeleton. In: Wake MH, editor. Hyman’s comparative vertebrate anatomy. 3rd ed. Chicago: University of Chicago; 1979.

    Google Scholar 

  56. Yasui N, Sato M, Ochi T, et al. Three modes of ossification during distraction osteogenesis in the rat. J Bone Jt Surg. 1997;79B:824–30.

    Article  Google Scholar 

  57. Liem KF, Tremmal C, Roelink H, et al. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell. 1995;82:969–79.

    Article  CAS  PubMed  Google Scholar 

  58. Le Douarin NM, Kalcheim C. The neural crest. 2nd ed. Cambridge: Cambridge University Press; 1999.

    Book  Google Scholar 

  59. Maschoff KL, Baldwin HS. Molecular determinants of neural crest migration. Am J Med Genet. 2000;97:280–2888.

    Article  Google Scholar 

  60. Boyne PJ. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontic Restorative Dent. 1997;17:11–25.

    CAS  Google Scholar 

  61. Boyne PJ. Animal studies of application of rhBMP-2 in maxillofacial reconstruction. Bone. 1996;19(Suppl):83S–92S.

    Article  CAS  PubMed  Google Scholar 

  62. Boyne PJ. Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. J Bone Jt Surg. 2001;83A(Suppl 1):S146–50.

    Google Scholar 

  63. Boyne PJ, Nath R, Nakamura A. Human recombinant BMP-2 in osseous reconstruction of simulated cleft palate defects. Br J Oral Maxillofac Surg. 1998;36:84–90.

    Article  CAS  PubMed  Google Scholar 

  64. Valentin-Opran WJ, Wozney J, Csiima C, Lilly L, Reidel GE. Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop Relat Res. 2002;395:110–20.

    Article  Google Scholar 

  65. Majumdar MK, Wang E, Moris EA. BMP-2 and PMP-9 promote chondrogenic differentiation of human multipotential mesenchymal cells and overcome the inhibitory effect of IL-1. J Cell Physiol. 2001;189:275–84.

    Article  CAS  PubMed  Google Scholar 

  66. zur Nieden NI, Kempka G, Rancourt DE, Ahr H-J. Induction of chondro-, osteo-, and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol. 2005;5:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Seeherman H, Wozney J, Li R. Bone morphogenetic protein delivery systems. Spine. 2002;27(165):516–23.

    Google Scholar 

  68. Chang SC, Wei FC, Chuang H, et al. Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration. Plast Reconstr Surg. 2003;112:141–50.

    Article  Google Scholar 

  69. Toriumi D. Mandibular reconstruction with a recombinant bone morphogenetic protein (rhBMP-2). Arch Otolaryngol Head Neck Surg. 1991;117:1101–12.

    Article  CAS  PubMed  Google Scholar 

  70. Sciadini MF, Johnson KD. Evaluation of rhBMP-2 as a bone-graft substitute in a canine segmental model. J Orthop Res. 2000;18:289–302.

    Article  CAS  PubMed  Google Scholar 

  71. Ebara S, Nakayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activities. Spine. 2002;27(16S):S10–5.

    Article  PubMed  Google Scholar 

  72. Noden DM. Interactions and fates of avian craniofacial mesenchyme. Development. 1988;103(Suppl):121–40.

    Article  PubMed  Google Scholar 

  73. Muller F, O’Rahilly R. Segmentation in staged human embryos: the occipitocervical region revisited. J Anat. 2003;203:297–315.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Conlon RA. Retinoic acid and pattern formation in vertebrates. Trends Genet. 1995;11:314–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ruberte J, Carretero A, Navarro M, et al. Morphogenesis of blood vessels in the head muscles of avian embryos: spatial, temporal, and VEGF expression analysis. Dev Dyn. 2003;227:470–83.

    Article  CAS  PubMed  Google Scholar 

  76. Irianov YM. Peculiarities of angiogenesis in distraction regenerates. Genji Oropedii. 1996;2:132.

    Google Scholar 

  77. Samchukov ML, Cherkashin AM, Cope JB. Distraction osteogenesis: origins and evolution. In: McNamara Jr JA, Trotman CA, editors. Distraction osteogenesis and tissue Eng. Ann Arbor: University of Michigan; 1998. p. 32.

    Google Scholar 

  78. Samchukov ML, Cope JB, Cherkashin AM, editors. Craniofacial distraction osteogenesis. CV Mosby: St. Louis; 2001.

    Google Scholar 

  79. Sawaki Y, Heggie ACC. The vascular change during and after mandibular distraction. In: Diner PA, Vasquez MP, editors. 2nd International congress on cranial and facial bone distraction processes. Paris: Monduzzi Editore; 1999.

    Google Scholar 

  80. Jones DB, Nolte H, Scholobbers JG. Biomechanical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials. 1991;12(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  81. Harter LV, Hruska KA, Duncan RL. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology. 1995;136:528–35.

    Article  CAS  PubMed  Google Scholar 

  82. Ishidou Y, Katajima I, Obama H. Enhanced expression of type 1 receptor for bone morphogenetic proteins during bone formation. J Bone Miner Res. 1995;10:1651–9.

    Article  CAS  PubMed  Google Scholar 

  83. Sato M, Ochi T, Nakase T. Mechanical tension-stress induces expression of bone morphogenetic protein BMP-2 and BMP-4, but not BMP-6, or BMP-7. J Bone Miner Res. 1999;14(7):84–95.

    Article  Google Scholar 

  84. Sato M, Yasui N, Nakase T. Expression of bone morphogenetic protein mRNA during distraction osteogenesis. J Bone Miner Res. 1998;13:1221.

    Article  CAS  PubMed  Google Scholar 

  85. Carstens MH. Developmental field reassignment: reassessment and refinements. In: Bennun R, Sandor GKB, editors. Cleft lip and palate management: a comprehensive atlas. New York: Wiley-Blackwell; 2015.

    Google Scholar 

  86. Chin M. Bone morphogenetic protein enhancement of alveolar distraction in humans. In: From the proceedings of the 4th international congress on cranial and facial distraction processes, Paris, 2003, pp. 49–51.

    Google Scholar 

  87. Chin M. Distraction osteogenesis in maxillofacial surgery. In: Lynch SE, Genco RJ, Marx RE, editors. Tissue engineering: applications in maxillofacial surgery and periodontics. Carol Stream: Quintessence Publishers; 1998.

    Google Scholar 

  88. Chin M, Carstens M, et al. Distraction osteogenesis with bone morphogenetic protein enhancement: facial cleft repair in humans. In: From the proceedings of the 4th international congress on cranial and facial distraction processes, Paris, 2003, pp. 197–200.

    Google Scholar 

  89. Franco J, Carstens MH. Mandibular distraction using bone morphogenetic protein and rapid distraction in neonates with Pierre Robin syndrome. J Craniofac Surg. 2010;21(4):1158–61.

    Article  PubMed  Google Scholar 

  90. Kjaer I. Etiology-based craniofacial and dental diagnostics. New York: Wiley-Blackwell; 2016.

    Book  Google Scholar 

  91. Kjaer I, Keeling JW, Fisher-Hansen B. The prenatal human cranium. New York: Munksgaard/Wiley; 1999.

    Google Scholar 

  92. Sato Y, Grayson BH, Garfinkle JS, et al. Success rate of gingivoperiosteoplasty with and without secondary bone grafts compared with secondary alveolar bone grafts alone. Plast Reconstr Surg. 2008;121:1356Y1367.

    Article  Google Scholar 

  93. Chao M, Donovan T, Sotelo C, Carstens MH. In situ osteogenesis of Hemimandible with rhBMP-2 in a 9-year-old boy: osteoinduction via stem cell concentration. J Craniofac Surg. 2006;17(3):405–12.

    Article  PubMed  Google Scholar 

  94. Betts N, Fonseca R. Allogeneic grafting of dentoalveolar clefts. Oral Maxillofac Surg Clin North Am. 1991;3:617–24.

    Article  Google Scholar 

  95. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–9.

    Article  CAS  PubMed  Google Scholar 

  96. Urist MR, Sato K, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci U S A. 1984;81:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boyne PJ. Use of marrow cancellous bone grafts in maxillary alveolar and palatal clefts. J Dent Res. 1974;43:821–4.

    Article  Google Scholar 

  98. Demas PN, Sotereanos GC. Closure of alveolar clefts with corticocancellous block grafts and marrow: a retrospective study. J Oral Maxillofac Surg. 1988;46:682.

    Article  CAS  PubMed  Google Scholar 

  99. Liou E, Chen PK, et al. Interdental distraction osteogenesis and rapid orthodontic tooth movement: novel approach to approximate a wide alveolar cleft or bony defect. Plastic Reconstr Surg. 2000;105:1262–72.

    CAS  Google Scholar 

  100. Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392–406.

    Article  CAS  PubMed  Google Scholar 

  101. El Deeb M, Wolford L. Utilization of alloplastic ceramics in repair of alveolar clefts and correction of skeletofacial deformities in patients with cleft palate. Oral Maxillofac Surg Clin North Am. 1991;3:625–40.

    Article  Google Scholar 

  102. Abyholm PE, Bergland O, Semb G. Secondary bone grafting of alveolar clefts. Scand J Plast Surg. 1981;15:127.

    CAS  Google Scholar 

  103. Koole R. Ectomesenchymal mandibular symphysis bone graft: an improvement in alveolar cleft grafting? Cleft Palate Craniofac J. 1994;31(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  104. Falluco M, Carstens MH. Primary reconstruction of alveolar clefts using recombinant human bone morphogenetic protein-2: clinical and radiographic outcomes. J Craniofac Surg. 2009;Suppl 2:1759–64.

    Article  Google Scholar 

  105. Dickson BP, Ashley RK, Wasson KL, et al. Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plast Reconstr Surg. 2008;121:209–17.

    Article  Google Scholar 

  106. Alawi F. Benign fibro-osseous diseases of the maxillofacial bones: a review and differential diagnosis. Am J Clin Pathol. 2002;118(Suppl):550–70.

    Google Scholar 

  107. Leimolo-Vertanenen L, Vahatelo K, Syrjanen S. Juvenile ossifying fibroma of the mandible: report of 2 cases. J Oral Maxillofac Surg. 2001;54:439–44.

    Article  Google Scholar 

  108. Rinaggio J, Land M, Cleveland DB. Juvenile ossifying fibroma of the mandible: a review. J Pediatr Surg. 2003;38(4):648–50.

    Article  PubMed  Google Scholar 

  109. Rosenberg M, Moktari H, Slootweg PJ. The natural course of an ossifying fibroma: a case report. Int J Oral Maxillofac Surg. 1999;26(6):454–6.

    Article  Google Scholar 

  110. Williams HK, Mangham C, Speight PM. Juvenile ossifying fibroma: an analysis of eight cases and a comparison with other fibro-osseous lesions. J Oral Pathol Med. 2000;29(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  111. Brannon RB, Fowler CB. Benign fibro-osseous lesions: a review of current concepts. Adv Anat Pathol. 2001;8(3):126–43.

    Article  CAS  PubMed  Google Scholar 

  112. Johnson LC, Yousefi M, Vinh TN, et al. Juvenile active ossifying fibroma: its nature, dynamics and origin. Acta Otolaryngol Suppl. 1991;488:1–40.

    CAS  PubMed  Google Scholar 

  113. Slootweg PJ, Panders AK, Kootmans R. Juvenile ossifying fibroma: an analysis of 33 cases with emphasis on histopathologic aspects. J Oral Pathol Med. 1994;23(9):385–8.

    Article  CAS  PubMed  Google Scholar 

  114. Gurol M, Uckan S, Guler N, Yatmax PI. Surgical and reconstructive treatment of a large ossifying fibroma of the mandible in a retrognathic patient. J Oral Maxillofac Surg. 2001;59(9):1097–100.

    Article  CAS  PubMed  Google Scholar 

  115. Zama M, Gallo S, Santecchia L, et al. Juvenile ossifying fibroma with massive involvement of the mandible. Plast Reconstr Surg. 2004;113(3):970–4.

    Article  PubMed  Google Scholar 

  116. Bush PG, Williams AJ. The incidence of the Robin Anomalad (Pierrre Robin syndrome). Br J Plast Surg (now JPRS). 1983;36(4):434–7.

    Article  CAS  Google Scholar 

  117. Benjamin B, Walker P. Management of airway obstruction in the Pierre Robin sequence. Int J Pediatr Otolaryngol. 1991;22:29–37.

    Article  CAS  Google Scholar 

  118. Caouette-Laberge L, Bayet B, Larocque Y. The Pierre Robin sequence: review of 125 cases and evolution of treatment modalities. Plast Reconstr Surg. 1994;93:934.

    Article  CAS  PubMed  Google Scholar 

  119. Tomaski SM, Zalzal GH, Saal HM. Airway obstruction in the Pierre Robin sequence. Laryngoscope. 1995;105:111–4.

    Article  CAS  PubMed  Google Scholar 

  120. Zeitouni A, Manoukian J. Tracheostomy in the first year of life. J Otolaryngol. 1993;22:431–4.

    CAS  PubMed  Google Scholar 

  121. Codivilla A. On the means of lengthening in the lower limbs, the muscles of and tissues which are shortened through deformity. Am J Orthop Surg. 1905;2:353–7.

    Google Scholar 

  122. Dauria D, Marsh JL. Mandibular distraction osteogenesis for Pierre Robin sequence: what percentage of neonates need it? J Craniofac Surg. 2008;19:1237–43.

    Article  PubMed  Google Scholar 

  123. Monasterio-Alfaro L. Alveolar extension palatoplasty demonstrates reduction in palatal fistulae. Orlando: American Cleft Palate Association; 2008.

    Google Scholar 

  124. McCarthy JG, Schreiber J, Karp N, et al. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg. 1992;89:1–8.

    Article  CAS  PubMed  Google Scholar 

  125. Burstein F. Resorbable distraction of the mandible: technical evolution and clinical experience. J Craniofac Surg. 2008;19:637–43.

    Article  PubMed  Google Scholar 

  126. Carron JD, Derkay CS, Strope GL, et al. Pediatric tracheotomies: changing indications and outcomes. Laryngoscope. 2000;110:1099–104.

    Article  CAS  PubMed  Google Scholar 

  127. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stoffers HE, Rinkens PE, Kester AD, Kaiser V, Knottnerus JA. The prevalence of asymptomatic and unrecognized peripheral arterial occlusive disease. Int J Epidemiol. 1996;25:282–90.

    Article  CAS  PubMed  Google Scholar 

  129. Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47(5):921–9.

    Article  PubMed  Google Scholar 

  130. Chen Q, Smith CY, Bailey KR, Wennberg PW, Kullo IJ. Disease location is associated with survival in patients with peripheral arterial disease. J Am Heart Assoc. 2013;2:e000304.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nehler MR, McDermott MM, Treat-Jacobson D, Chetter I, Regensteiner JG. Functional outcomes and quality of life in peripheral arterial disease: current status. Vasc Med. 2003;8:115–26.

    Article  PubMed  Google Scholar 

  132. Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, Jones DN. Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg. 1997;26:517–38.

    Article  CAS  PubMed  Google Scholar 

  133. Bishop PD, Feiten LE, Ouriel K, Nassoiy SP, Pavkov ML, Clair DG, Kashyap VS. Arterial calcification increases in distal arteries in patients with peripheral arterial disease. Ann Vasc Surg. 2008;22:799–805.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dormandy JA, Rutherford RB, TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). Management of peripheral arterial disease (PAD). J Vasc Surg. 2000;31:S1–S296.

    CAS  PubMed  Google Scholar 

  135. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR, Rutherford RB, TASC II Working Group. Inter-society consensus for the management of peripheral arterial disease. Int Angiol. 2007;26(2):81–157.

    CAS  PubMed  Google Scholar 

  136. Lévigne D, Tobalem M, Modarressi A, Pittet-Cuénod B. Hyperglycemia increases susceptibility to ischemic necrosis. Biomed Res Int. 2013;2013:490964–5.

    Article  PubMed  Google Scholar 

  137. Mamidi MK, Pal R, Dey S, Bin Abdullah BJJ, Zakaria Z, Rao MS, Das AK. Cell therapy in critical limb ischemia: current developments and future progress. Cytotherapy. 2012;14:902–16.

    Article  PubMed  Google Scholar 

  138. Sedighiani F, Nikol S. Gene therapy in vascular disease. Surgeon. 2011;9:326–35.

    Article  PubMed  Google Scholar 

  139. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest. 1999;103:1231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112:1288–302.

    Article  CAS  PubMed  Google Scholar 

  141. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  142. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  143. Guo J, Nguyen A, Widgerowe AD. Stomal vascular fraction: a regenerative reality? Part 2. Mechanisms of regenerative action. JPRAS. 2016;69:180–8.

    PubMed  Google Scholar 

  144. Nguyen A, Guo J, Widgerow AD. Stromal vascular fraction: a regenerative reality? Part 1. Current concepts and review of the literature. JPRAS. 2016;69:170–9.

    PubMed  Google Scholar 

  145. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng P-N, Traas J, Schugar R, Deasy BM, Badylak S, Buhring H-J, Giacobino J-P, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  146. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.

    Article  PubMed  Google Scholar 

  147. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287–99.

    Article  PubMed  Google Scholar 

  148. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324–36.

    Article  CAS  PubMed  Google Scholar 

  149. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article  CAS  PubMed  Google Scholar 

  150. von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res. 2006;312:623–9.

    Article  Google Scholar 

  151. Rochester JR, Brown NJ, Reed MW. Characterisation of an experimental model of chronic lower limb ischaemia in the anaesthetised rat. Int J Microcirc Clin Exp. 1994;14:27–33.

    Article  CAS  PubMed  Google Scholar 

  152. Hao C, Shintani S, Shimizu Y, Kondo K, Ishii M, Wu H, Murohara T. Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells. Am J Physiol Heart Circ Physiol. 2014;307:H869–79.

    Article  CAS  PubMed  Google Scholar 

  153. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, Kitagawa Y, Murohara T. Implantation of adipose-derived regenerative cells enhances ischemia-enhanced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  154. Murakami Y, Tanaka M. Evolution of motor innervation to vertebrate fins and limbs. Dev Biol. 2011;355(1):164–72.

    Article  CAS  PubMed  Google Scholar 

  155. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005;25:2542–7.

    Article  CAS  PubMed  Google Scholar 

  156. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.

    Article  PubMed  Google Scholar 

  157. Sumi M, Sata M, Toya N, Yanaga K, Ohki T, Nagai R. Transplantation of adipose stromal cells, but not mature adipocytes, augments ischemia-induced angiogenesis. Life Sci. 2007;80:559–65.

    Article  CAS  PubMed  Google Scholar 

  158. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. Thromb Haemost. 2010;103:696–709.

    Article  CAS  PubMed  Google Scholar 

  159. Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg. 2011;53:445–53.

    Article  PubMed  Google Scholar 

  160. Liew A, O’brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther. 2012;3:28.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Powell RJ, Comerota AJ, Berceli SA, Guzman R, Henry TD, Tzeng E, Velazquez O, Marston WA, Bartel RL, Longcore A, Stern T, Watling S. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg. 2011;54:1032–41.

    Article  PubMed  Google Scholar 

  162. Das AK, Bin Abdullah BJJ, Dhillon SS, Vijanari A, Anoop CH, Gupta PK. Intra- arterial allogeneic mesenchymal stem cells for critical limb ischemia are safe and efficacious: report of a phase I study. World J Surg. 2013;37:915–22.

    Article  PubMed  Google Scholar 

  163. O’Neill CL, O’Doherty MT, Wilson SE, Rana AA, Hirst CE, Stitt AW, Medina RJ. Therapeutic revascularisation of ischaemic tissue: the opportunities and challenges for therapy using vascular stem/progenitor cells. Stem Cell Res Ther. 2012;2012(3):31.

    Google Scholar 

  164. Powell RJ. Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J Vasc Surg. 2012;56:264–6.

    Article  PubMed  Google Scholar 

  165. Weck M, Slesaczeck T, Rietzsch H, Münch D, Nanning T, Paetzold H, Florek H-J, Barthel A, Weiss N, Bornstein S. Noninvasive management of the diabetic foot with critical limb ischemia: current options and future perspectives. Ther Adv Endocrinol Metab. 2011;2:247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee HC, An SG, Lee HW, Park J-S, Cha KS, Hong TJ, Park JH, Lee S-Y, Kim S-P, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012;76:1750–60.

    Article  CAS  PubMed  Google Scholar 

  167. Zhi K, Gao Z, Bai J, Wu Y, Zhou S, Li M, Qu L. Application of adipose-derived stem cells in critical limb ischemia. Front Biosci. 2014;19:768–76.

    Article  Google Scholar 

  168. Gates J, Hartnell GG. Optimized diagnostic angiography in high-risk patients with severe peripheral vascular disease. Radiographics. 2000;20:121–33.

    Article  CAS  PubMed  Google Scholar 

  169. Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, Hu MS, Rajadas J, Rodrigues M, Gurtner GC. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 2014;5:79.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Péault B, Rubin JP, Donnenberg AD. Stromal vascular progenitors in adult human adipose tissue. Cytometry A. 2010;77:22–30.

    PubMed  PubMed Central  Google Scholar 

  171. Clokie CML, Urist MR. Bone morphogenetic protein excipients: with observations on Poloxamer. Plast Reconstr Surg. 2000;105:628–37.

    Article  CAS  PubMed  Google Scholar 

  172. Clokie CML, Sandor GKB. Reconstruction of 10 major mandibular defects using bioimplants containing BMP7. J Can Dental Assoc. 2008;74:67–72.

    Google Scholar 

  173. Sandor GK, Tuovinen VJ, Wolff J, et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71:938–50.

    Article  PubMed  Google Scholar 

  174. Sandor GK, Numminen J, Wolff J, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Trans Med. 2014;3:530–40.

    Article  CAS  Google Scholar 

Further Reading

  • Anderson DJ. Cellular and molecular biology of neural crest migration. Trends Genet. 1997;13:267–80.

    Article  Google Scholar 

  • Bardach J, Mooney M, Giedrojc-Juraha ZL. A comparative study of facial growth with and without soft-tissue undermining: an experimental study in rabbits. Plast Reconstr Surg. 1982;69:745.

    Article  CAS  PubMed  Google Scholar 

  • Barro WB, Latham RA. Palatal periosteal response to surgical trauma. Plast Reconstr Surg. 1981;67:6.

    Article  CAS  PubMed  Google Scholar 

  • Birgfield CB, Roberts S, Wang Y-C, Liao Y-F, Chen PKT. Comparative outcomes of primary gingivoperiosteoplasty and secondary alveolar bone grafting in patients with unilateral cleft lip and palate. Plast Reconstr Surg. 2016;137(1):228–9.

    Article  Google Scholar 

  • Boo CK. The unoperated adult bilateral cleft of the lip and palate. Br J Plast Surg. 1971;24:250.

    Article  Google Scholar 

  • Boyne PJ, Sands NR. Secondary bone grafting of residual alveolar and palatal clefts. J Oral Surg. 1972;30:87–01.

    CAS  PubMed  Google Scholar 

  • Cagáñová V, Borsky J, Å mahel Z, Veleminská J. Facial growth and development in unilateral cleft lip and palate. Comparison between secondary alveolar bone grafting and primary periosteoplasty. Cleft Palate Craniofac J. 2014;51(1):15–22.

    Article  PubMed  Google Scholar 

  • Carstens MH. Correction of unilateral cleft lip nasal deformity using the sliding sulcus procedure. J Craniofac Surg. 1999;10:346–64.

    Article  CAS  PubMed  Google Scholar 

  • Carstens MH. The sliding sulcus procedure: simultaneous repair of unilateral clefts of the lip and primary palate-a new technique. J Craniofac Surg. 1999;10:415–29.

    Article  CAS  PubMed  Google Scholar 

  • Carstens MH. Functional matrix cleft repair: a common strategy for unilateral and bilateral clefts. J Craniofac Surg. 2000;11:437–69.

    Article  CAS  PubMed  Google Scholar 

  • Carstens MH. Internal carotid artery distribution to the face: evidence for fusion of paired olfactory fields. PSEF basic science presentation. Los Angeles: American Society of Plastic Surgeons; 2000.

    Google Scholar 

  • Carstens MH. Development of the facial midline. J Craniofac Surg. 2002;13:129–87.

    Article  PubMed  Google Scholar 

  • Carstens MH. Neuromeric programming and craniofacial cleft formation. 1. The neuromeric organization of the head and neck. Eur J Ped Neurol. 2004b;8:181–210.

    Article  Google Scholar 

  • Carstens M, Chin M, Ng T, Tom WK. Reconstruction of #7 facial cleft with distraction-assisted in situ osteogenesis (DISO): role of recombinant human bone morphogenetic protein-2 with Helistat-activated collagen implant. J Craniofac Surg. 2005;16(6):1023–32.

    Article  PubMed  Google Scholar 

  • Carlson BR. Human embryology and developmental biology. 5th ed. Philadelphia: Mosby; 2016. p. 185–90.

    Google Scholar 

  • Cestero HJ, Salyer KE. Regenerative potential of bone and periosteum. Surg Forum. 1975;26:555.

    PubMed  Google Scholar 

  • Cestero HJ, Salyer KE, Johns DF. The periosteum and craniofacial growth. Surg Forum. 1976;27:556.

    PubMed  Google Scholar 

  • Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the 14 types of human bone morphogenetic proteins (BMPs). J Bone Jt Surg. 2001;85A:1544–11551.

    Google Scholar 

  • Chin M. Alveolar process reconstruction using distraction osteogenesis. In: Diner PA, Vasquez MP, editors. Tissue engineering and facial bone distraction processes. Bologna: Monduzzi Editore; 1997.

    Google Scholar 

  • Chin M, Ng T, Tom WK, Carstens M. Repair of alveolar clefts with recombinant human bone morphogenetic protein (rhBMP-2) in patients with clefts. J Craniofac Surg. 2005;16(5):40–58.

    Article  Google Scholar 

  • da Silva Meirelles L, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–27.

    Article  Google Scholar 

  • Delaire J. Surgical considerations in patients with cleft deformities. In: Bell WH, editor. Modern practice in orthognathic and reconstructive surgery. Philadelphia: WB Saunders; 1992.

    Google Scholar 

  • Delaire J, Precious DS, Gordeef A. The advantage of wide subperiosteal exposure in primary correction of labial maxillary clefts. Scand J Plast Reconstr Surg. 1988;22:147–51.

    CAS  Google Scholar 

  • Duboule D. Patterning in the vertebrate limb. Curr Opin Genet Dev. 1991;1(2):21–6.

    Article  Google Scholar 

  • Georgiade NC. Anterior palatal-alveolar closure by means of interpolated flaps. Plast Reconstr Surg. 1967;39:162.

    Article  CAS  PubMed  Google Scholar 

  • Georgiade NR. Repair of anterior palatal-alveolar clefts in the cleft lip and palate patient. In: Georgiade NR, Hagarty RF, editors. Symposium on the management of cleft lip and palate and associated deformities. St. Louis: CV Mosby; 1974. p. 62–6.

    Google Scholar 

  • Goldstein MH. A tissue expanding vermilion myocutaneous flap for lip repair. Plast Reconstr Surg. 1984;73:768.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein MH. The elastic flap for lip repair. Plast Reconstr Surg. 1990;85:446.

    Article  CAS  PubMed  Google Scholar 

  • Hellquist R, Ponten B. The influence of infant periosteoplasty on facial growth and dental occlusion from 5 to 8 years of age in cases of complete unilateral cleft lip and palate. Scand J Plast Reconstr Surg. 1979;13(2):305–12.

    CAS  PubMed  Google Scholar 

  • Hellquist R, Svardstrom K, Ponten B. A longitudinal study of delayed periosteoplasty to the cleft alveolus. Cleft Palate. 1983;J20:277.

    Google Scholar 

  • His W. Beobachtungen zur Gesichte und Gamenbildung beim menschlishen embryo. Kgl Akad Wis. 1901;27:349–89.

    Google Scholar 

  • Hrivnakova J. Comparison of the upper jaw development in facial clefts following primary osteoplasty and bridging the cleft with a periosteal flap. Rozhl Chir. 1982;61:805.

    CAS  PubMed  Google Scholar 

  • Hrivnakova J, Fara M, Mullerova Z. The use of periosteal flaps for bridging maxillary defects in facial clefts. Acta Chir Plast. 1981;23:130.

    CAS  PubMed  Google Scholar 

  • Januszyk M, Sorkin M, Glotzbach JP, Vial IN, Maan ZN, Rennert RC, Duscher D, Thangarajah H, Longaker MT, Butte AJ, Gurtner GC. Diabetes irreversibly depletes bone marrow-derived mesenchymal progenitor cell subpopulations. Diabetes. 2014;63:3047–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joos U. Muscle reconstruction in primary cleft lip surgery. J Craniomaxillofac Surg. 1989;17(Suppl 1):8–10.

    Article  PubMed  Google Scholar 

  • Kardong KV. Vertebrates: comparative anatomy, function, and evolution. 7th ed. New York: McGraw Hill; 2015.

    Google Scholar 

  • Katagiri T, Yamaguchi A, Komaki M, et al. Bone morphogenic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994;127:1755–66.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa Y, Murohara T. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29:61–6.

    Article  PubMed  Google Scholar 

  • Kitamura S. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res. 2005;66:543–51.

    Article  PubMed  Google Scholar 

  • Lee CT, Grayson BH, Cutting CB, Brecht LE, Lin WY. Prepubertal midface growth in unilateral cleft lip and palate following alveolar molding and gingivoperiosteoplasty. Cleft Palate Craniofac J. 2004;41:375–80.

    Article  PubMed  Google Scholar 

  • Matsuo K, Hirose T. Secondary correction of the unilateral cleft lip nose using a conchal cartilage graft. Plast Reconstr Surg. 1990;86:991.

    Article  CAS  PubMed  Google Scholar 

  • May JW, Little JW, editors. Plastic surgery, vol. 4. Philadelphia: WB Saunders; 1990.

    Google Scholar 

  • Millard DR. Cleft craft: the evolution of its surgery. The unilateral deformity, vol. I. Boston: Little, Brown; 1976.

    Google Scholar 

  • Moon MH, Ludwig R, Halbhurner S, Burshe K, Stoll T. Human adipose tissue derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17:17279–90.

    Article  Google Scholar 

  • Mooney MP, Siegel MI, Kimes KR, Todhunter J. Development of the orbicularis oris muscle in normal and cleft lip and palate human fetuses using three-dimensional computer reconstruction. Plast Reconstr Surg. 1988;81:336.

    Article  CAS  PubMed  Google Scholar 

  • Noden DM. Origins and patterning of craniofacial mesenchymal tissues. J Craniofac Genet Dev Biol Suppl. 1986;2(15–31):33.

    Google Scholar 

  • Noordhoff MS. Reconstruction of vermilion in unilateral and bilateral cleft lips. Plast Reconstr Surg. 1984;73:52.

    Article  CAS  PubMed  Google Scholar 

  • Noordhoff MS, Chen Y, Chen K, et al. The surgical technique for the complete unilateral cleft lip-nasal deformity. Oper Tech Plast Reconstr Surg. 1995;2:167.

    Article  Google Scholar 

  • Ortiz-Monasterio F, Drucker M, Molina F, et al. Distraction osteogenesis in Pierre Robin sequence and related respiratory problems in children. J Craniofac Surg. 2002;13:79–83.

    Article  Google Scholar 

  • Ow AT, Cheung LK. Meta-analysis of mandibular distraction osteogenesis: clinical applications and functional outcomes. Plast Reconstr Surg. 2008;121:e54–69.

    Article  Google Scholar 

  • Park CG, Ha B. The importance of accurate repair of the orbicularis oris muscle in the correction of unilateral cleft lip. Plast Reconstr Surg. 1995;96:780–8.

    Article  CAS  PubMed  Google Scholar 

  • Precious D. Alveolar bone grafting. Oral Maxillofac Surg Clin North Am. 2000;12:501–13.

    Article  Google Scholar 

  • Precious DS, Delaire J. Balanced facial growth: a schematic interpretation. Oral Surg Oral Med Oral Pathol. 1987;63:637.

    Article  CAS  PubMed  Google Scholar 

  • Roselli D. Bilateral labiopalatoschisis-early closing of the osseous fissure through free graft of periosteum in one stage. Ann Plast Surg. 1982;9:18.

    Article  Google Scholar 

  • Rubenstein JLR, Puelles L. Development of the nervous system. In: Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of metabolism: the molecular basis of clinical disorders of morphogenesis. Oxford: Oxford University Press; 2004. p. 75–88.

    Google Scholar 

  • Sandor GKB. Tissue engineering and regenerative medicine: evolving applications toward cleft lip and palate surgery. In: Bennun R, Sandor GK, Harfin J, editors. Cleft lip and palate management: a comprehensive atlas. New York: Wiley; 2015.

    Google Scholar 

  • Schendel SA, Delaire J. Facial muscles: form and function in dentofacial deformities. In: Bell WH, editor. Surgical correction of dentofacial deformities: new frontiers. Philadelphia: WB Saunders; 1985.

    Google Scholar 

  • Schendel S, Pearl RM, De’Armond SJ. Pathophysiology of cleft lip muscle. Plast Reconstr Surg. 1989;83:777.

    Google Scholar 

  • Schultz RC. Free periosteal graft repair of maxillary clefts in adolescents. Plast Reconstr Surg. 1984;73:556.

    Article  CAS  PubMed  Google Scholar 

  • Semb G. Secondary bone grafting and orthodontic treatment in patients with bilateral complete clefts of the lip and palate. Ann Plast Surg. 1986;17:460.

    Article  PubMed  Google Scholar 

  • Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.

    Article  CAS  PubMed  Google Scholar 

  • Sitzmann F. The alveolar flap for the repair of the cleft alveolus related to the development of the upper jaw. J Maxillofac Surg. 1979;7:81.

    Article  CAS  PubMed  Google Scholar 

  • Skoog T. The use of periosteal flaps in the repair of clefts of the primary palate. Cleft Palate J. 1965;2:332.

    CAS  PubMed  Google Scholar 

  • Skoog T. The use of periosteum and surgical for bone restoration in congenital clefts of the maxilla. A clinical and experimental investigation. Scand J Plast Reconstr Surg. 1967;1:113.

    CAS  PubMed  Google Scholar 

  • Skoog T. Skoog’s method of repair of unilateral and bilateral cleft lip. In: Crabb WC, Rosenstein SW, Bzoch KR, editors. Cleft lip and palate. Boston: Little, Brown; 1971.

    Google Scholar 

  • Smahel Z, Müllerovná Z. Facial growth and development in unilateral cleft lip and palate during the period of puberty: comparison of the development after periosteoplasty and after primary bone grafting. Cleft Palate Craniofac J. 1994;31:10.

    Article  Google Scholar 

  • Tessier P. Anatomical classification of facial, cranio-facial, and latero-facial clefts. J Maxillofac Surg. 1976;4:70–92.

    Article  Google Scholar 

  • Tessier P, Tulasne JF, Delaire J, Resche F. Therapeutic aspects of maxillonasal dystosis (Binder syndrome). Head Neck Surg. 1981;3:207.

    Article  CAS  PubMed  Google Scholar 

  • Veau V. Bec-de-lievre. Paris: Masson; 1938.

    Google Scholar 

  • Walker JC Jr, Collito MB, Mancuso-Ungaro A, Meijer R. Physiologic considerations in cleft lip closure. The C-W technique. Plast Reconstr Surg. 1966;37:552.

    Article  PubMed  Google Scholar 

  • Wozney J. Overview of bone morphogenetic proteins. Spine. 2002;27(165):52–8.

    Google Scholar 

  • Wozney JM, Rosen V, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242:1528–34.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Katagiri T, Ikeda T, et al. Recombinant human bone morphogenic protein-2 stimulates osteoblast maturation and inhibits myogenic differentiation in vitro. J Cell Biol. 1991;113:681–7.

    Article  CAS  PubMed  Google Scholar 

  • You ZH. The study of vascular communication between jaw bones and their surrounding tissues by SEM of resin casts. West Chin J Stomatol. 1990;8:235.

    Google Scholar 

  • You ZH, Zhang ZK, Wang Y, et al. Distribution of minor nutrient foramina on the bone surfaces of the maxilla. In: Presented at the third conference of Chinese oral and maxillofacial surgeons. Xi’an, China. 1990.

    Google Scholar 

  • You ZH, Zhang ZK, Zhia JL. A study of maxillary and mandibular vasculature in relation to orthognathic surgery. Chin J Stomatal. 1991;26:263.

    CAS  Google Scholar 

  • Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208:64–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Carstens .

Editor information

Editors and Affiliations

Commentary: S. M. Balaji

Commentary: S. M. Balaji

This book is the culmination of a few decades’ long experience as well as the lifelong accumulated knowledge of the author—Prof. Michael Carstens. It is an enthusiastic celebration of many innovations, modifications, and discoveries that the author has done in the field of facial cleft rehabilitation, reconstruction, and regenerative medicine. He relies on and uses tools that are either of natural origin or biomimetics of human proteins in function and most importantly biological relevance. This deep understanding of biological mechanisms is presented in the earlier part of the book where the process of embryo formation and face development is meticulously described. Michael and I have worked together in complex craniofacial cases in India and several parts of the world. During these times, I have closely observed the way he would translate basic knowledge into innovative surgical results. His unique and deep understanding of the complex anatomy, physiology, and molecular biology would thrill me. I always looked forward to operating with him. In this process, we mutually learnt a lot while our patients stood benefitted.

This textbook—Craniofacial Structure: Developmental Anatomy, Evolutionary Design, and Clinical Applications—is seminal and is also a fitting unique tribute to the many forerunners in the field. The abundance of colorful illustrations—clinical as well as infographics—adds unique value to this compilation of experiences. Michael Carstens’ ability to interweave clinical situations with basic molecular biology in a very appealing way is a standing testimony to his focus and mastery of the subject. Although the emphasis of this book is predominantly clinical, the overall effect is that such a treatment approach will revolutionize the way healthcare delivery is done. The ultimate benefactor of this newly emerging scientific field will be society. After all, the destiny of science and well-being of society are highly linked. Every chapter abounds with the enthusiasm of the author and his collaborators. The book is the result of an intellectual fascination with human facial development, which has motivated to understand exactly how this process works. The work is unique in its profundity and breadth. It represents a passionate search for underlying mechanisms as the fundamental requirement for the treatment of facial clefts. The results of this quest are told as a tightly knit story in an intriguing and visually appealing way. I sincerely believe that this book will become a cornerstone of craniofacial education. This will also take craniofacial cleft reconstruction beyond the science of mere observation. Such a developmental approach based on neuroembryology represents a new method of inquiry leading toward a better understanding of the complexity of human facial development.

Donning several hats—clinician, surgeon, academician, researcher, entrepreneur, and scientist—Prof. Carstens has condensed his skills, experience, and knowledge into a single textbook, with a noble intention to pass on this hard-earned knowledge to the next generation of surgeons. The approach is a unique and forward-thinking approach; in point of fact, it represents a challenge, a throwing-down of the gauntlet as it is the obvious intention of the author to motivate the reader to think, probe, and act. He has been quite successful in this noble goal. The book succeeds in captivating the readers and takes them through various stages of face formation right from the embryo. Later, it branches into the neuromeric theory and the neurovascular embryology behind how various clefts are formed. In my opinion, this knowledge is directly relevant for the diagnosis and treatment of a wide variety of craniofacial anomalies. This book serves as a reminder that medical-surgical science will continue to accomplish unimaginable feats so long as people like Prof. Michael Carstens continue to look beneath the surface and challenge the dogma of the status quo, in the search for better results in the well-being of patients.

As a colleague and friend, I wish Prof. Michael Carstens all success and all readers a fruitful reading and learning process.

S.M. Balaji

Balaji Dental and Craniofacial Hospital, Teynampet, Chennai, India

A Note from Dr. Carstens

S.M. Balaji

From the vantage point of the Balaji Dental and Craniofacial Hospital in Chennai (formerly Madras), Tamil Nadu, India, Prof. Dr. S.M. Balaji cuts an imposing figure with an impossibly long list of accomplishments. As his full name is also impossibly long, I shall refer to him as Bala, and he is a true force of nature. A relentless perfectionist, academician, optimist, and general overachiever, his energy (seemingly boundless) is somehow contained within a sizeable and powerful frame. However, behind the booming voice and irrepressible smile is a restless and innovative mind, rather unencumbered by dogma and quick to seek clinical implementation for concepts he considers of value. Given this constellation of attributes, it is not surprising that Bala has been the driving force behind the introduction of rhBMP-2 to reconstructive surgery for the Indian subcontinent and Southeast Asia. We started out doing cleft cases together, but he quickly found a way innovate with bone grafts with an eye toward regenerative applications in the future. In the operating theatre, I found him to be a master technician and a never-ending source of new ideas. Away from the hospital, Bala and his wife, Sachin, were the most gracious of hosts. But our cooperation did not stop there, for Bala is a tireless organizer and connector—his conferences in the Seychelles and Maldives gathered together like minds with the results that were eye-opening. Bala showed me the promise of a much larger world. I am convinced that innovation in medicine for the twenty-first century will come about as clinicians and scientists from India harness the incredible power of their clinical experience and produce studies that will change the direction of our thinking and techniques. As this story unfolds, I am sure that Dr. S.M. Balaji will be in the forefront; I hope to follow along to see its denouement.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carstens, M.H. (2023). Biologics in Craniofacial Reconstruction: Morphogens and Stem Cells. In: Carstens, M.H. (eds) The Embryologic Basis of Craniofacial Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-15636-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15636-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15635-9

  • Online ISBN: 978-3-031-15636-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics