Skip to main content

Ventilator-Associated Pneumonia

  • Chapter
  • First Online:
Personalized Mechanical Ventilation

Abstract

Ventilator-associated pneumonia (VAP) represents a severe condition that carries a high risk of death among mechanically ventilated patients and increased healthcare costs. The severity of the disease and infections caused by multidrug-resistant organisms is associated with the worst prognosis. Given that VAP is considered a severe ICU-acquired infection, broad-spectrum antibiotics are recommended, with coverage against all likely pathogens. The inherent risk of acquiring multidrug-resistant organisms due to therapy may lead to adverse outcomes and increased mortality. Thus, knowledge of local epidemiology and microbiological surveillance is crucial for improving clinical approaches to VAP empirical treatment. As inappropriate empirical treatment is one of the most important prognostic factors, the use of next-generation rapid and noninvasive diagnostic tests is promising to optimize pathogen identification and early targeting of antibiotic treatment. Improved antimicrobial stewardship practices considering clinical evolution, biomarker measurements, and microbiological surveillance will aid early de-escalation of antibiotics. Novel strategies have been developed to enhance the quality of care of mechanically ventilated patients and VAP prevention. The most crucial aspect of VAP prevention is the development of institutional policies and protocols for training healthcare professionals on preventive interventions, such as the “Pneumonia Zero” project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–e111. https://doi.org/10.1093/cid/ciw353.

    Article  Google Scholar 

  2. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur Respir J. 2017;50(3):1700582. https://doi.org/10.1183/13993003.00582-2017.

    Article  CAS  Google Scholar 

  3. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med. 2018;44(6):925–8. https://doi.org/10.1007/s00134-018-5085-0.

    Article  CAS  Google Scholar 

  4. Montravers P, Bassetti M. The ideal patient profile for new beta-lactam/beta-lactamase inhibitors. Curr Opin Infect Dis. 2018;31(6):587–93. https://doi.org/10.1097/qco.0000000000000490.

    Article  CAS  Google Scholar 

  5. Bassetti M, Righi E, Vena A, Graziano E, Russo A, Peghin M. Risk stratification and treatment of ICU-acquired pneumonia caused by multidrug- resistant/extensively drug-resistant/pandrug-resistant bacteria. Curr Opin Crit Care. 2018;24(5):385–93. https://doi.org/10.1097/mcc.0000000000000534.

    Article  Google Scholar 

  6. Warren DK, Shukla SJ, Olsen MA, Kollef MH, Hollenbeak CS, Cox MJ, et al. Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center. Crit Care Med. 2003;31(5):1312–7. https://doi.org/10.1097/01.Ccm.0000063087.93157.06.

    Article  Google Scholar 

  7. Esperatti M, Ferrer M, Theessen A, Liapikou A, Valencia M, Saucedo LM, et al. Nosocomial pneumonia in the intensive care unit acquired by mechanically ventilated versus nonventilated patients. Am J Respir Crit Care Med. 2010;182(12):1533–9. https://doi.org/10.1164/rccm.201001-0094OC.

    Article  Google Scholar 

  8. Muscedere JG, Day A, Heyland DK. Mortality, attributable mortality, and clinical events as end points for clinical trials of ventilator-associated pneumonia and hospital-acquired pneumonia. Clin Infect Dis. 2010;51(Suppl 1):S120–5. https://doi.org/10.1086/653060.

    Article  Google Scholar 

  9. Melsen WG, Rovers MM, Groenwold RH, Bergmans DC, Camus C, Bauer TT, et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis. 2013;13(8):665–71. https://doi.org/10.1016/s1473-3099(13)70081-1.

    Article  Google Scholar 

  10. Dudoignon E, Caméléna F, Deniau B, Habay A, Coutrot M, Ressaire Q, et al. Bacterial pneumonia in COVID-19 critically ill patients: a case series. Clin Infect Dis. 2020;72:905. https://doi.org/10.1093/cid/ciaa762.

    Article  CAS  Google Scholar 

  11. Chang SH, Jiang J, Kon ZN, Williams DM, Geraci T, Smith DE, et al. Safety and efficacy of bronchoscopy in critically ill patients with coronavirus disease 2019. Chest. 2020;159:870. https://doi.org/10.1016/j.chest.2020.09.263.

    Article  CAS  Google Scholar 

  12. Forel JM, Voillet F, Pulina D, Gacouin A, Perrin G, Barrau K, et al. Ventilator-associated pneumonia and ICU mortality in severe ARDS patients ventilated according to a lung-protective strategy. Crit Care. 2012;16(2):R65. https://doi.org/10.1186/cc11312.

    Article  Google Scholar 

  13. Koulenti D, Tsigou E, Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis. 2017;36(11):1999–2006. https://doi.org/10.1007/s10096-016-2703-z.

    Article  CAS  Google Scholar 

  14. Magill SS, Li Q, Gross C, Dudeck M, Allen-Bridson K, Edwards JR. Incidence and characteristics of ventilator-associated events reported to the National Healthcare Safety Network in 2014. Crit Care Med. 2016;44(12):2154–62. https://doi.org/10.1097/ccm.0000000000001871.

    Article  Google Scholar 

  15. Saied W, Martin-Loeches I, Timsit JF. What is new in non-ventilated ICU-acquired pneumonia? Intensive Care Med. 2020;46(3):488–91. https://doi.org/10.1007/s00134-019-05859-9.

    Article  Google Scholar 

  16. Zaragoza R, Vidal-Cortés P, Aguilar G, Borges M, Diaz E, Ferrer R, et al. Update of the treatment of nosocomial pneumonia in the ICU. Crit Care. 2020;24(1):383. https://doi.org/10.1186/s13054-020-03091-2.

    Article  Google Scholar 

  17. Martin-Loeches I, Povoa P, Rodríguez A, Curcio D, Suarez D, Mira JP, et al. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med. 2015;3(11):859–68. https://doi.org/10.1016/s2213-2600(15)00326-4.

    Article  Google Scholar 

  18. Healthcare-associated infections in intensive care units—Annual Epidemiological Report for 2016. European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-intensive-care-units-annual-epidemiological-0. Accessed 10 Nov 2020.

  19. Skrupky LP, McConnell K, Dallas J, Kollef MH. A comparison of ventilator-associated pneumonia rates as identified according to the National Healthcare Safety Network and American College of Chest Physicians criteria. Crit Care Med. 2012;40(1):281–4. https://doi.org/10.1097/CCM.0b013e31822d7913.

    Article  Google Scholar 

  20. Martin-Loeches I, Povoa P, Nseir S. A way towards ventilator-associated lower respiratory tract infection research. Intensive Care Med. 2020;46(7):1504–5. https://doi.org/10.1007/s00134-020-06101-7.

    Article  Google Scholar 

  21. Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020;46(5):888–906. https://doi.org/10.1007/s00134-020-05980-0.

    Article  Google Scholar 

  22. van Vught LA, Klein Klouwenberg PM, Spitoni C, Scicluna BP, Wiewel MA, Horn J, et al. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA. 2016;315(14):1469–79. https://doi.org/10.1001/jama.2016.2691.

    Article  CAS  Google Scholar 

  23. Li Y, Liu C, Xiao W, Song T, Wang S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis. Neurocrit Care. 2020;32(1):272–85. https://doi.org/10.1007/s12028-019-00773-w.

    Article  CAS  Google Scholar 

  24. Bouglé A, Bombled C, Margetis D, Lebreton G, Vidal C, Coroir M, et al. Ventilator-associated pneumonia in patients assisted by veno-arterial extracorporeal membrane oxygenation support: epidemiology and risk factors of treatment failure. PLoS One. 2018;13(4):e0194976. https://doi.org/10.1371/journal.pone.0194976.

    Article  CAS  Google Scholar 

  25. Fernando SM, Tran A, Cheng W, Klompas M, Kyeremanteng K, Mehta S, et al. Diagnosis of ventilator-associated pneumonia in critically ill adult patients-a systematic review and meta-analysis. Intensive Care Med. 2020;46(6):1170–9. https://doi.org/10.1007/s00134-020-06036-z.

    Article  CAS  Google Scholar 

  26. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–9. https://doi.org/10.1001/jama.2009.1754.

    Article  CAS  Google Scholar 

  27. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416. https://doi.org/10.1164/rccm.200405-644ST.

  28. Wu D, Wu C, Zhang S, Zhong Y. Risk factors of ventilator-associated pneumonia in critically III patients. Front Pharmacol. 2019;10:482. https://doi.org/10.3389/fphar.2019.00482.

    Article  CAS  Google Scholar 

  29. Martin-Loeches I, Rodriguez AH, Torres A. New guidelines for hospital-acquired pneumonia/ventilator-associated pneumonia: USA vs. Europe. Curr Opin Crit Care. 2018;24(5):347–52. https://doi.org/10.1097/mcc.0000000000000535.

    Article  Google Scholar 

  30. Ibn Saied W, Mourvillier B, Cohen Y, Ruckly S, Reignier J, Marcotte G, et al. A comparison of the mortality risk associated with ventilator-acquired bacterial pneumonia and nonventilator ICU-acquired bacterial pneumonia. Crit Care Med. 2019;47(3):345–52. https://doi.org/10.1097/ccm.0000000000003553.

    Article  Google Scholar 

  31. Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care. 2015;19(1):219. https://doi.org/10.1186/s13054-015-0926-5.

    Article  Google Scholar 

  32. Jaffal K, Six S, Zerimech F, Nseir S. Relationship between hyperoxemia and ventilator associated pneumonia. Ann Transl Med. 2017;5(22):453. https://doi.org/10.21037/atm.2017.10.15.

    Article  CAS  Google Scholar 

  33. ENVIN–HELICS [Internet]. [cited 2020 Nov 3]. http://hws.vhebron.net/envin-helics/https://hws.vhebron.net/envin-helics/Help/Informe%20ENVIN-UCI%202019.pdf.

  34. Bonten MJ, Weinstein RA. The role of colonization in the pathogenesis of nosocomial infections. Infect Control Hosp Epidemiol. 1996;17(3):193–200. https://doi.org/10.1086/647274.

    Article  CAS  Google Scholar 

  35. Beardsley JR, Williamson JC, Johnson JW, Ohl CA, Karchmer TB, Bowton DL. Using local microbiologic data to develop institution-specific guidelines for the treatment of hospital-acquired pneumonia. Chest. 2006;130(3):787–93. https://doi.org/10.1378/chest.130.3.787.

    Article  Google Scholar 

  36. Torre-Cisneros J, Natera C, Mesa F, Trikic M, Rodríguez-Baño J. Clinical predictors of methicillin-resistant Staphylococcus aureus in nosocomial and healthcare-associated pneumonia: a multicenter, matched case-control study. Eur J Clin Microbiol Infect Dis. 2018;37(1):51–6. https://doi.org/10.1007/s10096-017-3100-y.

    Article  CAS  Google Scholar 

  37. Torre-Cisneros J, Tejero García R, Natera Kindelán C, Font Ugalde P, de Luna FFA, Castón Osorio JJ et al. [Risk factors of nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus]. Med Clin (Barc). 2012;138(3):99–106. https://doi.org/10.1016/j.medcli.2011.05.028.

  38. Metersky ML, Frei CR, Mortensen EM. Predictors of pseudomonas and methicillin-resistant Staphylococcus aureus in hospitalized patients with healthcare-associated pneumonia. Respirology. 2016;21(1):157–63. https://doi.org/10.1111/resp.12651.

    Article  Google Scholar 

  39. Buhl M, Peter S, Willmann M. Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: a systematic review. Expert Rev Anti-Infect Ther. 2015;13(9):1159–70. https://doi.org/10.1586/14787210.2015.1064310.

    Article  CAS  Google Scholar 

  40. Fernández-Barat L, Ferrer M, De Rosa F, Gabarrús A, Esperatti M, Terraneo S, et al. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J Infect. 2017;74(2):142–52. https://doi.org/10.1016/j.jinf.2016.11.008.

    Article  Google Scholar 

  41. Rojo V, Vázquez P, Reyes S, Puente Fuertes L, Cervero M. [Risk factors and clinical evolution of carbapenemase-producing Klebsiella pneumoniae infections in a university hospital in Spain. Case-control study]. Rev Esp Quimioter. 2018;31(5):427–434.

    Google Scholar 

  42. Wang Z, Qin RR, Huang L, Sun LY. Risk factors for Carbapenem-resistant Klebsiella pneumoniae infection and mortality of Klebsiella pneumoniae infection. Chin Med J. 2018;131(1):56–62. https://doi.org/10.4103/0366-6999.221267.

    Article  CAS  Google Scholar 

  43. Gao B, Li X, Yang F, Chen W, Zhao Y, Bai G, et al. Molecular epidemiology and risk factors of ventilator-associated pneumonia infection caused by Carbapenem-resistant Enterobacteriaceae. Front Pharmacol. 2019;10:262. https://doi.org/10.3389/fphar.2019.00262.

    Article  CAS  Google Scholar 

  44. Sbrana F, Malacarne P, Bassetti M, Tascini C, Vegnuti L, Della Siega P, et al. Risk factors for ventilator associated pneumonia due to carbapenemase-producing Klebsiella pneumoniae in mechanically ventilated patients with tracheal and rectal colonization. Minerva Anestesiol. 2016;82(6):635–40.

    Google Scholar 

  45. Peralta G, Sánchez MB, Garrido JC, De Benito I, Cano ME, Martínez-Martínez L, et al. Impact of antibiotic resistance and of adequate empirical antibiotic treatment in the prognosis of patients with Escherichia coli bacteraemia. J Antimicrob Chemother. 2007;60(4):855–63. https://doi.org/10.1093/jac/dkm279.

    Article  CAS  Google Scholar 

  46. Aydemir H, Tuz HI, Piskin N, Celebi G, Kulah C, Kokturk F. Risk factors and clinical responses of pneumonia patients with colistin-resistant Acinetobacter baumannii-calcoaceticus. World J Clin Cases. 2019;7(10):1111–21. https://doi.org/10.12998/wjcc.v7.i10.1111.

    Article  Google Scholar 

  47. Zheng YL, Wan YF, Zhou LY, Ye ML, Liu S, Xu CQ, et al. Risk factors and mortality of patients with nosocomial carbapenem-resistant Acinetobacter baumannii pneumonia. Am J Infect Control. 2013;41(7):e59–63. https://doi.org/10.1016/j.ajic.2013.01.006.

    Article  Google Scholar 

  48. Hayashi Y, Morisawa K, Klompas M, Jones M, Bandeshe H, Boots R, et al. Toward improved surveillance: the impact of ventilator-associated complications on length of stay and antibiotic use in patients in intensive care units. Clin Infect Dis. 2013;56(4):471–7. https://doi.org/10.1093/cid/cis926.

    Article  CAS  Google Scholar 

  49. Berton DC, Kalil AC, Teixeira PJ. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst Rev. 2014;(10):CD006482. https://doi.org/10.1002/14651858.CD006482.pub4.

  50. Canadian Critical Care Trials Group. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med. 2006;355(25):2619–30. https://doi.org/10.1056/NEJMoa052904.

    Article  Google Scholar 

  51. Solé Violán J, Fernández JA, Benítez AB, Cardeñosa Cendrero JA, Rodríguez de Castro F. Impact of quantitative invasive diagnostic techniques in the management and outcome of mechanically ventilated patients with suspected pneumonia. Crit Care Med. 2000;28(8):2737–41. https://doi.org/10.1097/00003246-200008000-00009.

    Article  Google Scholar 

  52. Millot G, Voisin B, Loiez C, Wallet F, Nseir S. The next generation of rapid point-of-care testing identification tools for ventilator-associated pneumonia. Ann Transl Med. 2017;5(22):451. https://doi.org/10.21037/atm.2017.11.05.

    Article  CAS  Google Scholar 

  53. Clavel M, Barraud O, Moucadel V, Meynier F, Karam E, Ploy MC, et al. Molecular quantification of bacteria from respiratory samples in patients with suspected ventilator-associated pneumonia. Clin Microbiol Infect. 2016;22(9):812.e1–7. https://doi.org/10.1016/j.cmi.2016.06.013.

    Article  CAS  Google Scholar 

  54. Pulido MR, Moreno-Martínez P, González-Galán V, Fernández Cuenca F, Pascual Á, Garnacho-Montero J, et al. Application of BioFire FilmArray blood culture identification panel for rapid identification of the causative agents of ventilator-associated pneumonia. Clin Microbiol Infect. 2018;24(11):1213.e1–4. https://doi.org/10.1016/j.cmi.2018.06.001.

    Article  CAS  Google Scholar 

  55. Tabah A, Bassetti M, Kollef MH, Zahar JR, Paiva JA, Timsit JF, et al. Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med. 2020;46(2):245–65. https://doi.org/10.1007/s00134-019-05866-w.

    Article  Google Scholar 

  56. Ruiz J, Ramirez P, Gordon M, Villarreal E, Frasquet J, Poveda-Andres JL, et al. Antimicrobial stewardship programme in critical care medicine: a prospective interventional study. Med Intensiva. 2018;42(5):266–73. https://doi.org/10.1016/j.medin.2017.07.002.

    Article  CAS  Google Scholar 

  57. De Waele JJ, Schouten J, Beovic B, Tabah A, Leone M. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions—a viewpoint of experts. Intensive Care Med. 2020;46(2):236–44. https://doi.org/10.1007/s00134-019-05871-z.

    Article  Google Scholar 

  58. Freire AT, Melnyk V, Kim MJ, Datsenko O, Dzyublik O, Glumcher F, et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis. 2010;68(2):140–51. https://doi.org/10.1016/j.diagmicrobio.2010.05.012.

    Article  CAS  Google Scholar 

  59. Rubinstein E, Lalani T, Corey GR, Kanafani ZA, Nannini EC, Rocha MG, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011;52(1):31–40. https://doi.org/10.1093/cid/ciq031.

    Article  CAS  Google Scholar 

  60. Kollef MH, Chastre J, Clavel M, Restrepo MI, Michiels B, Kaniga K, et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care. 2012;16(6):R218. https://doi.org/10.1186/cc11862.

    Article  Google Scholar 

  61. Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunkel MJ, Baruch A, et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. 2012;54(5):621–9. https://doi.org/10.1093/cid/cir895.

    Article  CAS  Google Scholar 

  62. Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother. 2013;57(4):1756–62. https://doi.org/10.1128/aac.01232-12.

    Article  CAS  Google Scholar 

  63. Awad SS, Rodriguez AH, Chuang YC, Marjanek Z, Pareigis AJ, Reis G, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis. 2014;59(1):51–61. https://doi.org/10.1093/cid/ciu219.

    Article  CAS  Google Scholar 

  64. Torres A, Zhong N, Pachl J, Timsit JF, Kollef M, Chen Z, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018;18(3):285–95. https://doi.org/10.1016/s1473-3099(17)30747-8.

    Article  CAS  Google Scholar 

  65. Cisneros JM, Rosso-Fernández CM, Roca-Oporto C, De Pascale G, Jiménez-Jorge S, Fernández-Hinojosa E, et al. Colistin versus meropenem in the empirical treatment of ventilator-associated pneumonia (Magic Bullet study): an investigator-driven, open-label, randomized, noninferiority controlled trial. Crit Care. 2019;23(1):383. https://doi.org/10.1186/s13054-019-2627-y.

    Article  Google Scholar 

  66. Kollef MH, Nováček M, Kivistik Ü, Réa-Neto Á, Shime N, Martin-Loeches I, et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2019;19(12):1299–311. https://doi.org/10.1016/s1473-3099(19)30403-7.

    Article  CAS  Google Scholar 

  67. Bassetti M, Vena A, Russo A, Croxatto A, Calandra T, Guery B. Rational approach in the management of Pseudomonas aeruginosa infections. Curr Opin Infect Dis. 2018;31(6):578–86. https://doi.org/10.1097/qco.0000000000000505.

    Article  CAS  Google Scholar 

  68. Mensa J, Barberán J, Soriano A, Llinares P, Marco F, Cantón R, et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: guidelines by the Spanish Society of Chemotherapy. Rev Esp Quimioter. 2018;31(1):78–100.

    CAS  Google Scholar 

  69. Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Anti-Infect Ther. 2018;16(10):749–61. https://doi.org/10.1080/14787210.2018.1522249.

    Article  CAS  Google Scholar 

  70. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  Google Scholar 

  71. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77. https://doi.org/10.1007/s00134-017-4683-6.

    Article  Google Scholar 

  72. Teysseyre L, Ferdynus C, Miltgen G, Lair T, Aujoulat T, Lugagne N, et al. Derivation and validation of a simple score to predict the presence of bacteria requiring carbapenem treatment in ICU-acquired bloodstream infection and pneumonia: CarbaSCORE. Antimicrob Resist Infect Control. 2019;8:78. https://doi.org/10.1186/s13756-019-0529-z.

    Article  Google Scholar 

  73. FDA Drug Safety Communication. Increased risk of death with Tygacil (tigecycline) compared to other antibiotics used to treat similar infections. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-increased-risk-death-tygacil-tigecycline-compared-other-antibiotics. Accessed 10 Nov 2020.

  74. Monajati M, Ala S, Aliyali M, Ghasemian R, Heidari F, Ahanjan M, et al. Clinical effectiveness of high dose versus standard dose of meropenem in ventilator-associated pneumonia caused by multidrug-resistant bacteria: a randomized single-blind clinical trial. Infect Disord Drug Targets. 2021;21(2):274–83. https://doi.org/10.2174/1871526520666200227102013.

    Article  CAS  Google Scholar 

  75. Yu Z, Pang X, Wu X, Shan C, Jiang S. Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: a meta-analysis. PLoS One. 2018;13(7):e0201667. https://doi.org/10.1371/journal.pone.0201667.

    Article  CAS  Google Scholar 

  76. Goodlet KJ, Nicolau DP, Nailor MD. In vitro comparison of Ceftolozane-Tazobactam to traditional Beta-lactams and Ceftolozane-Tazobactam as an alternative to combination antimicrobial therapy for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61(12):e01350–17. https://doi.org/10.1128/aac.01350-17.

    Article  CAS  Google Scholar 

  77. Alraddadi BM, Saeedi M, Qutub M, Alshukairi A, Hassanien A, Wali G. Efficacy of ceftazidime-avibactam in the treatment of infections due to Carbapenem-resistant Enterobacteriaceae. BMC Infect Dis. 2019;19(1):772. https://doi.org/10.1186/s12879-019-4409-1.

    Article  CAS  Google Scholar 

  78. Bassetti M, Echols R, Matsunaga Y, Ariyasu M, Doi Y, Ferrer R, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021;21:226–40. https://doi.org/10.1016/s1473-3099(20)30796-9.

    Article  CAS  Google Scholar 

  79. Kollef MH, Ricard JD, Roux D, Francois B, Ischaki E, Rozgonyi Z, et al. A randomized trial of the amikacin Fosfomycin inhalation system for the adjunctive therapy of gram-negative ventilator-associated pneumonia: IASIS trial. Chest. 2017;151(6):1239–46. https://doi.org/10.1016/j.chest.2016.11.026.

    Article  Google Scholar 

  80. Niederman MS, Alder J, Bassetti M, Boateng F, Cao B, Corkery K, et al. Inhaled amikacin adjunctive to intravenous standard-of-care antibiotics in mechanically ventilated patients with gram-negative pneumonia (INHALE): a double-blind, randomised, placebo-controlled, phase 3, superiority trial. Lancet Infect Dis. 2020;20(3):330–40. https://doi.org/10.1016/s1473-3099(19)30574-2.

    Article  CAS  Google Scholar 

  81. Niederman MS. Adjunctive nebulized antibiotics: what is their place in ICU infections? Front Med (Lausanne). 2019;6:99. https://doi.org/10.3389/fmed.2019.00099.

    Article  Google Scholar 

  82. Pogue JM, Kaye KS, Veve MP, Patel TS, Gerlach AT, Davis SL, et al. Ceftolozane/Tazobactam vs Polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2020;71(2):304–10. https://doi.org/10.1093/cid/ciz816.

    Article  CAS  Google Scholar 

  83. An MM, Shen H, Zhang JD, Xu GT, Jiang YY. Linezolid versus vancomycin for methicillin-resistant Staphylococcus aureus infection: a meta-analysis of randomised controlled trials. Int J Antimicrob Agents. 2013;41(5):426–33. https://doi.org/10.1016/j.ijantimicag.2012.12.012.

    Article  CAS  Google Scholar 

  84. Stein GE, Wells EM. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus: vancomycin and linezolid. Curr Med Res Opin. 2010;26(3):571–88. https://doi.org/10.1185/03007990903512057.

    Article  CAS  Google Scholar 

  85. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55. https://doi.org/10.1093/cid/ciq146.

    Article  Google Scholar 

  86. Wong D, Wong T, Romney M, Leung V. Comparative effectiveness of beta-lactam versus vancomycin empiric therapy in patients with methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. Ann Clin Microbiol Antimicrob. 2016;15:27. https://doi.org/10.1186/s12941-016-0143-3.

    Article  CAS  Google Scholar 

  87. McDanel JS, Perencevich EN, Diekema DJ, Herwaldt LA, Smith TC, Chrischilles EA, et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis. 2015;61(3):361–7. https://doi.org/10.1093/cid/civ308.

    Article  CAS  Google Scholar 

  88. Torres A, Artigas A, Ferrer R. Biomarkers in the ICU: less is more? No. Intensive Care Med. 2021;47:97. https://doi.org/10.1007/s00134-020-06271-4.

    Article  Google Scholar 

  89. Bouglé A, Foucrier A, Dupont H, Montravers P, Ouattara A, Kalfon P, et al. Impact of the duration of antibiotics on clinical events in patients with Pseudomonas aeruginosa ventilator-associated pneumonia: study protocol for a randomized controlled study. Trials. 2017;18(1):37. https://doi.org/10.1186/s13063-017-1780-3.

    Article  Google Scholar 

  90. Dupont H, Mentec H, Sollet JP, Bleichner G. Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia. Intensive Care Med. 2001;27(2):355–62. https://doi.org/10.1007/s001340000640.

    Article  CAS  Google Scholar 

  91. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18(6):596. https://doi.org/10.1186/s13054-014-0596-8.

    Article  Google Scholar 

  92. Kollef MH. Treatment of ventilator-associated pneumonia: get it right from the start. Crit Care Med. 2003;31(3):969–70. https://doi.org/10.1097/01.Ccm.0000055381.70829.94.

    Article  Google Scholar 

  93. Ranzani OT, Ferrer M, Esperatti M, Giunta V, Bassi GL, Carvalho CR, et al. Association between systemic corticosteroids and outcomes of intensive care unit-acquired pneumonia. Crit Care Med. 2012;40(9):2552–61. https://doi.org/10.1097/CCM.0b013e318259203d.

    Article  CAS  Google Scholar 

  94. Ranzani OT, Prina E, Torres A. Nosocomial pneumonia in the intensive care unit: how should treatment failure be predicted? Rev Bras Ter Intensiva. 2014;26(3):208–11. https://doi.org/10.5935/0103-507x.20140032.

    Article  Google Scholar 

  95. Ceccato A, Panagiotarakou M, Ranzani OT, Martin-Fernandez M, Almansa-Mora R, Gabarrus A, et al. Lymphocytopenia as a predictor of mortality in patients with ICU-acquired pneumonia. J Clin Med. 2019;8(6) https://doi.org/10.3390/jcm8060843.

  96. Esperatti M, Ferrer M, Giunta V, Ranzani OT, Saucedo LM, Li Bassi G, et al. Validation of predictors of adverse outcomes in hospital-acquired pneumonia in the ICU. Crit Care Med. 2013;41(9):2151–61. https://doi.org/10.1097/CCM.0b013e31828a674a.

    Article  CAS  Google Scholar 

  97. Póvoa P, Martin-Loeches I, Ramirez P, Bos LD, Esperatti M, Silvestre J, et al. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics—results from the BioVAP study. J Crit Care. 2017;41:91–7. https://doi.org/10.1016/j.jcrc.2017.05.007.

    Article  CAS  Google Scholar 

  98. Álvarez-Lerma F, Palomar-Martínez M, Sánchez-García M, Martínez-Alonso M, Álvarez-Rodríguez J, Lorente L, et al. Prevention of ventilator-associated pneumonia: the multimodal approach of the Spanish ICU “Pneumonia Zero” program. Crit Care Med. 2018;46(2):181–8. https://doi.org/10.1097/ccm.0000000000002736.

    Article  Google Scholar 

  99. Pujante-Palazón I, Rodríguez-Mondéjar JJ, Armero-Barranco D, Sáez-Paredes P. [Prevention of ventilator-associated pneumonia: a comparison of level of knowledge in three critical care units]. Enferm Intensiva. 2016;27(3):120–8. https://doi.org/10.1016/j.enfi.2015.10.001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plata-Menchaca, E.P., González, M.L.M., Ferrer, R. (2022). Ventilator-Associated Pneumonia. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics