Skip to main content

Nanocellulose: Native State, Production, and Characterization

  • Chapter
  • First Online:
Emerging Nanotechnologies in Nanocellulose

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter first briefly discusses the current understanding of plant cell wall biosynthesis and cellulose ultra-structure prerequisites for understanding nanocellulose. From this fundamental understanding, the chapter is devoted to discussing conventional methods for producing two predominant types of cellulose nanomaterials (CNMs), namely cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Although many types of chemical treatments can deconstruct lignocellulose into nanoscale materials, mechanistic analyses based on the understanding of cell wall structure indicated that oxidation and acid hydrolysis are the most efficient approaches for producing CNMs from delignified wood pulp fibers. Some degree of delignification is necessary for producing CNMs from raw lignocellulose. Recent advances in achieving sustainable production of CNMs are also briefly mentioned. This chapter also briefly covers methods for characterizing various properties of CNMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BEP:

Bleached kraft eucalyptus pulp

CDF :

Combined delignification factor, (1.3)

CHFX:

Combined hydrolysis factor for xylan (X), (1.5)

CHFG:

Combined hydrolysis factor for cellulose (G, glucan), (1.1)

CNCs :

Cellulose nanocrystals, refers to a class of individually separated short crystalline cellulosic nanoparticles with aspect ratios of approximately 25 or smaller and good crystallinity. CNCs are often produced by concentrated acid hydrolysis unless high cellulose crystallinity is demonstrated

LCNCs:

CNCs containing lignin

S-CNCs:

CNCs produced by hydrolysis using concentrated sulfuric acid (S)

CNFs:

Cellulose nanofibrils refers to nanoscale cellulosic fibrils that can be either individually separated or physically entangled or interconnected as fibril networks

LCNFs; T-CNFs:

CNFs containing lignin; TEMPO-mediated oxidation (T)

CNMs :

Cellulose-based nanomaterials

LCNMs:

CNMs containing lignin

CNWs :

Cellulose nanowhiskers (short nanofibrils) with morphology similar to CNCs

LCNWs:

Lignin containing CNWs.

CSR :

Cellulosic solid residues from (acid or enzymatic) hydrolysis of cellulosic materials

DP:

Cellulose degree of polymerization

LR:

Fraction of lignin retained on fractionated lignocellulosic solids, (1.4).

XR:

Fraction of xylan retained on fractionated lignocellulosic solids, (1.6).

LNPs:

Lignin nanoparticles

NPMs:

Nanoscale (lignocellulosic) polymeric materials

References

  1. U.P. Agarwal, Analysis of cellulose and lignocellulose materials by raman spectroscopy: a review of the current status. Molecules 24(9), 1659 (2019). https://doi.org/10.3390/molecules24091659

    Article  CAS  Google Scholar 

  2. U.P Agarwal, Raman spectroscopy in the analysis of cellulose nanomaterials, in Nanocelluloses: Their Preparation, Properties, and Applications, ed. by U.P. Agarwal, R.H. Atalla, A. Isogai (American Chemical Society, Washington DC, 2017)

    Google Scholar 

  3. U.P. Agarwal, S.A. Ralph, R.S. Reiner, C. Baez, New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohyd. Polym. 190, 262–270 (2018)

    Article  CAS  Google Scholar 

  4. U.P. Agarwal, S.A. Ralph, R.S. Reiner, C. Baze, Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23, 125–144 (2016)

    Article  CAS  Google Scholar 

  5. U.P. Agarwal, S.A. Ralph, R.S. Reiner, C.G. Hunt, C. Baez, R. Ibach, K.C. Hirth, Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose 25(10), 5791–5805 (2018)

    Article  CAS  Google Scholar 

  6. U.P. Agarwal, R.S. Reiner, S.A. Ralph, Celulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4), 721–733 (2010)

    Article  CAS  Google Scholar 

  7. S.R. Anderson, D. Esposito, W. Gillette, J.Y. Zhu, U. Baxa, S.E. McNeil, Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J. 13(5), 35–41 (2014)

    Article  CAS  Google Scholar 

  8. J. Araki, M. Wada, S. Kuga, T. Okano, Biréfringent glassy phase of a cellulose microcrystal suspension. Langmuir 16(6), 2413–2415 (2000)

    Article  CAS  Google Scholar 

  9. J. Araki, M. Wada, S. Kuga, T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A 142, 75–82 (1998)

    Article  CAS  Google Scholar 

  10. R.H. Atalla, D.L. VanderHart, Native cellulose: a composite of two distinct crystalline forms. Science 223(4633), 283–285 (1984)

    Article  CAS  Google Scholar 

  11. O.A. Battista, Hydrolysis and crystallization of cellulose. Ind. Eng. Chem. 42(3), 502–507 (1950)

    Article  CAS  Google Scholar 

  12. O.A. Battista, S. Coppicic, J.A. Howsmon, F.F. Morehead, W.A. Sisson, Level-off degree of polymerization: relation to polyphase structure of cellulose fibers. Ind. Eng. Chem. 48(2), 333–335 (1956)

    Article  CAS  Google Scholar 

  13. S. Beck, M. Méthot, J. Bouchard, Erratum to General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration (Cellulose). Cellulose 22(1), 117 (2015a). https://doi.org/10.1007/s10570-014-0513-y

  14. S. Beck, M. Méthot, J. Bouchard, General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22(1), 101–116 (2015)

    Article  CAS  Google Scholar 

  15. S. Beck-Candanedo, M. Roman, D.G. Gray, Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6, 1048–1054 (2005)

    Article  CAS  Google Scholar 

  16. A.H. Bhat, I. Khan, M.A. Usmani, R. Umapathi, S.M.Z. Al-Kindy, Cellulose an ageless renewable green nanomaterial for medical applications: an overview of ionic liquids in extraction, separation and dissolution of cellulose. Int. J. Biol. Macromol. 129, 750–777 (2019)

    Article  CAS  Google Scholar 

  17. H. Bian, L. Chen, H. Dai, J.Y. Zhu, Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohyd. Polym. 167, 167–176 (2017)

    Article  CAS  Google Scholar 

  18. H. Bian, L. Chen, R. Gleisner, H. Dai, J.Y. Zhu, Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Green Chem. 19, 3370–3379 (2017)

    Article  CAS  Google Scholar 

  19. H. Bian, L. Chen, H. Dai, J.Y. Zhu, Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose 24(10), 4205–4216 (2017)

    Article  CAS  Google Scholar 

  20. Y. Boluk, C. Danumah, Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J. Nanoparticle Res. 16(1) (2014)

    Google Scholar 

  21. D. Bondeson, A. Mathew, K. Oksman, Optimization of the isolation of manocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)

    Google Scholar 

  22. A. Brinkmann, M. Chen, M. Couillard, Z.J. Jakubek, T. Leng, L.J. Johnston, Correlating cellulose nanocrystal particle size and surface area. Langmuir 32(24), 6105–6114 (2016)

    Article  CAS  Google Scholar 

  23. M. Busse-Wicher, T.C.F. Gomes, T. Tryfona, N. Nikolovski, K. Stott, N.J. Grantham, D.N. Bolam, M.S. Skaf, P. Dupree, The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 79(3), 492–506 (2014)

    Article  CAS  Google Scholar 

  24. C. Cai, K. Hirth, R. Gleisner, H. Lou, X. Qiu, J.Y. Zhu, Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤ 100 °C: Mode and utility of lignin esterification. Green Chem. 22(5), 1605–1617 (2020). https://doi.org/10.1039/C9GC04267A

    Article  CAS  Google Scholar 

  25. C. Cai, J. Li, K. Hirth, G.W. Huber, H. Lou, J.Y. Zhu, Comparison of two acid hydrotropes for sustainabl fractionation of birch wood. Chemsuschem 13, 4649–4659 (2020). https://doi.org/10.1002/cssc.202001120

    Article  CAS  Google Scholar 

  26. S. Camarero Espinosa, T. Kuhnt, E.J. Foster, C. Weder, Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14(4), 1223–1230 (2013)

    Article  CAS  Google Scholar 

  27. N.C. Carpita, Update on mechanisms of plant cell wall biosynthesis: How plants make cellulose and other (1→4)-β-D-Glycans. Plant Physiol. 155(1), 171–184 (2011)

    Article  CAS  Google Scholar 

  28. L. Chen, J. Dou, Q. Ma, N. Li, R. Wu, H. Bian, D.J. Yelle, T. Vuorinen, S. Fu, X. Pan, J.Y. Zhu, Rapid and near-complete dissolution of wood lignin at ≤ 80 °C by a recyclable acid hydrotrope. Sci. Adv. 3(9), e1701735 (2017)

    Article  Google Scholar 

  29. L. Chen, Q. Wang, K. Hirth, C. Baez, U.P. Agarwal, J.Y. Zhu, Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22, 1753–1762 (2015)

    Article  CAS  Google Scholar 

  30. L. Chen, J.Y. Zhu, C. Baez, P. Kitin, T. Elder, Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18, 3835–3843 (2016)

    CAS  Google Scholar 

  31. M. Chen, Q. Ma, J.Y. Zhu, D. Martin Alonso, T. Runge, GVL pulping facilitates nanocellulose production from woody biomass. Green Chem. 21(19), 5316–5325 (2019)

    Article  CAS  Google Scholar 

  32. Y. Chen, C. Liu, P.R. Chang, X. Cao, D.P. Anderson, Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd. Polym. 76(4), 607–615 (2009)

    Article  CAS  Google Scholar 

  33. F. Cherhal, F. Cousin, I. Capron, Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31(20), 5596–5602 (2015)

    Article  CAS  Google Scholar 

  34. G. Delepierre, O.M. Vanderfleet, E. Niinivaara, B. Zakani, E.D. Cranston, Benchmarking cellulose nanocrystals Part II: new industrially produced materials. Langmuir 37(28), 8393–8409 (2021)

    Article  CAS  Google Scholar 

  35. S.Y. Ding, M.E. Himmel, The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54(3), 597–606 (2006)

    Article  CAS  Google Scholar 

  36. S. Dong, M.J. Bortner, M. Roman, Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind. Crops Prod. 93, 76–87 (2016)

    Article  CAS  Google Scholar 

  37. X.M. Dong, D.G. Gray, Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 13(11), 3029–3034 (1997)

    Article  CAS  Google Scholar 

  38. A.G. Dumanli, H.M. Van Der Kooij, G. Kamita, E. Reisner, J.J. Baumberg, U. Steiner, S. Vignolini, Digital color in cellulose nanocrystal films. ACS Appl. Mater. Interf. 6(15), 12302–12306 (2014)

    Article  CAS  Google Scholar 

  39. S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund, T. Peijs, Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45(1), 1–33 (2010)

    Article  CAS  Google Scholar 

  40. D. Fengel, Ultrastructural behavior of cell wall polysaccharides. Tappi 53(3), 497–503 (1970)

    CAS  Google Scholar 

  41. A. Ferrer, E. Quintana, I. Filpponen, I. Solala, T. Vidal, A. Rodríguez, J. Laine, O.J. Rojas, Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6), 2179–2193 (2012)

    Article  CAS  Google Scholar 

  42. I. Filipova, V. Fridrihsone, U. Cabulis, A. Berzins, Synthesis of nanofibrillated cellulose by combined ammonium persulphate treatment with ultrasound and mechanical processing. Nanomaterials 8(9), 640 (2018). https://doi.org/10.3390/nano8090640

    Article  CAS  Google Scholar 

  43. E.J. Foster, R.J. Moon, U.P. Agarwal, M.J. Bortner, J. Bras, S. Camarero-Espinosa, K.J. Chan, M.J.D. Clift, E.D. Cranston, S.J. Eichhorn, D.M. Fox, W.Y. Hamad, L. Heux, B. Jean, M. Korey, W. Nieh, K.J. Ong, M.S. Reid, S. Renneckar, R. Roberts, J.A. Shatkin, J. Simonsen, K. Stinson-Bagby, N. Wanasekara, J. Youngblood, Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47(8), 2609–2679 (2018)

    Article  CAS  Google Scholar 

  44. A. Frey-Wyssling, The fine structure of cellulose microfibrils. Science 119(3081), 80–82 (1954)

    Article  CAS  Google Scholar 

  45. H. Fukuzumi, T. Saito, A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohyd. Polym. 93(1), 172–177 (2013)

    Article  CAS  Google Scholar 

  46. H. Fukuzumi, T. Saito, T. Wata, Y. Kumamoto, A. Isogai, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10, 162–165 (2009)

    Article  CAS  Google Scholar 

  47. E.S. Gardiner, A. Sarko, Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVIII. Can. J. Chem. 63, 173–180 (1985)

    Article  CAS  Google Scholar 

  48. K.H. Gardner, J. Blackwell, The hydrogen bonding in native cellulose. BBA – Gen. Subj. 343(1), 232–237 (1974)

    Article  CAS  Google Scholar 

  49. M. Giese, L.K. Blusch, M.K. Khan, M.J. MacLachlan, Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Edit. 54, 2888–2910 (2015)

    Article  CAS  Google Scholar 

  50. J.H. Grabber, J. Ralph, R.D. Hatfield, Model studies of ferulate - Coniferyl alcohol cross-product formation in primary maize walls: Implications for lignification in grasses. J. Agric. Food Chem. 50(21), 6008–6016 (2002)

    Article  CAS  Google Scholar 

  51. F. Gu, W. Wang, Z. Cai, F. Xue, Y. Jin, J.Y. Zhu, Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales. Cellulose 25(5), 2861–2871 (2018)

    Article  CAS  Google Scholar 

  52. W.Y. Hamad, T.Q. Hu, Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can. J. Chem. Eng. 88, 392–402 (2010)

    CAS  Google Scholar 

  53. M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polymer J. 43, 3434–3441 (2007)

    Article  CAS  Google Scholar 

  54. M. Hirota, K. Furihata, T. Saito, T. Kawada, A. Isogai, Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew. Chem. Int. Ed. 49(42), 7670–7672 (2010)

    Article  CAS  Google Scholar 

  55. I.C. Hoeger, S.S. Nair, A.J. Ragauskas, Y. Deng, O.J. Rojas, J.Y. Zhu, Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2), 807–818 (2013)

    Article  CAS  Google Scholar 

  56. A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1), 71–85 (2011)

    CAS  Google Scholar 

  57. T. Isogai, T. Saito, A. Isogai, TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromol 11(6), 1593–1599 (2010)

    Article  CAS  Google Scholar 

  58. S. Iwamoto, A.N. Nakagaito, H. Yano, Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A Mater. Sci. Process. 89, 461–466 (2007)

    Article  CAS  Google Scholar 

  59. C. Jia, L. Chen, Z. Shao, U.P. Agarwal, L. Hu, J.Y. Zhu, Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose, 1–16 (2017)

    Google Scholar 

  60. I. Kalashnikova, H. Bizot, P. Bertoncini, B. Cathala, I. Capron, Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9(3), 952–959 (2013)

    Article  CAS  Google Scholar 

  61. X. Kang, A. Kirui, M.C. Dickwella Widanage, F. Mentink-Vigier, D.J. Cosgrove, T. Wang, Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 10(1), 347 (2019). https://doi.org/10.1038/s41467-018-08252-0

    Article  CAS  Google Scholar 

  62. J.A. Kelly, A.M. Shukaliak, C.C.Y. Cheung, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan, Responsive photonic hydrogels based on nanocrystalline cellulose. Angew. Chem. Int. Ed. 52(34), 8912–8916 (2013)

    Article  CAS  Google Scholar 

  63. T. Kobayashi, Y. Sakai, Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid. Bull. Agric. Chem. Soc. Jpn. 20, 1–7 (1956)

    Article  CAS  Google Scholar 

  64. E. Kontturi, A. Meriluoto, P.A. Penttilä, N. Baccile, J.M. Malho, A. Potthast, T. Rosenau, J. Ruokolainen, R. Serimaa, J. Laine, H. Sixta, Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew. Chem. Int. Ed. 55(46), 14455–14458 (2016)

    Article  CAS  Google Scholar 

  65. P. Langan, Y. Nishiyama, H. Chanzy, A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J. Am. Chem. Soc. 121(43), 9940–9946 (1999)

    Article  CAS  Google Scholar 

  66. P.T. Larsson, K. Wickholm, T. Iversen, A CP/MAS 13 C NMR investigation of molecular ordering in celluloses. Carbohyd. Res. 302(1–2), 19–25 (1997)

    Article  CAS  Google Scholar 

  67. C.H. Lemke, R.Y. Dong, C.A. Michal, W.Y. Hamad, New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19(5), 1619–1629 (2012)

    Article  CAS  Google Scholar 

  68. A.C.W. Leung, S. Hrapovic, E. Lam, Y. Liu, K.B. Male, K.A. Mahmoud, J.H.T. Luong, Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3), 302–305 (2011)

    Article  CAS  Google Scholar 

  69. P. Li, J.A. Sirviö, A. Haapala, H. Liimatainen, Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl. Mater. Interf. 9(3), 2846–2855 (2017)

    Article  CAS  Google Scholar 

  70. T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier, J. Dai, O.J. Rojas, A. Isogai, L. Wågberg, L. Hu, Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021)

    Article  CAS  Google Scholar 

  71. J. Liao, K.A. Pham, V. Breedveld, Rheological characterization and modeling of cellulose nanocrystal and TEMPO-oxidized cellulose nanofibril suspensions. Cellulose 27(7), 3741–3757 (2020)

    Article  CAS  Google Scholar 

  72. H. Liimatainen, M. Visanko, J.A. Sirviö, O.E.O. Hormi, J. Niinimaki, Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromol 13(5), 1592–1597 (2012)

    Article  CAS  Google Scholar 

  73. C. Lin, B. Chen, Y. Liu, Y. Chen, M. Liu, J.Y. Zhu, Carboxylated cellulose nanocrystals with chiral nematic property from cotton by dicarboxylic acid hydrolysis. Carbohyd. Polym. 264 (2021)

    Google Scholar 

  74. N. Lin, A. Dufresne, Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6(10), 5384–5393 (2014)

    Article  CAS  Google Scholar 

  75. X. Luo, J.Y. Zhu, Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb. Technol. 48(1), 92–99 (2011)

    Article  CAS  Google Scholar 

  76. Q. Ma, J. Zhu, R. Gleisner, R. Yang, J.Y. Zhu, Valorization of wheat straw using a recyclable hydrotrope at low temperatures (≤90 °C). ACS Sustain. Chem. Eng. 6, 14480–14489 (2018). https://doi.org/10.1021/acssuschemeng.8b03135

    Article  CAS  Google Scholar 

  77. E. Maekawa, T. Koshijama, Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J. App. Polym. Sci. 29, 2289–2297 (1984)

    Article  CAS  Google Scholar 

  78. M.T. Maloney, T.W. Chapman, A.J. Baker, Dilute acid hydrolysis of paper birch: Kinetics studies of xylan and acetyl-group hydrolysis. Biotechnol. Bioeng. 27(3), 355–361 (1985)

    Article  CAS  Google Scholar 

  79. R.E. Mark, Cell wall mechanics and tracheids (Yale University Press, 1967)

    Google Scholar 

  80. H.E. McFarlane, A. Döring, S. Persson, The cell biology of cellulose synthesis. Ann. Rev. Plant Biol. 65, 69–94 (2014)

    Article  CAS  Google Scholar 

  81. S. Montanari, M. Roumani, L. Heux, M.R. Vignon, Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5), 1665–1671 (2005)

    Article  CAS  Google Scholar 

  82. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011)

    Article  CAS  Google Scholar 

  83. J.L. Moran, V.A. Alvarez, V.P. Cyras, A. Vazquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149–159 (2008)

    Article  CAS  Google Scholar 

  84. S.M. Mukherjee, H.J. Woods, X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim. Biophys. Acta 10, 499–511 (1953)

    Article  CAS  Google Scholar 

  85. K. Nelson, T. Retsina, V. Pylkkanen, R. O'Connor, Processes and apparatus for producing nanocellulose, and compositions and products produced therefrom. U.S. Patent No. 9,187,865 B2 (2015)

    Google Scholar 

  86. R.F. Nickerson, J.A. Habrle, Cellulose intercrystalline structure. Ind. Eng. Chem. 39, 1507–1512 (1947)

    Article  CAS  Google Scholar 

  87. Y. Nishiyama, U.J. Kim, D.Y. Kim, K.S. Katsumata, R.P. May, P. Langan, Periodic disorder along ramie cellulose microfibrils. Biomacromol 4(4), 1013–1017 (2003)

    Article  CAS  Google Scholar 

  88. Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124(31), 9074–9082 (2002)

    Article  CAS  Google Scholar 

  89. Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125(47), 14300–14306 (2003)

    Article  CAS  Google Scholar 

  90. H. Oguzlu, C. Danumah, Y. Boluk, Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr. Opin. Colloid Interface Sci. 29, 46–56 (2017)

    Article  CAS  Google Scholar 

  91. Y. Okita, T. Saito, A. Isogai, Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11(6), 1696–1700 (2010)

    Article  CAS  Google Scholar 

  92. W.J. Orts, L. Godbout, R.H. Marchessault, J.F. Revol, Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31(17), 5717–5725 (1998)

    Article  CAS  Google Scholar 

  93. S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10 (2010). https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  94. L. Petersson, I. Kvien, K. Oksman, Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67(11–12), 2535–2544 (2007)

    Article  CAS  Google Scholar 

  95. R.C. Pettersen, The chemical composition of wood, in The Chemistry of Solid Wood. Advances in Chemistry Series 207, ed. by R.M. Rowell (American Chemical Society. Washington D.C. 1984), pp. 115–116

    Google Scholar 

  96. M. Pääkko, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P.T. Larsson, O. Ikkala, T. Lindström, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 1934–1941 (2007)

    Article  Google Scholar 

  97. Y. Qin, X. Qiu, J.Y. Zhu, Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with dilute acid prehydrolysis. Sci. Rep. 6, 35602 (2016)

    Article  CAS  Google Scholar 

  98. M.S. Reid, M. Villalobos, E.D. Cranston, Benchmarking cellulose nanocrystals: From the laboratory to industrial production. Langmuir 33(7), 1583–1598 (2017)

    Article  CAS  Google Scholar 

  99. J.-F. Revol, H. Bradford, J. Giasson, R.H. Marchessault, D.G. Gray, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170–172 (1992)

    Article  CAS  Google Scholar 

  100. J.-F. Revol, L. Godbout, X.-M. Dong, D.G. Gray, H. Chanzy, G. Maret, Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq. Cryst. 16, 127–134 (1994)

    Article  CAS  Google Scholar 

  101. E. Rojo, M.S. Peresin, W.W. Sampson, I.C. Hoeger, J. Vartiainen, J. Laine, O.J. Rojas, Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical, and surface properties of nanocellulose films. Green Chem. 17, 1853–1866 (2015)

    Article  CAS  Google Scholar 

  102. M. Roman, W.T. Winter, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5(5), 1671–1677 (2004)

    Article  CAS  Google Scholar 

  103. S.P. Rowland, E.J. Roberts, Nature of accessible surfaces in the microstructure of cotton cellulose. J. Polym. Sci. Part A-1 Polym. Chem. 10(8), 2447–2461 (1972)

    Google Scholar 

  104. R. Rusli, K. Shanmuganathan, S.J. Rowan, C. Weder, S.J. Eichhorn, Stress transfer in cellulose nanowhisker composites—Influence of whisker aspect ratio and surface charge. Biomacromolecules 12(4), 1363–1369 (2011)

    Article  CAS  Google Scholar 

  105. B.G. Rånby, The colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158–164 (1951)

    Article  Google Scholar 

  106. T. Saito, A. Isogai, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983–1989 (2004)

    Article  CAS  Google Scholar 

  107. T. Saito, Y. Nishiyama, J.L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6), 1687–1691 (2006)

    Article  CAS  Google Scholar 

  108. L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)

    Article  CAS  Google Scholar 

  109. J.A. Sirviö, M. Visanko, H. Liimatainen, Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem. 17(6), 3401–3406 (2015)

    Article  Google Scholar 

  110. E. Sjostrom, Wood Chemistry: Fundamentals and Application, 2nd edn. (Academic Press Inc., San Diego, 1992)

    Google Scholar 

  111. K.L. Spence, R.A. Venditti, O.J. Rojas, Y. Habibi, J.J. Pawlak, The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications. Cellulose 17(4), 835–848 (2010)

    Article  CAS  Google Scholar 

  112. E.L. Springer, Hydrolysis of Aspenwood xylan with aqueous solutions of hydrochloric acid. TAPPI 49(3), 102–106 (1966)

    CAS  Google Scholar 

  113. A. Šturcová, G.R. Davies, S.J. Eichhorn, Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6(2), 1055–1061 (2005)

    Article  Google Scholar 

  114. C. Su, K. Hirth, Z. Liu, Y. Cao, J.Y. Zhu, Acid hydrotropic fractionation of switchgrass at atmospheric pressure using maleic acid in comparison with p-TsOH: Advantages of lignin esterification. Ind. Crops Prod. 159, 113017 (2021). https://doi.org/10.1016/j.indcrop.2020.113017

    Article  CAS  Google Scholar 

  115. C. Su, K. Hirth, Z. Liu, Y. Cao, J.Y. Zhu, Maleic acid hydrotropic fractionation of wheat straw to facilitate value-added multi-product biorefnery at atmospheric pressure. GCB Bioenergy 132021bhttps://doi.org/10.1111/gcbb.12866

  116. L. Tang, B. Huang, Q. Lu, S. Wang, W. Ou, W. Lin, X. Chen, Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Biores. Technol. 127, 100–105 (2013)

    Article  CAS  Google Scholar 

  117. A. Tejado, M.N. Alam, M. Antal, H. Yang, T.G.M. van de Ven, Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3), 831–842 (2012)

    Article  CAS  Google Scholar 

  118. T.M. Tenhunen, M.S. Peresin, P.A. Penttilä, J. Pere, R. Serimaa, T. Tammelin, Significance of xylan on the stability and water interactions of cellulosic nanofibrils. React. Funct. Polym. 85, 157–166 (2014)

    Article  CAS  Google Scholar 

  119. A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 37, 815–827 (1983)

    CAS  Google Scholar 

  120. O.M. Vanderfleet, D.A. Osorio, E.D. Cranston, Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 376(2112) (2018)

    Google Scholar 

  121. O.M. Vanderfleet, M.S. Reid, J. Bras, L. Heux, J. Godoy-Vargas, M.K.R. Panga, E.D. Cranston, Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26(1), 507–528 (2019)

    Article  CAS  Google Scholar 

  122. M. Wada, L. Heux, J. Sugiyama, Polymorphism of cellulose I family: reinvestigation of cellulose IVl. Biomacromolecules 5(4), 1385–1391 (2004)

    Article  CAS  Google Scholar 

  123. M. Wada, Y. Nishiyama, P. Langan, X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39(8), 2947–2952 (2006)

    Article  CAS  Google Scholar 

  124. H. Wang, J.J. Zhu, Q. Ma, U.P. Agarwal, R. Gleisner, R. Reiner, C. Baez, C. Liu, J.Y. Zhu, Pilot-scale production of cellulosic nano whiskers with similar morphology to cellulose nanocrystals. Front. Bioeng. Biotechnol. 8, 565084 (2020). https://doi.org/10.3389/fbioe.2020.565084

    Article  Google Scholar 

  125. H. Wang, M. Zuo, N. Ding, G. Yan, X. Zeng, X. Tang, Y. Sun, T. Lei, L. Lin, Preparation of nanocellulose with high-pressure homogenization from pretreated biomass with cooking with active oxygen and solid alkali. ACS Sustain. Chem. Eng. 7(10), 9378–9386 (2019). https://doi.org/10.1021/acssuschemeng.9b00582

    Article  CAS  Google Scholar 

  126. Q. Wang, X. Zhao, J.Y. Zhu, Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind. Eng. Chem. Res. 53(27), 11007–11014 (2014)

    Article  CAS  Google Scholar 

  127. Q.Q. Wang, Z. He, Z. Zhu, Y.-H.P. Zhang, Y. Ni, X.L. Luo, J.Y. Zhu, Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol. Bioeng. 109(2), 381–389 (2012)

    Article  CAS  Google Scholar 

  128. Q.Q. Wang, J.Y. Zhu, J.M. Considine, Strong and optically transparent films prepared using cellulosic solid residue (CSR) recovered from cellulose nanocrystals (CNC) production waste stream. ACS Appl. Mater. Interf. 5(7), 2527–2534 (2013)

    Article  CAS  Google Scholar 

  129. Q.Q. Wang, J.Y. Zhu, R. Gleisner, T.A. Kuster, U. Baxa, S.E. McNeil, Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5), 1631–1643 (2012)

    Article  CAS  Google Scholar 

  130. Q.Q. Wang, J.Y. Zhu, R.S. Reiner, S.P. Verrill, U. Baxa, S.E. McNeil, Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6), 2033–2047 (2012)

    Article  CAS  Google Scholar 

  131. R. Wang, L. Chen, J.Y. Zhu, R. Yang, Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. Chem. Nano Mater. 3(5), 328–335 (2017)

    CAS  Google Scholar 

  132. W. Wang, M.D. Mozuch, R.C. Sabo, P. Kersten, J.Y. Zhu, Y. Jin, Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 22, 351–361 (2015)

    Article  CAS  Google Scholar 

  133. Q. Wu, Y. Meng, S. Wang, Y. Li, S. Fu, L. Ma, Harper, D. 2014. Rheological behavior of cellulose nanocrystal suspension: Influence of concentration and aspect ratio. J. Appl. Polym. Sci. 131(15)

    Google Scholar 

  134. Q. Xiang, Y.Y. Lee, R.W. Torget, Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl. Biochem. Biotechnol. 113–16, 1127–1138 (2004)

    Article  Google Scholar 

  135. X. Xu, F. Liu, L. Jiang, J.Y. Zhu, D. Haagenson, D.P. Wiesenborn, Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interf. 5(8), 2999–3009 (2013)

    Google Scholar 

  136. H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, L. Chen, Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1(12), 3938–3944 (2013)

    Article  CAS  Google Scholar 

  137. X. Zhao, Y. Zhou, D. Liu, Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse. Biores. Technol. 105, 160–168 (2012)

    Article  CAS  Google Scholar 

  138. H. Zhou, F. St. John, J.Y. Zhu, Xylanase pretreatment of wood fibers for producing cellulose nanofibrils: a comparison of different enzyme preparations. Cellulose 26(1), 543–555 (2019)

    Google Scholar 

  139. H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu, G. Henriksson, M.E. Himmel, L. Hu, Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016)

    Article  CAS  Google Scholar 

  140. J. Zhu, L. Chen, R. Gleisner, J.Y. Zhu, Co-production of bioethanol and furfural from poplar wood via low temperature (≤90 °C) acid hydrotropic fractionation (AHF). Fuel 254, 115572 (2019). https://doi.org/10.1016/j.fuel.2019.05.155

    Article  CAS  Google Scholar 

  141. J.Y. Zhu, U.P. Agarwal, P.N. Ciesielski, M.E. Himmel, R. Gao, Y. Deng, M. Morits, M. Österberg, Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. Biotechnol. Biofuels 14, 114 (2021). https://doi.org/10.1186/s13068-021-01963-5

    Article  CAS  Google Scholar 

  142. J.Y. Zhu, L.H. Chen, C. Cai, Acid hydrotropic fractionation of lignocelluloses for sustainable biorefinery: advantages, opportunities, and research needs. Chemsuschem 14(15), 3031–3046 (2021). https://doi.org/10.1002/cssc.202100915

    Article  CAS  Google Scholar 

  143. J.Y. Zhu, R. Sabo, X. Luo, Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 13(5), 1339–1344 (2011)

    Article  CAS  Google Scholar 

  144. J.Y. Zhu, X.S. Zhuang, Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog. Energy Combust. Sci. 38(4), 583–589 (2012)

    Article  CAS  Google Scholar 

  145. W. Zhu, C.J. Houtman, J.Y. Zhu, R. Gleisner, K.F. Chen, Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF). Process Biochem. 47, 785–791 (2012)

    Article  CAS  Google Scholar 

  146. W. Zhu, J.Y. Zhu, R. Gleisner, X.J. Pan, On energy consumption for size-reduction and yield from subsequent enzymatic sacchrification of pretreated lodgepole pine. Biores. Technol. 101(8), 2782–2792 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, J.Y., Agarwal, U.P. (2023). Nanocellulose: Native State, Production, and Characterization. In: Hu, L., Jiang, F., Chen, C. (eds) Emerging Nanotechnologies in Nanocellulose. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-14043-3_1

Download citation

Publish with us

Policies and ethics