Skip to main content

An Interactive Framework for Offline Data-Driven Multiobjective Optimization

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2020)

Abstract

We propose a framework for solving offline data-driven multiobjective optimization problems in an interactive manner. No new data becomes available when solving offline problems. We fit surrogate models to the data to enable optimization, which introduces uncertainty. The framework incorporates preference information from a decision maker in two aspects to direct the solution process. Firstly, the decision maker can guide the optimization by providing preferences for objectives. Secondly, the framework features a novel technique for the decision maker to also express preferences related to maximum acceptable uncertainty in the solutions as preferred ranges of uncertainty. In this way, the decision maker can understand what uncertainty in solutions means and utilize this information for better decision making. We aim at keeping the cognitive load on the decision maker low and propose an interactive visualization that enables the decision maker to make decisions based on uncertainty. The interactive framework utilizes decomposition-based multiobjective evolutionary algorithms and can be extended to handle different types of preferences for objectives. Finally, we demonstrate the framework by solving a practical optimization problem with ten objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro-Gama, M.: Mariocastrogama/GAA-Problem-MATLAB (2017). https://github.com/mariocastrogama/GAA-problem-MATLAB. Accessed 21 Apr 2020

  2. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  3. Chugh, T., Chakraborti, N., Sindhya, K., Jin, Y.: A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Mater. Manuf. Process. 32(10), 1172–1178 (2017)

    Article  Google Scholar 

  4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  5. Deb, K.: Evolutionary algorithms for multi-criterion optimization in engineering design. In: Miettinen, K., Neittaanmäki, P., Mäkelä, M.M., Périaux, J. (eds.) Evolutionary Algorithms in Engineering and Computer Science. Wiley (1999)

    Google Scholar 

  6. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling. John Wiley and Sons, Hoboken (2008)

    Book  Google Scholar 

  7. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms. In: Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

    Google Scholar 

  8. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary optimization: an overview and case studies. IEEE Trans. Evol. Comput. 23(3), 442–458 (2019)

    Article  Google Scholar 

  9. Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions: Theory, Applications, and Computation. John Wiley and Sons, Hoboken (2009)

    Book  Google Scholar 

  10. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition multiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018)

    Article  Google Scholar 

  11. Mazumdar, A., Chugh, T., Miettinen, K., López-Ibáñez, M.: On dealing with uncertainties from Kriging models in offline data-driven evolutionary multiobjective optimization. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 463–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_37

    Chapter  Google Scholar 

  12. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  14. Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review of hybrid evolutionary multiple criteria decision making methods. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1147–1154 (2014)

    Google Scholar 

  15. Shah, R.A., Reed, P.M., Simpson, T.W.: Many-objective evolutionary optimisation and visual analytics for product family design. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 137–159. Springer, London (2011). https://doi.org/10.1007/978-0-85729-652-8_4

    Chapter  Google Scholar 

  16. Simpson, T.W., Allen, J.K., Chen, W., Mistree, F.: Conceptual design of a family of products through the use of the robust concept exploration method. In: 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp. 1535–1545 (1996)

    Google Scholar 

  17. Wang, H., Jin, Y.: A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems. IEEE Trans. Cybern. 50(2), 536–549 (2020)

    Article  Google Scholar 

  18. Wang, H., Jin, Y., Sun, C., Doherty, J.: Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE Trans. Evol. Comput. 23(2), 203–216 (2019)

    Article  Google Scholar 

  19. Wang, H., Olhofer, M., Jin, Y.: A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges. Complex Intell. Syst. 3(4), 233–245 (2017). https://doi.org/10.1007/s40747-017-0053-9

    Article  Google Scholar 

  20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  21. Zheng, J., Yu, G., Zhu, Q., Li, X., Zou, J.: On decomposition methods in interactive user-preference based optimization. Appl. Soft Comput. 52, 952–973 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Academy of Finland (grant number 311877) and is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, http://www.jyu.fi/demo) of the University of Jyväskylä. This work was partially supported by the Natural Environment Research Council [NE/P017436/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanu Mazumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazumdar, A., Chugh, T., Hakanen, J., Miettinen, K. (2020). An Interactive Framework for Offline Data-Driven Multiobjective Optimization. In: Filipič, B., Minisci, E., Vasile, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2020. Lecture Notes in Computer Science(), vol 12438. Springer, Cham. https://doi.org/10.1007/978-3-030-63710-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63710-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63709-5

  • Online ISBN: 978-3-030-63710-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics