Skip to main content

Acute Kidney Injury: Pathophysiology, Diagnosis and Prevention

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 1142 Accesses

Abstract

Acute kidney injury (AKI) is an increasingly common problem afflicting all ages, occurring in 10–30% of non-critically ill hospitalized children and >30% of children in critical care units. AKI is the leading reason to seek in-patient nephrology consultation and associated with serious short-term and long-term consequences, and therapeutic options are unsatisfactory. The etiology of AKI varies widely according to age, geographical region, and clinical setting. Functional AKI induced by dehydration is usually reversible with early fluid therapy. However, the prognosis for patients with structural AKI in the setting of critical illness remains guarded. Recent clinical advances have highlighted the definitions, epidemiology, and roles of fluid overload and continuous kidney support therapies in human AKI. Additionally, newly discovered pathogenetic pathways are yielding novel early biomarkers for the prediction of AKI and its consequences, as well as innovative strategies for the pro-active treatment and prevention of AKI. A judicious combination of clinical judgment, established functional markers, novel structural markers, and technical advances in therapies holds the greatest promise for progress in human intrinsic AKI. This chapter will focus on recent advances in the definitions, epidemiology, pathophysiology, diagnosis, prevention, and outcomes of pediatric AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Starr MC, Charlton JR, Guillet R, Reidy K, Tipple TE, Jetton JG, Kent AL, Abitbol CL, Ambalavanan N, Mhanna MJ, Askenazi DJ, Selewski DT, Harer MW, Neonatal Kidney Collaborative Board. Advances in neonatal acute kidney injury. Pediatrics. 2021;148(5):e2021051220.

    Article  PubMed  Google Scholar 

  2. Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14(10):607–25.

    Article  CAS  PubMed  Google Scholar 

  3. Desanti De Oliveira B, Xu K, Shen TH, et al. Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol. 2019;15(10):599–612.

    Article  CAS  PubMed  Google Scholar 

  4. Roy J-P, Devarajan P. Acute kidney injury: diagnosis and management. Indian J Pediatr. 2020;87(8):600–7.

    Article  PubMed  Google Scholar 

  5. Devarajan P. The current state of the art in acute kidney injury. Front Pediatr. 2020;9:70.

    Article  Google Scholar 

  6. Sandokji I, Greenberg JH. Novel biomarkers of acute kidney injury in children: an update on recent findings. Curr Opin Pediatr. 2020;32(3):354–9.

    Article  CAS  PubMed  Google Scholar 

  7. Liu KD, Goldstein SL, Viyayan A, et al. AKI!Now Initiative: recommendations for awareness, recognition, and management of AKI. Clin J Am Soc Nephrol. 2020;15(12):1838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutherland SM, Byrnes JJ, Kothari M, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.

    Article  CAS  PubMed  Google Scholar 

  10. Bagga A, Bakkaloglu A, Devarajan P, Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Joannidis M, Levin A, Acute Kidney Injury Network. Improving outcomes from acute kidney injury: report of an initiative. Pediatr Nephrol. 2007;22(10):1655–8.

    Article  PubMed  Google Scholar 

  11. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Google Scholar 

  12. Devarajan P. Pediatric acute kidney injury: different from acute renal failure, but how and why? Curr Pediatr Rep. 2013;1(1):34–40.

    Article  PubMed  Google Scholar 

  13. Ciccia E, Devarajan P. Pediatric acute kidney injury: prevalence, impact and management challenges. Int J Nephrol Renovasc Dis. 2017;10:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roy J-P, Johnson C, Towne B, et al. Use of height-independent baseline creatinine imputation method with renal angina index. Pediatr Nephrol. 2019;34(10):1777–84.

    Article  PubMed  PubMed Central  Google Scholar 

  16. O’Neil ER, Devaraj S, Mayorquin L, et al. Defining pediatric community-acquired acute kidney injury: an observational study. Pediatr Res. 2020;87:564–8.

    Article  PubMed  Google Scholar 

  17. Kaddourah A, Basu RK, Goldstein SL, Sutherland SM, Assessment of Worldwide Acute Kidney Injury, Renal Angina and, Epidemiology (AWARE) Investigators. Oliguria and acute kidney injury in critically ill children: implications for diagnosis and outcomes. Pediatr Crit Care Med. 2019;20(4):332–9.

    Article  PubMed  Google Scholar 

  18. Goldstein SL. Urine output assessment in acute kidney injury: the cheapest and most impactful biomarker. Front Pediatr. 2020;7:565.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xu X, Nie S, Zhang A, Jianhua M, Liu HP, Xia H, Xu H, Liu Z, Feng S, Zhou W, Liu X, Yang Y, Tao Y, Feng Y, Chen C, Wang M, Zha Y, Feng JH, Li Q, Ge S, Chen J, He Y, Teng S, Hao C, Liu BC, Tang Y, Wang LJ, Qi JL, He W, He P, Liu Y, Hou FF. A new criterion for pediatric AKI based on the reference change value of serum creatinine. J Am Soc Nephrol. 2018;29(9):2432–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei C, Hongxia G, Hui F, Danqun J, Haipen L. Impact of and risk factors for pediatric acute kidney injury defined by the pROCK criteria in a Chinese PICU population. Pediatr Res. 2021;89(6):1485–91.

    Article  PubMed  Google Scholar 

  21. Lameire NH, Levin A, Kellum JA, Cheung M, Jadoul M, Winkelmayer WC, Stevens PE, Conference Participants. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021;100(3):516–26.

    Article  PubMed  Google Scholar 

  22. Basu RK, Kaddourah A, Goldstein SL, AWARE Study Investigators. Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health. 2018;2:112–20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sethi SK, Raghunathan V, Shah S, Dhaliwal M, Jha P, Kumar M, Paluri S, Bansal S, Mhanna MJ, Raina R. Fluid overload and renal angina index at admission are associated with worse outcomes in critically ill children. Front Pediatr. 2018;6:118.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hanson HR, Carlisle MA, Bensman RS, et al. Early prediction of pediatric acute kidney injury from the emergency department: a pilot study. Am J Emerg Med. 2021;40:138–44.

    Article  PubMed  Google Scholar 

  25. Huang L, Shi T, Quan W, et al. Assessment of early renal anginal index for prediction of subsequent severe acute kidney injury during septic shock in children. BMC Nephrol. 2020;21(1):358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Basu RK, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol. 2014;9:654–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stanski N, Menon S, Goldstein SL, Basu RK. Integration of urinary neutrophil gelatinase-associated lipocalin with serum creatinine delineates acute kidney injury phenotypes in critically ill children. J Crit Care. 2019;53:1–7.

    Article  CAS  PubMed  Google Scholar 

  28. Abbasi A, Rabori PM, Farajollahi R, et al. Discriminatory precision of renal angina index in predicting acute kidney injury in children; a systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8(1):e39.

    PubMed  PubMed Central  Google Scholar 

  29. Parikh RV, Tan TC, Salyer AS, Auron A, Kim PS, Ku E, Go AS. Community-based epidemiology of hospitalized acute kidney injury. Pediatrics. 2020;146(3):e20192821.

    Article  PubMed  Google Scholar 

  30. Wang L, McGregor TL, Jones DP, Bridges BC, Fleming GM, Shirey-Rice J, McLemore MF, Chen L, Weitkamp A, Byrne DW, Van Driest SL. Electronic health record-based predictive models for acute kidney injury screening in pediatric inpatients. Pediatr Res. 2017;82:465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gubb S, Holmes J, Smith G, et al. Acute kidney injury in children based on electronic alerts. J Pediatr. 2020;220:14–20.

    Article  PubMed  Google Scholar 

  32. Xu X, Nie S, Zhang A, et al. Acute kidney injury among hospitalized children in China. Clin J Am Soc Nephrol. 2018;13:1791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhojani S, Stojanovic J, Melhem N, et al. The incidence of pediatric acute kidney injury identified using an AKI E-Alert algorithm in six English hospitals. Front Pediatr. 2020;8:29. https://doi.org/10.3389/fped.2020.00029.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sandokji I, Yamamoto Y, Biswas A, et al. A time-updated parsimonious model to predict AKI in hospitalized children. J Am Soc Nephrol. 2020;31(6):1348–57.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaddourah A, Basu RK, Bagshaw SM, et al. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.

    Article  PubMed  Google Scholar 

  36. Jetton JG, Boohaker LJ, Sethi SK, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicenter, multinational, observational cohort study. Lancet Child Adolesc Health. 2017;1(3):184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lameire N, Van Biesen W, Vanholder R. Epidemiology of acute kidney injury in children worldwide, including developing countries. Pediatr Nephrol. 2017;32:1301–14.

    Article  PubMed  Google Scholar 

  38. Macedo E, Cerdá J, Hingorani S, et al. Recognition and management of acute kidney injury in children: the ISN 0by25 Global Snapshot study. PLoS One. 2018;13:e0196586.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chang JW, Jeng MJ, Yang LY, et al. The epidemiology and prognostic factors of mortality in critically ill children with acute kidney injury in Taiwan. Kidney Int. 2015;87:632–9.

    Article  PubMed  Google Scholar 

  40. Fitzgerald JC, Ross ME, Thomas NJ, et al. Risk factors and inpatient outcomes associated with acute kidney injury at pediatric severe sepsis presentation. Pediatr Nephrol. 2018;33:1781–90.

    Article  PubMed  Google Scholar 

  41. Alobaidi R, Morgan C, Goldstein SL, Bagshaw SM. Population-based epidemiology and outcomes of acute kidney injury in critically ill children. Pediatr Crit Care Med. 2020;21:82–91.

    Article  PubMed  Google Scholar 

  42. Fitzgerald JC, Basu RK, Akcan-Arikan A, Izquierdo LM, Piñeres Olave BE, Hassinger AB, Szczepanska M, Deep A, Williams D, Sapru A, Roy JA, Nadkarni VM, Thomas NJ, Weiss SL, Furth S, Sepsis PRevalence, OUtcomes, and Therapies Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators Network. Acute kidney injury in pediatric severe sepsis: an independent risk factor for death and new disability. Crit Care Med. 2016;44:2241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Charlton JR, Boohaker L, Askenazi D, et al. Incidence and risk factors of early onset neonatal AKI. Clin J Am Soc Nephrol. 2019;14(2):184–95.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mwamanenge NA, Assenga E, Furia FF. Acute kidney injury among critically ill neonates in a tertiary hospital in Tanzania; prevalence, risk factors and outcome. PLoS One. 2020;15(2):e0229074. eCollection 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Askenazi DJ, Heagerty PJ, Schmicker RH, et al. Prevalence of acute kidney injury (AKI) in extremely low gestational age neonates (ELGAN). Pediatr Nephrol. 2020;35(9):1737–48.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Balestracci A, Ezquer M, Elmo ME, et al. Ibuprofen-associated acute kidney injury in dehydrated children with acute gastroenteritis. Pediatr Nephrol. 2015;30:1873–8.

    Article  PubMed  Google Scholar 

  47. Nehus E, Kaddourah A, Bennett M, Pyles O, Devarajan P. Subclinical kidney injury in children receiving nonsteroidal anti-inflammatory drugs after cardiac surgery. J Pediatr. 2017;189:175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Downes KJ, Cowden C, Laskin BL, et al. Association of acute kidney injury with concomitant vancomycin and piperacillin/tazobactam treatment among hospitalized children. JAMA Pediatr. 2017;171:e173219.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Joyce EL, Kane-Gill SL, Priyanka P, et al. Piperacillin/Tazobactam and antibiotic-associated acute kidney injury in critically ill children. J Am Soc Nephrol. 2019;30(11):2243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gilligan LA, Davenport MS, Trout AT, et al. Risk of acute kidney injury following contrast-enhanced CT in hospitalized pediatric patients: a propensity score analysis. Radiology. 2020;294(3):548–56.

    Article  PubMed  Google Scholar 

  51. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  CAS  PubMed  Google Scholar 

  52. Dent CL, Ma Q, Dastrala S, et al. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11:R127.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3:665.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Krawczeski CD, Woo JG, Wang Y, et al. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr. 2011;158:1009.

    Article  CAS  PubMed  Google Scholar 

  55. Krawczeski CD, Goldstein SL, Woo JG, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58:2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li S, Krawczeski CD, Zappitelli M, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39:1493.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jefferies JL, Devarajan P. Early detection of acute kidney injury after pediatric cardiac surgery. Prog Pediatr Cardiol. 2016;41:9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hirano D, Ito A, Yamada A, et al. Independent risk factors and 2-year outcomes of acute kidney injury after surgery for congenital heart disease. Am J Nephrol. 2017;46:204.

    Article  PubMed  Google Scholar 

  59. Park PG, Hong CR, Kang E, et al. Acute kidney injury in pediatric cancer patients. J Pediatr. 2019;208:243.

    Article  PubMed  Google Scholar 

  60. Xiong M, Wang L, Sue L, et al. Acute kidney injury among hospitalized children with cancer. Pediatr Nephrol. 2021;36:171.

    Article  PubMed  Google Scholar 

  61. Kizilbash SJ, Kashtan CE, Chavers BM, et al. Acute kidney injury and the risk of mortality in children undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22:1264.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koh KN, Sunkara A, Kang G, et al. Acute kidney injury in pediatric patients receiving allogeneic hematopoietic cell transplantation: incidence, risk factors, and outcomes. Biol Blood Marrow Transplant. 2018;24:758.

    Article  PubMed  Google Scholar 

  63. Hamada M, Matsukawa S, Shimizu S, et al. Acute kidney injury after pediatric liver transplantation: incidence, risk factors, and association with outcome. J Anesth. 2017;31:758.

    Article  PubMed  Google Scholar 

  64. Rheault MN, Zhang L, Selewski DT, et al. AKI in children hospitalized with nephrotic syndrome. Clin J Am Soc Nephrol. 2015;10:2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baddam S, Aban I, Hilliard L, et al. Acute kidney injury during a pediatric sickle cell vaso-occlusive pain crisis. Pediatr Nephrol. 2017;32(8):1451–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang X, Chen X, Tang F, Luo W, Fang J, Qi C, Sun H, Xiao H, Peng X, Shao J. Be aware of acute kidney injury in critically ill children with COVID-19. Pediatr Nephrol. 2021;36(1):163–9.

    Article  PubMed  Google Scholar 

  67. Chopra S, Saha A, Kumar V, Thakur A, Pemde H, Kapoor D, Ray S, Das A, Pandit K, Gulati A, Sharma AG, Singh P, Sodani R. Acute kidney injury in hospitalized children with COVID19. J Trop Pediatr. 2021;67(2):fmab037.

    Article  PubMed  Google Scholar 

  68. Kari JA, Shalaby MA, Albanna AS, Alahmadi TS, Alherbish A, Alhasan KA. Acute kidney injury in children with COVID-19: a retrospective study. BMC Nephrol. 2021;22(1):202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Raina R, Chakraborty R, Mawby I, Agarwal N, Sethi S, Forbes M. Critical analysis of acute kidney injury in pediatric COVID-19 patients in the intensive care unit. Pediatr Nephrol. 2021;36(9):2627–38.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sethi SK, Rana A, Adnani H, McCulloch M, Alhasan K, Sultana A, Safadi R, Agrawal N, Raina R. Kidney involvement in multisystem inflammatory syndrome in children: a pediatric nephrologist’s perspective. Clin Kidney J. 2021;14(9):2000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Drożdżal S, Lechowicz K, Szostak B, Rosik J, Kotfis K, Machoy-Mokrzyńska A, Białecka M, Ciechanowski K, Gawrońska-Szklarz B. Kidney damage from nonsteroidal anti-inflammatory drugs-Myth or truth? Review of selected literature. Pharmacol Res Perspect. 2021;9(4):e00817.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Misurac JM, Knoderer CA, Leiser JD, Nailescu C, Wilson AC, Andreoli SP. Nonsteroidal anti-inflammatory drugs are an important cause of acute kidney injury in children. J Pediatr. 2013;162(6):1153–9.

    Article  CAS  PubMed  Google Scholar 

  73. Clavé S, Rousset-Rouvière C, Daniel L, Tsimaratos M. The invisible threat of non-steroidal anti-inflammatory drugs for kidneys. Front Pediatr. 2019;7:520.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pham JT, Jacobson JL, Ohler KH, Kraus DM, Calip GS. Evaluation of the risk factors for acute kidney injury in neonates exposed to antenatal indomethacin. J Pediatr Pharmacol Ther. 2020;25(7):606–16.

    PubMed  PubMed Central  Google Scholar 

  75. Gong J, Ma L, Li M, Ma L, Chen C, Zhao S, Zhou Y, Cui Y. Nonsteroidal anti-inflammatory drugs associated acute kidney injury in hospitalized children: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2021; https://doi.org/10.1002/pds.5385.

  76. Chappell MC. Non-classical renin-angiotensin system and renal function. Compr Physiol. 2012;2(4):2733–52.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Arora P, Rajagopalam S, Ranjan R, Kolli H, Singh M, Venuto R, Lohr J. Preoperative use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers is associated with increased risk for acute kidney injury after cardiovascular surgery. Clin J Am Soc Nephrol. 2008;3(5):1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Terano C, Ishikura K, Miura M, Hamada R, Harada R, Sakai T, Hamasaki Y, Hataya H, Ando T, Honda M. Incidence of and risk factors for severe acute kidney injury in children with heart failure treated with renin-angiotensin system inhibitors. Eur J Pediatr. 2016;175(5):631–7.

    Article  CAS  PubMed  Google Scholar 

  79. Moffett BS, Goldstein SL, Adusei M, Kuzin J, Mohan P, Mott AR. Risk factors for postoperative acute kidney injury in pediatric cardiac surgery patients receiving angiotensin-converting enzyme inhibitors. Pediatr Crit Care Med. 2011;12(5):555–9.

    Article  PubMed  Google Scholar 

  80. Benoit SW, Devarajan P. Acute kidney injury: emerging pharmacotherapies in current clinical trials. Pediatr Nephrol. 2018;33(5):779–87.

    Article  PubMed  Google Scholar 

  81. Molema G, Zijlstra JG, van Meurs M, Kamps JAAM. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol. 2021; https://doi.org/10.1038/s41581-021-00489-1.

  82. Sun J, Zhang J, Tian J, Virzì GM, Digvijay K, Cueto L, Yin Y, Rosner MH, Ronco C. Mitochondria in sepsis-induced AKI. J Am Soc Nephrol. 2019;30(7):1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu J, Spina S, Zadek F, Kamenshchikov NO, Bittner EA, Pedemonte J, Berra L. Effect of nitric oxide on postoperative acute kidney injury in patients who underwent cardiopulmonary bypass: a systematic review and meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Waskowski J, Pfortmueller CA, Erdoes G, Buehlmann R, Messmer AS, Luedi MM, Schmidli J, Schefold JC. Mannitol for the prevention of peri-operative acute kidney injury: a systematic review. Eur J Vasc Endovasc Surg. 2019;58(1):130–40.

    Article  PubMed  Google Scholar 

  85. Abraham S, Rameshkumar R, Chidambaram M, Soundravally R, Subramani S, Bhowmick R, Sheriff A, Maulik K, Mahadevan S. Trial of furosemide to prevent acute kidney injury in critically ill children: a double-blind, randomized, controlled trial. Indian J Pediatr. 2021;88(11):1099–106.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Harer MW, Askenazi DJ, Boohaker LJ, Carmody JB, Griffin RL, Guillet R, Selewski DT, Swanson JR, Charlton JR, Neonatal Kidney Collaborative (NKC). Association between early caffeine citrate administration and risk of acute kidney injury in preterm neonates: results from the AWAKEN study. JAMA Pediatr. 2018;172(6):e180322.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bhatt GC, Gogia P, Bitzan M, Das RR. Theophylline and aminophylline for prevention of acute kidney injury in neonates and children: a systematic review. Arch Dis Child. 2019;104(7):670–9.

    Article  PubMed  Google Scholar 

  88. Bellos I, Pandita A, Yachha M. Effectiveness of theophylline administration in neonates with perinatal asphyxia: a meta-analysis. J Matern Fetal Neonatal Med. 2021;34(18):3080–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sharma S, Leaf DE. Iron chelation as a potential therapeutic strategy for AKI prevention. J Am Soc Nephrol. 2019;30(11):2060–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, Brown CD, Noiseux N, Atta MG, Squiers EC, Erlich S, Rothenstein D, Molitoris B, Mazer CD. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation. 2021;144(14):1133–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tian Y, Li X, Wang Y, Zhao W, Wang C, Gao Y, Wang S, Liu J. Association between preoperative statin exposure and acute kidney injury in adult patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2021;36(4):1014–20.

    Article  PubMed  Google Scholar 

  92. Askenazi DJ, Heagerty PJ, Schmicker RH, Brophy P, Juul SE, Goldstein SL, Hingorani S, PENUT Trial Consortium. The impact of erythropoietin on short- and long-term kidney-related outcomes in neonates of extremely low gestational age. Results of a multicenter, double-blind, placebo-controlled randomized clinical trial. J Pediatr. 2021;232:65–72.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Legrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, Cantaluppi V. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol. 2021;17(11):751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. You R, Zheng H, Xu L, Ma T, Chen G, Xia P, Fan X, Ji P, Wang L, Chen L. Decreased urinary uromodulin is potentially associated with acute kidney injury: a systematic review and meta-analysis. J Intensive Care. 2021;9(1):70.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, Schuh MP, Kofron JM, Devarajan P, Potter SS. Single-cell profiling of AKI in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J Am Soc Nephrol. 2020;31(12):2793–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Suszták K. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360(6390):758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu H, Malone AF, Donnelly EL, Kirita Y, Uchimura K, Ramakrishnan SM, Gaut JP, Humphreys BD. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J Am Soc Nephrol. 2018;29(8):2069–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS, Humphreys BD. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021;12(1):2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu H, Kirita Y, Donnelly EL, Humphreys BD. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J Am Soc Nephrol. 2019;30(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  100. Devarajan P. Genomic and proteomic characterization of acute kidney injury. Nephron. 2015;131(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  101. Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk K. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 2015;88(4):734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu K, Rosenstiel P, Paragas N, Hinze C, Gao X, Huai Shen T, Werth M, Forster C, Deng R, Bruck E, Boles RW, Tornato A, Gopal T, Jones M, Konig J, Stauber J, D'Agati V, Erdjument-Bromage H, Saggi S, Wagener G, Schmidt-Ott KM, Tatonetti N, Tempst P, Oliver JA, Guarnieri P, Barasch J. Unique transcriptional programs identify subtypes of AKI. J Am Soc Nephrol. 2017;28(6):1729–40.

    Article  CAS  PubMed  Google Scholar 

  103. Liu J, Kumar S, Dolzhenko E, Alvarado GF, Guo J, Lu C, Chen Y, Li M, Dessing MC, Parvez RK, Cippà PE, Krautzberger AM, Saribekyan G, Smith AD, McMahon AP. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight. 2017;2(18):e94716.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bowers SLK, Davis-Rodriguez S, Thomas ZM, Rudomanova V, Bacon WC, Beiersdorfer A, Ma Q, Devarajan P, Blaxall BC. Inhibition of fibronectin polymerization alleviates kidney injury due to ischemia-reperfusion. Am J Physiol Renal Physiol. 2019;316(6):F1293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao B, Lu Q, Cheng Y, Belcher JM, Siew ED, Leaf DE, Body SC, Fox AA, Waikar SS, Collard CD, Thiessen-Philbrook H, Ikizler TA, Ware LB, Edelstein CL, Garg AX, Choi M, Schaub JA, Zhao H, Lifton RP, Parikh CR, TRIBE-AKI Consortium. A genome-wide association study to identify single-nucleotide polymorphisms for acute kidney injury. Am J Respir Crit Care Med. 2017;195(4):482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chihanga T, Ma Q, Nicholson JD, Ruby HN, Edelmann RE, Devarajan P, Kennedy MA. NMR spectroscopy and electron microscopy identification of metabolic and ultrastructural changes to the kidney following ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2018;314(2):F154–66.

    Article  PubMed  Google Scholar 

  107. Chihanga T, Ruby HN, Ma Q, Bashir S, Devarajan P, Kennedy MA. NMR-based urine metabolic profiling and immunohistochemistry analysis of nephron changes in a mouse model of hypoxia-induced acute kidney injury. Am J Physiol Renal Physiol. 2018;315(4):F1159–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Poyan Mehr A, Tran MT, Ralto KM, Leaf DE, Washco V, Messmer J, Lerner A, Kher A, Kim SH, Khoury CC, Herzig SJ, Trovato ME, Simon-Tillaux N, Lynch MR, Thadhani RI, Clish CB, Khabbaz KR, Rhee EP, Waikar SS, Berg AH, Parikh SM. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nat Med. 2018;24(9):1351–9.

    Article  CAS  PubMed  Google Scholar 

  109. Alge J, Dolan K, Angelo J, Thadani S, Virk M, Akcan Arikan A. Two to tango: kidney-lung interaction in acute kidney injury and acute respiratory distress syndrome. Front Pediatr. 2021;18(9):744110.

    Article  Google Scholar 

  110. Cavanaugh C, Perazella MA. Urine sediment examination in the diagnosis and management of kidney disease: core curriculum 2019. Am J Kidney Dis. 2019;73(2):258–72.

    Article  PubMed  Google Scholar 

  111. Cox ZL, Sury K, Rao VS, Ivey-Miranda JB, Griffin M, Mahoney D, Gomez N, Fleming JH, Inker LA, Coca SG, Turner J, Wilson FP, Testani JM. Effect of loop diuretics on the fractional excretion of urea in decompensated heart failure. J Card Fail. 2020;26(5):402–9.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Selewski DT, Goldstein SL. The role of fluid overload in the prediction of outcome in acute kidney injury. Pediatr Nephrol. 2018;33(1):13–24.

    Article  PubMed  Google Scholar 

  113. Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr. 2011;23:194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4:1832–43.

    Article  PubMed  Google Scholar 

  115. Renganathan A, Warner BB, Tarr PI, Dharnidharka VR. The progression of serum cystatin C concentrations within the first month of life after preterm birth-a worldwide systematic review. Pediatr Nephrol. 2021;36(7):1709–18.

    Article  PubMed  Google Scholar 

  116. Benoit SW, Ciccia EA, Devarajan P. Cystatin C as a biomarker of chronic kidney disease: latest developments. Expert Rev Mol Diagn. 2020;20(10):1019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pottel H, Dubourg L, Goffin K, Delanaye P. Alternatives for the bedside Schwartz equation to estimate glomerular filtration rate in children. Adv Chronic Kidney Dis. 2018;25(1):57–66.

    Article  PubMed  Google Scholar 

  118. Mian AN, Schwartz GJ. Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis. 2017;24(6):348–56.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nakhjavan-Shahraki B, Yousefifard M, Ataei N, Baikpour M, Ataei F, Bazargani B, Abbasi A, Ghelichkhani P, Javidilarijani F, Hosseini M. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and meta-analysis. BMC Nephrol. 2017;18(1):120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Krawczeski CD, Vandevoorde RG, Kathman T, Bennett MR, Woo JG, Wang Y, Griffiths RE, Devarajan P. Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol. 2010;5(9):1552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Volpon LC, Sugo EK, Carlotti AP. Diagnostic and prognostic value of serum cystatin C in critically ill children with acute kidney injury. Pediatr Crit Care Med. 2015;16(5):e125–31.

    Article  PubMed  Google Scholar 

  122. Soto K, Coelho S, Rodrigues B, Martins H, Frade F, Lopes S, Cunha L, Papoila AL, Devarajan P. Cystatin C as a marker of acute kidney injury in the emergency department. Clin J Am Soc Nephrol. 2010;5(10):1745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T, Lamb EJ, Rule AD, Turner ST, Glassock RJ, De Souza V, Selistre L, Goffin K, Pauwels S, Mariat C, Flamant M, Ebert N. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant. 2017;32(3):497–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med. 2010;4:265–80.

    Article  CAS  PubMed  Google Scholar 

  125. Kulvichit W, Kellum JA, Srisawat N. Biomarkers in acute kidney injury. Crit Care Clin. 2021;37(2):385–98.

    Article  PubMed  Google Scholar 

  126. Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, Bell M, Forni L, Guzzi L, Joannidis M, Kane-Gill SL, Legrand M, Mehta R, Murray PT, Pickkers P, Plebani M, Prowle J, Ricci Z, Rimmelé T, Rosner M, Shaw AD, Kellum JA, Ronco C. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw Open. 2020;3(10):e2019209.

    Article  PubMed  Google Scholar 

  127. Parikh CR, Devarajan P, Zappitelli M, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol. 2011;22:1737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zappitelli M, Washburn KK, Arikan AA, et al. Urine NGAL is an early marker of acute kidney injury in critically ill children. Crit Care. 2007;11(4):R84.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Du Y, Zappitelli M, Mian A, et al. Urinary biomarkers to detect acute kidney injury in the pediatric emergency center. Pediatr Nephrol. 2011;26(2):267–74.

    Article  PubMed  Google Scholar 

  131. Nickolas TL, Schmidt-Ott KM, Canetta P, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59:246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori K, Giglio J, Devarajan P, Barasch J. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148(11):810–9.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Haase M, Devarajan P, Haase-Fielitz A, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury – a critical evaluation of current status. Ann Clin Biochem. 2014;51(Pt 3):335–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–24.

    Article  CAS  PubMed  Google Scholar 

  136. Zhou F, Luo Q, Wang L, Han L. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg. 2016;49(3):746–55.

    Article  PubMed  Google Scholar 

  137. Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, Gill K, Walker S, MacDonald K, Hiebert BM, Arora RC, Rigatto C. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005.

    Article  CAS  PubMed  Google Scholar 

  138. Wang K, Duan CY, Wu J, Liu Y, Bei WJ, Chen JY, He PC, Liu YH, Tan N. Predictive value of neutrophil gelatinase-associated lipocalin for contrast-induced acute kidney injury after cardiac catheterization: a meta-analysis. Can J Cardiol. 2016;32(8):1033.e19–29.

    Article  PubMed  Google Scholar 

  139. Jiang L, Cui H. Could blood neutrophil gelatinase-associated lipocalin (NGAL) be a diagnostic marker for acute kidney injury in neonates? A systemic review and meta-analysis. Clin Lab. 2015;61(12):1815–20.

    CAS  PubMed  Google Scholar 

  140. Kim S, Kim HJ, Ahn HS, Song JY, Um TH, Cho CR, Jung H, Koo HK, Park JH, Lee SS, Park HK. Is plasma neutrophil gelatinase-associated lipocalin a predictive biomarker for acute kidney injury in sepsis patients? A systematic review and meta-analysis. J Crit Care. 2016;33:213–23.

    Article  CAS  PubMed  Google Scholar 

  141. Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ, Joannidis M. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2018;44(3):323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Filho LT, Grande AJ, Colonetti T, Della ÉSP, da Rosa MI. Accuracy of neutrophil gelatinase-associated lipocalin for acute kidney injury diagnosis in children: systematic review and meta-analysis. Pediatr Nephrol. 2017;32(10):1979–88.

    Article  PubMed  Google Scholar 

  143. Albert C, Zapf A, Haase M, Röver C, Pickering JW, Albert A, Bellomo R, Breidthardt T, Camou F, Chen Z, Chocron S, Cruz D, de Geus HRH, Devarajan P, Di Somma S, Doi K, Endre ZH, Garcia-Alvarez M, Hjortrup PB, Hur M, Karaolanis G, Kavalci C, Kim H, Lentini P, Liebetrau C, Lipcsey M, Mårtensson J, Müller C, Nanas S, Nickolas TL, Pipili C, Ronco C, Rosa-Diez GJ, Ralib A, Soto K, Braun-Dullaeus RC, Heinz J, Haase-Fielitz A. Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am J Kidney Dis. 2020;76(6):826–841.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dong L, Ma Q, Bennett M, Devarajan P. Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr Nephrol. 2017;32(12):2351–60.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Brienza N, Giglio MT, Marucci M, Fiore T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med. 2009;37(6):2079–90.

    Article  PubMed  Google Scholar 

  146. Giglio M, Dalfino L, Puntillo F, Brienza N. Hemodynamic goal-directed therapy and postoperative kidney injury: an updated meta-analysis with trial sequential analysis. Crit Care. 2019;23(1):232.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Moffett BS, Goldstein SL. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol. 2011;6(4):856–63.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, Seid M, Ashby M, Foertmeyer N, Brunner L, Lesko A, Barclay C, Lannon C, Muething S. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132(3):e756–67.

    Article  PubMed  Google Scholar 

  149. Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, Askenazi DJ, Henderson T, Dill L, Somers MJG, Kerr J, Gilarde J, Zaritsky J, Bica V, Brophy PD, Misurac J, Hackbarth R, Steinke J, Mooney J, Ogrin S, Chadha V, Warady B, Ogden R, Hoebing W, Symons J, Yonekawa K, Menon S, Abrams L, Sutherland S, Weng P, Zhang F, Walsh K. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 2020;97(3):580–8.

    Article  CAS  PubMed  Google Scholar 

  150. Kashani K, Rosner MH, Haase M, Lewington AJP, O’Donoghue DJ, Wilson FP, Nadim MK, Silver SA, Zarbock A, Ostermann M, Mehta RL, Kane-Gill SL, Ding X, Pickkers P, Bihorac A, Siew ED, Barreto EF, Macedo E, Kellum JA, Palevsky PM, Tolwani AJ, Ronco C, Juncos LA, Rewa OG, Bagshaw SM, Mottes TA, Koyner JL, Liu KD, Forni LG, Heung M, Wu VC. Quality improvement goals for acute kidney injury. Clin J Am Soc Nephrol. 2019;14(6):941–53.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Slater MB, Gruneir A, Rochon PA, Howard AW, Koren G, Parshuram CS. Risk factors of acute kidney injury in critically ill children. Pediatr Crit Care Med. 2016;17(9):e391–8.

    Article  PubMed  Google Scholar 

  152. Chen JJ, Chang CH, Huang YT, Kuo G. Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Crit Care. 2020;24(1):202.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Matsuura R, Komaru Y, Miyamoto Y, Yoshida T, Yoshimoto K, Isshiki R, Mayumi K, Yamashita T, Hamasaki Y, Nangaku M, Noiri E, Morimura N, Doi K. Response to different furosemide doses predicts AKI progression in ICU patients with elevated plasma NGAL levels. Ann Intensive Care. 2018;8(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ricci Z, Luciano R, Favia I, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15:R160.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Guo Z, Liu J, Lei L, Xue Y, Liu L, Huang H, Chen S, Liu Y, Lin Y, Tao J, Xu Q, Wu K, Zhang L, Chen JY. Effect of N-acetylcysteine on prevention of contrast-associated acute kidney injury in patients with STEMI undergoing primary percutaneous coronary intervention: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2020;10(10):e039009.

    Article  PubMed  PubMed Central  Google Scholar 

  156. He G, Li Q, Li W, Wang L, Yang J, Zeng F. N-Acetylcysteine for preventing of acute kidney injury in chronic kidney disease patients undergoing cardiac surgery: a meta-analysis. Heart Surg Forum. 2018;21(6):E513–21.

    Article  PubMed  Google Scholar 

  157. Uber AM, Sutherland SM. Acute kidney injury in hospitalized children: consequences and outcomes. Pediatr Nephrol. 2020;35(2):213–20.

    Article  PubMed  Google Scholar 

  158. Greenberg JH, Zappitelli M, Devarajan P, Thiessen-Philbrook HR, Krawczeski C, Li S, Garg AX, Coca S, Parikh CR, Consortium T-A. Kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr. 2016;170:1071–8.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zappitelli M, Parikh CR, Kaufman JS, Go AS, Kimmel PL, Hsu CY, Coca SG, Chinchilli VM, Greenberg JH, Moxey-Mims MM, Ikizler TA, Cockovski V, Dyer AM, Devarajan P, ASsessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) Investigators. Acute kidney injury and risk of CKD and hypertension after pediatric cardiac surgery. Clin J Am Soc Nephrol. 2020;15(10):1403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Madsen NL, Goldstein SL, Froslev T, Christiansen CF, Olsen M. Cardiac surgery in patients with congenital heart disease is associated with acute kidney injury and the risk of chronic kidney disease. Kidney Int. 2017;92:751–6.

    Article  PubMed  Google Scholar 

  161. Benisty K, Morgan C, Hessey E, Huynh L, Joffe AR, Garros D, Dancea A, Sauve R, Palijan A, Pizzi M, Bhattacharya S, Doucet JA, Cockovski V, Gottesman RG, Goldstein SL, Zappitelli M. Kidney and blood pressure abnormalities 6 years after acute kidney injury in critically ill children: a prospective cohort study. Pediatr Res. 2020;88(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  162. Robinson CH, Jeyakumar N, Luo B, Wald R, Garg AX, Nash DM, McArthur E, Greenberg JH, Askenazi D, Mammen C, Thabane L, Goldstein S, Parekh RS, Zappitelli M, Chanchlani R. Long-term kidney outcomes following dialysis-treated childhood acute kidney injury: a population-based cohort study. J Am Soc Nephrol. 2021;32(8):2005–19.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Devarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devarajan, P. (2023). Acute Kidney Injury: Pathophysiology, Diagnosis and Prevention. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics