Skip to main content

A General Architecture for Generating Interactive Decomposition-Based MOEAs

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

Evolutionary algorithms have been widely applied for solving multiobjective optimization problems. Such methods can approximate many Pareto optimal solutions in a population. However, when solving real-world problems, a decision maker is usually involved, who may only be interested in a subset of solutions that meet their preferences. Several methods have been proposed to consider preference information during the solution process. Among them, interactive methods support the decision maker in learning about the trade-offs among objectives and the feasibility of solutions. Also, such methods allow the decision maker to provide preference information iteratively. Typically, interactive multiobjective evolutionary algorithms are modifications of existing a priori or a posteriori algorithms. However, they mainly focus on finding a region of interest and do not support the decision maker finding the most preferred solution. In addition, the cognitive load imposed on the decision maker is usually not considered. This article proposes an architecture for developing interactive decomposition-based evolutionary algorithms that can support the decision maker during the solution process. The proposed architecture aims to improve the applicability of interactive methods in solving real-world problems by considering the needs of a decision maker. We apply our proposal to generate an interactive decomposition-based algorithm utilizing a reference vector re-arrangement procedure and MOEA/D. We demonstrate the performance of our proposal with a real-world problem and multiple benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For simplicity, we will utilize the term reference vectors throughout this article.

References

  1. Afsar, B., Miettinen, K., Ruiz, A.B.: An artificial decision maker for comparing reference point based interactive evolutionary multiobjective optimization methods. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 619–631. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9_49

    Chapter  Google Scholar 

  2. Afsar, B., Miettinen, K., Ruiz, F.: Assessing the performance of interactive multiobjective optimization methods: a survey. ACM Comput. Surv. 54(4), 1–27 (2021). https://doi.org/10.1145/3448301

  3. Aghaei Pour, P., Rodemann, T., Hakanen, J., Miettinen, K.: Surrogate assisted interactive multiobjective optimization in energy system design of buildings. Optim. Eng. 23, 303–327 (2022). https://doi.org/10.1007/s11081-020-09587-8

  4. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four - preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. Adv. Comput. 98, 141–207 (2015). https://doi.org/10.1016/bs.adcom.2015.03.001. http://www.sciencedirect.com/science/article/pii/S0065245815000273

  5. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016). https://doi.org/10.1109/TEVC.2016.2519378

    Article  Google Scholar 

  6. Cornell, J.A.: Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data. Wiley (2011)

    Google Scholar 

  7. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  9. Deb, K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans. Evol. Comput. 14(6), 821–841 (2010)

    Google Scholar 

  10. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  11. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-objective decision making. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary computation, GECCO 2011. ACM, New York (2011)

    Google Scholar 

  12. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms. In: 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, pp. 1–8. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/SSCI.2016.7850220

  13. Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based evolutionary multiobjective optimization using reference points. IEEE Trans. Evol. Comput. 22(6), 821–835 (2018)

    Article  Google Scholar 

  14. Li, K.: Decomposition multi-objective evolutionary optimization: from state-of-the-art to future opportunities. CoRR abs/2108.09588 (2021). https://arxiv.org/abs/2108.09588

  15. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition multiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018). https://doi.org/10.1109/TCYB.2018.2859363

    Article  Google Scholar 

  16. Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based evolutionary multiobjective optimization using reference points. IEEE Trans. Evol. Comput. 22(6), 821–835 (2018). https://doi.org/10.1109/TEVC.2017.2737781

    Article  Google Scholar 

  17. Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multi. Optim. 35(6), 561–569 (2008). https://doi.org/10.1007/s00158-007-0163-x

    Article  Google Scholar 

  18. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  19. Mazumdar, A., Chugh, T., Hakanen, J., Miettinen, K.: An interactive framework for offline data-driven multiobjective optimization. In: Filipič, B., Minisci, E., Vasile, M. (eds.) BIOMA 2020. LNCS, vol. 12438, pp. 97–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63710-1_8

    Chapter  Google Scholar 

  20. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective optimization methods. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. ISORMS, vol. 233, pp. 927–976. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_22

    Chapter  Google Scholar 

  21. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_2

    Chapter  Google Scholar 

  22. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  23. Nguyen, L., Bui, L.T.: A multi-point interactive method for multi-objective evolutionary algorithms. In: Proceedings of the 4th International Conference on Knowledge and Systems Engineering, KSE 2012, pp. 107–112 (2012). https://doi.org/10.1109/KSE.2012.30

  24. Nguyen, L., Duc, D.N., Thanh, H.N.: An enhanced multi-point interactive method for multi-objective evolutionary algorithms. In: Satapathy, S.C., Bhateja, V., Nguyen, B.L., Nguyen, N.G., Le, D.-N. (eds.) Frontiers in Intelligent Computing: Theory and Applications. AISC, vol. 1013, pp. 42–49. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9186-7_5

    Chapter  Google Scholar 

  25. Qi, Y., Li, X., Yu, J., Miao, Q.: User-preference based decomposition in MOEA/D without using an ideal point. Swarm Evol. Comput. 44, 597–611 (2019). https://doi.org/10.1016/j.swevo.2018.08.002

    Article  Google Scholar 

  26. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary multiobjective optimization method: interactive WASF-GA. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_17

    Chapter  Google Scholar 

  27. Saini, B.S., Hakanen, J., Miettinen, K.: A new paradigm in interactive evolutionary multiobjective optimization. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 243–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_17

    Chapter  Google Scholar 

  28. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009). https://doi.org/10.1162/evco.2009.17.3.411

    Article  Google Scholar 

  29. Zhang, J., Xing, L.: A survey of multiobjective evolutionary algorithms. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 93–100 (2017). https://doi.org/10.1109/CSE-EUC.2017.27

  30. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.org/10.1109/TEVC.2007.892759

  31. Zheng, J., Yu, G., Zhu, Q., Li, X., Zou, J.: On decomposition methods in interactive user-preference based optimization. Appl. Soft Comput. J. 52, 952–973 (2017). https://doi.org/10.1016/j.asoc.2016.09.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giomara Lárraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lárraga, G., Miettinen, K. (2022). A General Architecture for Generating Interactive Decomposition-Based MOEAs. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics