Skip to main content

Incorporating Preference Information Interactively in NSGA-III by the Adaptation of Reference Vectors

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2023)

Abstract

Real-world multiobjective optimization problems involve decision makers interested in a subset of solutions that meet their preferences. Decomposition-based multiobjective evolutionary algorithms (or MOEAs) have gained the research community’s attention because of their good performance in problems with many objectives. Some efforts have been made to propose variants of these methods that incorporate the decision maker’s preferences, directing the search toward regions of interest. Typically, such variants adapt the reference vectors according to the decision maker’s preferences. However, most of them can consider a single type of preference, the most common being reference points. Interactive MOEAs aim to let decision-makers provide preference information progressively, allowing them to learn about the trade-offs between objectives in each iteration. In such methods, decision makers can provide preferences in multiple ways, and it is desirable to allow them to select the type of preference for each iteration according to their knowledge. This article compares three interactive versions of NSGA-III utilizing multiple types of preferences. The first version incorporates a mechanism that adapts the reference vectors differently according to the type of preferences. The other two versions convert the preferences from the type selected by the decision maker to reference points, which are then utilized in two different reference vector adaptation techniques that have been used in a priori MOEAs. According to the results, we identify the advantages and drawbacks of the compared methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    RVs also known as weight vectors or reference points in different MOEAs. To avoid confusion, we will continue to use the term “RVs” only.

References

  1. Afsar, B., Miettinen, K., Ruiz, F.: Assessing the performance of interactive multiobjective optimization methods: a survey. ACM Comput. Surv. 54(4), 1–27 (2021). https://doi.org/10.1145/3448301

    Article  Google Scholar 

  2. Afsar, B., Ruiz, A.B., Miettinen, K.: Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker. Complex Intell. Syst. 2021, 1–17 (2021). https://doi.org/10.1007/S40747-021-00586-5

  3. Bechikh, S., Kessentini, M., Ben Said, L., Ghédira, K.: Chapter four - preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. In: Hurson, A.R. (ed.) Advances in Computers, vol. 98, pp. 141–207. Elsevier (2015). https://doi.org/10.1016/bs.adcom.2015.03.001

  4. Bi, X., Yu, D., Liu, J., Hu, Y.: A preference-based multi-objective algorithm for optimal service composition selection in cloud manufacturing. Int. J. Comput. Integr. Manuf. 33(8), 751–768 (2020). https://doi.org/10.1080/0951192X.2020.1775298

    Article  Google Scholar 

  5. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016). https://doi.org/10.1109/TEVC.2016.2519378

    Article  Google Scholar 

  6. Cheng, R., Rodemann, T., Fischer, M., Olhofer, M., Jin, Y.: Evolutionary many-objective optimization of hybrid electric vehicle control: from general optimization to preference articulation. IEEE Trans. Emerg. Topics Comput. Intell. 1(2), 97–111 (2017). https://doi.org/10.1109/TETCI.2017.2669104

    Article  Google Scholar 

  7. Cornell, J.A.: Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data. Wiley, Hoboken (2011)

    Book  Google Scholar 

  8. Da Silva, I.R.S., De Alencar, J.E.A., De Andrade Lira Rabelo, R.: A preference-based multi-objective demand response mechanism. In: 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings. Institute of Electrical and Electronics Engineers Inc. (2020). https://doi.org/10.1109/CEC48606.2020.9185875

  9. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  10. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  11. Deb, K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans. Evol. Comput. 14(6), 821–841 (2010)

    Article  Google Scholar 

  12. Deb, K., Sinha, A., Korhonen, P.J., Wallenius, J.: An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans. Evol. Comput. 14(5), 723–739 (2010). https://doi.org/10.1109/TEVC.2010.2064323

    Article  Google Scholar 

  13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

  14. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-objective decision making. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary computation - GECCO 2011. ACM, New York (2011)

    Google Scholar 

  15. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms. In: 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, Proceedings. IEEE (2017). https://doi.org/10.1109/SSCI.2016.7850220

  16. Lárraga, G., Miettinen, K.: A general architecture for generating interactive decomposition-based MOEAs. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) PPSN 2022. LNCS, pp. 81–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14721-0_6

    Chapter  Google Scholar 

  17. Lárraga, G., Miettinen, K.: Interactive MOEA/d with multiple types of preference information. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1826–1834. GECCO 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3520304.3534013

  18. Li, K.: Decomposition multi-objective evolutionary optimization: From state-of-the-art to future opportunities. CoRR abs/2108.09588 (2021). arxiv.org/abs/2108.09588

  19. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition multiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018). https://doi.org/10.1109/TCYB.2018.2859363

    Article  Google Scholar 

  20. Li, K., Chen, R., Savic, D., Yao, X.: Interactive decomposition multiobjective optimization via progressively learned value functions. IEEE Trans. Fuzzy Syst. 27(5), 849–860 (2019). https://doi.org/10.1109/TFUZZ.2018.2880700

    Article  Google Scholar 

  21. Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based evolutionary multiobjective optimization using reference points. IEEE Trans. Evol. Comput. 22(6), 821–835 (2018). https://doi.org/10.1109/TEVC.2017.2737781

    Article  Google Scholar 

  22. Li, L., Chen, H., Li, J., Jing, N., Emmerich, M.: Preference-based evolutionary many-objective optimization for agile satellite mission planning. IEEE Access 6, 40963–40978 (2018). https://doi.org/10.1109/ACCESS.2018.2859028

    Article  Google Scholar 

  23. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective optimization methods. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple Criteria Decision Analysis. ISORMS, vol. 233, pp. 927–976. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_22

    Chapter  Google Scholar 

  24. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_2

    Chapter  Google Scholar 

  25. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  26. Mnasri, S., Nasri, N., Alrashidi, M., van den Bossche, A., Val, T.: IoT networks 3D deployment using hybrid many-objective optimization algorithms. J. Heuristics 26(5), 663–709 (2020). https://doi.org/10.1007/s10732-020-09445-x

    Article  Google Scholar 

  27. Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: 3D indoor redeployment in IoT collection networks: a real prototyping using a hybrid PI-NSGA-III-VF. In: 2018 14th International Wireless Communications and Mobile Computing Conference, IWCMC 2018, pp. 780–785. Institute of Electrical and Electronics Engineers Inc. (2018). https://doi.org/10.1109/IWCMC.2018.8450372

  28. Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review of hybrid evolutionary multiple criteria decision making methods. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1147–1154 (2014). https://doi.org/10.1109/CEC.2014.6900368

  29. Saini, B.S., Hakanen, J., Miettinen, K.: A new paradigm in interactive evolutionary multiobjective optimization. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 243–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_17

    Chapter  Google Scholar 

  30. Santos Da Silva, I.R., De Andrade Lira Rabelo, R., Rodrigues, J.J., Carvalho, A.: A multi-objective approach for energy management in a microgrid scenario. In: 2020 5th International Conference on Smart and Sustainable Technologies, SpliTech 2020. Institute of Electrical and Electronics Engineers Inc. (2020). https://doi.org/10.23919/SpliTech49282.2020.9243847

  31. da Silva, I.R., Rabêlo, R.d.A., Rodrigues, J.J., Solic, P., Carvalho, A.: A preference-based demand response mechanism for energy management in a microgrid. J. Cleaner Prod. 255, 120034 (2020). https://doi.org/10.1016/j.jclepro.2020.120034

  32. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009). https://doi.org/10.1162/evco.2009.17.3.411

    Article  Google Scholar 

  33. Vesikar, Y., Deb, K., Blank, J.: Reference point based NSGA-III for preferred solutions. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1587–1594 (2018). https://doi.org/10.1109/SSCI.2018.8628819

  34. Yan, J., Deng, H.: Generation of large-bandwidth x-ray free electron laser with evolutionary many-objective optimization algorithm. Phys. Rev. Accelerators Beams 22(2), 020703 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.020703

    Article  Google Scholar 

  35. Zhang, J., Xing, L.: A survey of multiobjective evolutionary algorithms. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 93–100 (2017). https://doi.org/10.1109/CSE-EUC.2017.27

  36. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Academy of Finland (grant number 322221). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giomara Lárraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lárraga, G., Saini, B.S., Miettinen, K. (2023). Incorporating Preference Information Interactively in NSGA-III by the Adaptation of Reference Vectors. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics