Skip to main content

Convergent Evolution of Manual and Pedal Grasping Capabilities in Tetrapods

  • Chapter
  • First Online:
Convergent Evolution

Abstract

Grasping behavior and manipulation using the hand and/or foot is widespread among tetrapods and can be used in various contexts in the daily life of many species. Activities such as feeding and movement through the environment may be assisted by grasping. Well-defined digits and digital musculature are synapomorphies of the tetrapod clade and from this foundation other features, such as opposable digits and tendon configurations, have evolved independently in many lineages. The evolutionary transitions leading to grasping and manipulative behaviors are complex and require better understanding. Here we survey the evolution of grasping autopodia and their forms and functions across four major tetrapod clades, revealing that the underlying morphological bases and ecological factors may differ among tetrapods. Further interdisciplinary approaches, including eco-ethology, morphology, biomechanics, ontogeny, and even genetics, relating to grasping form and function within and among tetrapods must be developed for a better understanding of the role that object/substrate/food grasping abilities play in the evolutionary success of several tetrapod lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdala, V., & Diogo, R. (2010). Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles. Journal of Anatomy, 217, 536–573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdala, V., Manzano, A. S., & Herrel, A. (2008). The distal forelimb musculature in aquatic and terrestrial turtles: Phylogeny or environmental constraints? Journal of Anatomy, 213, 159–172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdala, V., Manzano, A. S., Tulli, M. J., & Herrel, A. (2009). The tendinous patterns in the palmar surface of the lizard manus: Functional consequences for grasping ability. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292, 842–853.

    Article  PubMed  Google Scholar 

  • Abdala, V., Tulli, M. J., Russell, A. P., Powell, G. L., & Cruz, F. B. (2014). Anatomy of the crus and pes of neotropical iguanian lizards in relation to habitat use and digitally based grasping capabilities. The Anatomical Record, 297, 397–409. https://doi.org/10.1002/ar.22851

    Article  PubMed  Google Scholar 

  • Abdala, V., Vera, M. C., Amador, L. I., Fontanarrosa, G., Fratani, J., & Ponssa, M. L. (2019). Sesamoids in tetrapods: the origin of new skeletal morphologies. Biological Reviews of the Cambridge Philosophical Society, 94(6), 2011–2032. https://doi.org/10.1111/brv.12546

    Article  PubMed  Google Scholar 

  • Abourachid, A., Fabre, A. C., Cornette, R., & Hofling, E. (2017). Foot shape in arboreal birds: Two morphological patterns for the same pincer-like tool. Journal of Anatomy, 231(1), 1–11. https://doi.org/10.1111/joa.12614

    Article  PubMed  PubMed Central  Google Scholar 

  • Akella, T., & Gillis, G. B. (2011). Hopping isn’t always about the legs: Forelimb muscle activity patterns during toad locomotion. The Journal of Experimental Zoology, 315, 1–11.

    Google Scholar 

  • Anzeraey, A., Herrel, H., Aumont, M., Descamp, T., & Pouydebat, E. (2017). Effect of food properties on grasping abilities in Xenopus laevis. Journal of Experimental Biology, 220(Pt 23), 4486–4491.

    PubMed  Google Scholar 

  • Argot, C. (2002). Functional-adaptive analysis of the hind limb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology, 253, 76–108.

    Article  PubMed  Google Scholar 

  • Ashwell, K. W. S., & Shulruf, B. (2014). Vestibular development in marsupials and monotremes. Journal of Anatomy, 224, 447–458.

    Article  PubMed  Google Scholar 

  • Backus, S. B., Sustaita, D., Odhner, L. U., & Dollar, A. M. (2015). Mechanical analysis of avian feet: Multiarticular muscles in grasping and perching. Royal Society Open Science, 2, 140350. https://doi.org/10.1098/rsos.140350

    Article  PubMed  PubMed Central  Google Scholar 

  • Baeckens, S., Goeyers, C., & Van Damme, R. (2020). Convergent evolution of claw shape in a transcontinental lizard radiation. Integrative and Comparative Biology, 60(1), 10–23. https://doi.org/10.1093/icb/icz151

    Article  PubMed  Google Scholar 

  • Baldachini, M., Regaiolli, B., Llorente, M., Riba, D., & Spiezio, C. (2021). The influence of target animacy and social rank on hand preference in barbary macaques (Macaca sylvanus). International Journal of Primatology. https://doi.org/10.1007/s10764-020-00193-0

  • Barbeau, T. R., & Lillywhite, H. B. (1999). Comparative morphology and histochemistry of lipid-containing glands in the skin of treefrogs. The American Zoologist, 39, 115A.

    Google Scholar 

  • Barbera, A. M., Delaunay, M. G., Dougill, G., & Grant, R. A. (2019). Paw morphology in the domestic guinea pig (Cavia porcellus) and brown rat (Rattus norvegicus). Anat Rec (Hoboken), 302(12), 2300–2310. https://doi.org/10.1002/ar.24271

    Article  PubMed  Google Scholar 

  • Bardo, A., Borel, A., Meunier, H., Guéry, J.-P., & Pouydebat, E. (2016). Manual abilities in great apes during a tool use task. American Journal of Physical Anthropology. doi, 10, 1002.

    Google Scholar 

  • Bardo, A., Cornette, R., Borel, A., & Pouydebat, E. (2017). Manual function and performance in humans, gorillas and orangutans during the same tool use task. American Journal of Physical Anthropology. https://doi.org/10.1002/ajpa.2332

  • Bardo, A., Moncel, M. H., Dunmore, C. J., et al. (2020). The implications of thumb movements for Neanderthal and modern human manipulation. Scientific Reports, 10, 19323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass, W. M. (1971). Human osteology: A laboratory and field manual of the human skeleton. Missouri Archaeological Society.

    Google Scholar 

  • Bennett, M. (1993). Structural modifications involved in the fore and hindlimb grip of some flying foxes. Journal of Zoology, 229, 237–248.

    Article  Google Scholar 

  • Berman, S. L. (1984). The hindlimb musculature of the white-fronted Amazon (Amazonia albifrons, Psittaciformes). Auk, 101, 74–92.

    Article  Google Scholar 

  • Berman, S. L., & Raikow, R. J. (1982). The hindlimb musculature of the mousebirds (Coliiformes). Auk, 99, 41–57.

    Article  Google Scholar 

  • Biju, S. D. (2009). A novel nesting behaviour of a treefrog, Rhacophorus lateralis in the Western Ghats, India. Current Science, 97, 433–437.

    Google Scholar 

  • Biondi, L. M., Garcia, G. O., Bo, M. S., & Vassallo, A. I. (2010). Social learning in the Caracara Chimango, Milvago chimango (Aves: Falconiformes): an age comparison. Ethology, 116(8), 722–735. https://doi.org/10.1111/j.1439-0310.2010.01794.x

    Article  Google Scholar 

  • Birn-Jeffery, A. V., Miller, C. E., Naish, D., Rayfield, E. J., & Hone, D. W. (2012). Pedal claw curvature in birds, lizards and mesozoic dinosaurs--complicated categories and compensating for mass-specific and phylogenetic control. PLoS One, 7(12), e50555. https://doi.org/10.1371/journal.pone.0050555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop, A. (1962). Control of the hand in lower primates. Annals of the New York Academy of Sciences, 102, 316–337.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, A. (1964). Use of the hand in lower primates. In J. Buettner-Janusch (Ed.), Evolutionary and genetic biology of primates (pp. 133–223). Academic.

    Chapter  Google Scholar 

  • Blaylock, L., Ruibal, R., & Platt-Aloia, K. (1976). Skin structure and wiping behavior of Phyllomedusinae frogs. Copeia, 2, 283–295.

    Article  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.

    PubMed  Google Scholar 

  • Blotto, B., Pereyra, M., Grant, T., & Faibovich, J. (2020). Hand and foot musculature of anura: Structure, homology, terminology, and synapomorphies for major clades. Bulletin of the American Museum of Natural History Number 443, 155 p., 14 plates, 1 table Issued November 6.

    Google Scholar 

  • Bock, W. J., & Miller, W. D. (1959). The scansorial foot of the woodpeckers, with comments on the evolution of perching and climbing feet in birds. American Museum Novitates, 1931, 1–45.

    Google Scholar 

  • Boczek-Funcke, A., Kuhtz-Buschbeck, J. P., Raethjen, J., Paschmeyer, B., & Illert, M. (1998). Shaping of the cat paw for food taking and object manipulation: An X-ray analysis. European Journal of Neuroscience, 10, 3885–3897.

    Article  CAS  PubMed  Google Scholar 

  • Bonser, R. H. (1999). Branching out in locomotion: The mechanics of perch use in birds and primates. The Journal of Experimental Biology, 202(Pt 11), 1459–1463.

    Article  CAS  PubMed  Google Scholar 

  • Borel, A., Chèze, L., & Pouydebat, E. (2016). Sequence analysis of grip and manipulation during tool using tasks: A new method to analyze hand use strategies and examine human specificities. Journal of Archaeological Method and Theory, 24(3), 751–775.

    Article  Google Scholar 

  • Botelho, J. F., Smith-Paredes, D., Nunez-Leon, D., Soto-Acuna, S., & Vargas, A. O. (2014). The developmental origin of zygodactyl feet and its possible loss in the evolution of Passeriformes. Proceedings of the Biological Sciences, 281(1788), 20140765. https://doi.org/10.1098/rspb.2014.0765

    Article  Google Scholar 

  • Botelho, J. F., Smith-Paredes, D., Soto-Acuna, S., Mpodozis, J., Palma, V., & Vargas, A. O. (2015a). Skeletal plasticity in response to embryonic muscular activity underlies the development and evolution of the perching digit of birds. Scientific Reports, 5, 9840. https://doi.org/10.1038/srep09840

    Article  CAS  Google Scholar 

  • Botelho, J. F., Smith-Paredes, D., & Vargas, A. O. (2015b). Altriciality and the evolution of toe orientation in birds. Evolutionary Biology, 42, 502–510.

    Article  Google Scholar 

  • Boulinguez-Ambroise, G., Zablocki-Thomas, P., Aujard, F., Herrel, A., & Pouydebat, E. (2019). Ontogeny of food grasping in mouse lemurs: Behavior, morphology and performance. Journal of Zoology, 308, 1–8.

    Article  Google Scholar 

  • Boulinguez-Ambroise, G., Herrel, A., & Pouydebat, E. (2020a). Ontogeny of locomotion in mouse lemurs: Implications for primate evolution. Journal of Human Evolution, 142, 102732.

    Article  PubMed  Google Scholar 

  • Boulinguez-Ambroise, G., Pouydebat, E., Disarbois, E., & Meguerditchian, A. (2020b). Human-like maternal left-cradling bias in monkeys is altered by social pressure. Scientific Reports, 10, 11036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulinguez-Ambroise, G., Herrel, A., Berillon, G., Young, J. W., Cornette, R., Meguerditchian, A., Cazeau, C., Bellaiche, L., & Pouydebat, E. (2021). Increased performance in juvenile baboons is consistent with ontogenetic changes in morphology. American Journal of Physical Anthropology, 175, 546–558. https://doi.org/10.1002/ajpa.24235

    Article  PubMed  Google Scholar 

  • Boulinguez-Ambroise, G., Pouydebat, E., Disarbois, E., & Meguerditchian, A. (2022a). Maternal cradling bias in baboons: The first environmental factor affecting early infant handedness development? Developmental Science, 25, e13179. https://doi.org/10.1111/desc.13179

    Article  PubMed  Google Scholar 

  • Boulinguez-Ambroise, G., Aychet, J., & Pouydebat, E. (2022b). Limb preference in animals: New insights into the evolution of manual laterality in hominids. Symmetry, 14(1), 96.

    Article  Google Scholar 

  • Boyer, D. M., Patel, B. A., Larson, S. G., & Sternjr, J. T. (2007). Telemetered electromyography of peroneus longus in Varecia variegata and Eulemur rubriventer: Implications for the functional significance of an enlarged peroneal process. Journal of Human Evolution, 53, 119–134.

    Article  PubMed  Google Scholar 

  • Bracha, V., Zhuravin, I. A., & Burges, J. (1990). The reaching reaction in the rat: A part of the digging pattern? Behavioural Brain Research, 36, 53–64.

    Article  CAS  PubMed  Google Scholar 

  • Brinkman, D. (1980). Structural correlates of tarsal and metatarsal functioning in Iguana (Lacertilia; Iguanidae) and other lizards. Canadian Journal of Zoology, 58, 277–289.

    Article  Google Scholar 

  • Brown, C., & Magat, M. (2011). The evolution of lateralized foot use in parrots: A phylogenetic approach. Behavioral Ecology, 22(6), 1201–1208. https://doi.org/10.1093/beheco/arr114

    Article  Google Scholar 

  • Burton, P. J. K. (1978). The intertarsal joint of the harrier-hawks Polyboroides spp. and the crane hawk Geranospiza caerulescens. Ibis, 120, 171–177.

    Article  Google Scholar 

  • Burton, T. C. (1996). Adaptation and evolution in the hand muscles of Australo-Papuan hylid frogs (Anura: Hylidae: Pelodryadinae). Australian Journal of Zoology, 44, 611–623.

    Article  Google Scholar 

  • Burton, T. C. (1998a). Are the distal extensor muscles of the fingers of Anurans an adaptation to arboreality? Journal of Herpetology, 32, 611–617.

    Article  Google Scholar 

  • Burton, T. C. (1998b). Variation in the hand and superficial throat musculature of Neotropical leptodactylid frogs. Herpetologica, 54, 53–72.

    Google Scholar 

  • Byrne, R. W., Corp, N., & Byrne, J. M. (2001). Manual dexterity in the gorilla: Bimanual and digit role differentiation in a natural task. Animal Cognition, 4, 347–361.

    Article  CAS  PubMed  Google Scholar 

  • Byron, C., Kunz, H., Matuszek, H., Lewis, S., & Van Valkinburgh, D. (2011). Rudimentary pedal grasping in mice and implications for terminal branch arboreal quadrupedalism. Journal of Morphology, 272, 230–240.

    Article  PubMed  Google Scholar 

  • Cartmill, M. (1972). Arboreal adaptations and the origin of the order of primates. In R. H. Tuttle (Ed.), The functional and evolutionary biology of primates (pp. 97–122). Aldine Atherton.

    Google Scholar 

  • Cartmill, M. (1974). Rethinking primate origins. Science, 184(4135), 436–443.

    Article  CAS  PubMed  Google Scholar 

  • Cartmill, M. (1985). Climbing. In M. Hildebrand, D. Bramble, K. Liem, & D. Wake (Eds.), Functional vertebrate morphology (pp. 73–88). Harvard University Press.

    Chapter  Google Scholar 

  • Chiu, C. H., & Hamrick, M. W. (2002). Evolution and development of the primate limb skeleton. Evolutionary Anthropology, 11, 94–107.

    Article  Google Scholar 

  • Christel, M. (1993). Grasping techniques and hand preferences in Hominoidea. In H. Preuschoft & D. J. Chivers (Eds.), Hands of primates (pp. 91–108). Springer.

    Chapter  Google Scholar 

  • Christel, M. I., & Billard, A. (2002). Comparison between macaques’ and humans’ kinematics of prehension: The role of morphological differences and control mechanisms. Behavioural Brain Research, 131, 169–184.

    Article  PubMed  Google Scholar 

  • Christel, M. I., Weiss, P., & Bavar, S. (1998). The temporal pattern and the asymmetry of performances in precise reach-to-grasp movements-a comparison between H. sapiens and M. nemestrina. In R. Blickhan, A. Wisser, & W. Nachtigall (Eds.), Biona report 13. Motion systems. Akad. d. Wissensch, Mainz, G. Fischer Stuttgart. Proc. Jena, 1997 (pp. 120–121).

    Google Scholar 

  • Clark, G. A. J. (1973). Holding food with the feet in passerines. Bird Banding, 44(2), 91–99.

    Article  Google Scholar 

  • Clark, B. D., Al-Shatti, T. A., Barr, A. E., Amin, M., & Barbe, M. F. (2004). Performance of a high-repetition, high-force task induces carpal tunnel syndrome in rats. The Journal of Orthopaedic and Sports Physical Therapy, 34, 244–253.

    Article  PubMed  Google Scholar 

  • Congdon, K. (2012). Interspecific and ontogenetic variation in proximal pedal phalangeal curvature of Great Apes (Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus). International Journal of Primatology, 33, 418–427.

    Article  Google Scholar 

  • Cooper, W. J., & Steppan, S. J. (2010). Developmental constraint on the evolution of marsupial forelimb morphology. Australian Journal of Zoology, 58, 1–15.

    Article  Google Scholar 

  • Cooper, T. L., Zabinski, C. L., Adams, E. J., Berry, S. M., Pardo-Sanchez, J., Reinhardt, E. M., Roberts, K. M., Watzek, J., Brosnan, S. F., Hill, R. L., Weigel, E. G., & Mendelson, J. R. (2020). Long-term memory of a complex foraging task in monitor lizards (Reptilia: Squamata: Varanidae). Journal of Herpetology, 54(3), 378–383.

    Article  Google Scholar 

  • Cope, J. M., Berryman, A. C., Martin, D. L., & Potts, D. D. (2005). Robusticity and osteoarthritis at the trapeziometacarpal joint in a Bronze Age population from Tell Abraq, United Arab Emirates. American Journal of Physical Anthropology, 126(4), 391–400.

    Article  PubMed  Google Scholar 

  • Cox, S., Ekstrom, L. J., & Gillis, G. B. (2018). The influence of visual, vestibular, and hindlimb proprioceptive ablations on landing preparation in cane toads. Integrative and Comparative Biology, 58(5), 894–905.

    CAS  PubMed  Google Scholar 

  • Crast, J., Fragaszy, D., Hayashi, M., & Matsuzawa, T. (2009). Dynamic in-hand movements in adult and young juvenile chimpanzees (Pan troglodytes). American Journal of Physical Anthropology, 138, 274–285.

    Article  Google Scholar 

  • Csermely, D. (2004). Lateralisation in birds of prey: Adaptive and phylogenetic considerations. Behavioural Processes, 67(3), 511–520. https://doi.org/10.1016/j.beproc.2004.08.008

    Article  PubMed  Google Scholar 

  • Csermely, D., & Gaibani, G. (1998). Is foot squeezing pressure by two raptor species sufficient to subdue their prey? Condor, 100, 757–763.

    Article  Google Scholar 

  • Csermely, D., & Rossi, O. (2006). Bird claws and bird of prey talons: Where is the difference? Italian Journal of Zoology, 73(1), 43–53.

    Article  Google Scholar 

  • Csermely, D., Rossi, O., & Nasi, F. (2012). Comparison of claw geometrical characteristics among birds of prey and non-raptorial birds. Italian Journal of Zoology, 79(3), 410–433.

    Article  Google Scholar 

  • Cutkosky, M. R. (1989). On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5, 269–279.

    Article  Google Scholar 

  • Cutkosky, M. R., & Howe, R. D. (1990). Human grasp choice and robotic grasp analysis. In S. T. Venkatataman & T. Iberall (Eds.), Dextrous robot hands (pp. 5–31). Springer.

    Chapter  Google Scholar 

  • Cutkosky, M. R., & Wright, P. K. (1986). Friction, stability and the design of robotic fingers. International Journal of Robotics Research, 5, 20–37.

    Article  Google Scholar 

  • Dagosto, M. (2007). The postcranial morphotype of primates. In M. J. Ravosa & M. Dagosto (Eds.), PRIMATE ORIGINS: Adaptations and evolution. Springer.

    Google Scholar 

  • Diaz, R. E., Jr., & Trainor, P. A. (2015). Hand/foot splitting and the ‘re-evolution’ of mesopodial skeletal elements during the evolution and radiation of chameleons. BMC Evolutionary Biology, 15, 184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimond, S., & Harries, R. (1984). Face touching in monkeys, apes and man evolutionary origins and cerebral asymmetry. Neuropsychologia, 22(2), 227–233.

    Article  CAS  PubMed  Google Scholar 

  • Diogo, R., & Abdala, V. (2010). The head muscles of dipnoans - a review on the homologies and evolution of these muscles within Vertebrates. In J. M. Jorgensen & J. Joss (Eds.), Biology of lungfishes (pp. 169–218). Science Publishers and Taylor & Francis.

    Google Scholar 

  • Drew, T. (1991). Visuomotor coordination in locomotion. Current Opinion in Neurobiology, 1, 652–657.

    Article  CAS  PubMed  Google Scholar 

  • Drews, B., et al. (2013). Ultrasonography of wallaby prenatal development shows that the climb to the pouch begins in utero. Scientific Reports, 3, 1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1986). Biology of amphibians. McGraw-Hill.

    Google Scholar 

  • Einoder, L., & Richardson, A. (2006). An ecomorphological study of the raptorial digital tendon locking mechanism. Ibis, 148, 515–525. https://doi.org/10.1111/j.1474-919X.2006.00541.x

    Article  Google Scholar 

  • Einoder, L. D., & Richardson, A. M. M. (2007a). Aspects of the hindlimb morphology of some Australian birds of prey: A comparative and quantitative study. Auk, 124(3), 773–788.

    Article  Google Scholar 

  • Einoder, L., & Richardson, A. (2007b). The digital tendon locking mechanism of owls: Variation in the structure and arrangement of the mechanism and functional implications. Emu, 107, 223–230. https://doi.org/10.1071/MU06019

    Article  Google Scholar 

  • Emerson, S. B., & Diehl, D. (1980). Toe pad morphology and mechanisms of sticking in frogs. Biological Journal of the Linnean Society, 13, 199–216.

    Article  Google Scholar 

  • Emerson, S. B., & Koehl, M. A. R. (1990). The interaction of behavioral and morphological change in the evolution of a novel locomotor type: ‘Flying’ frogs. Evolution, 44, 1931–1946.

    PubMed  Google Scholar 

  • Endlein, T., Ji, A., Yuan, S., Hill, I., Wang, H., Barnes, W., Jon, P., Dai, Z., & Sitti, M. (2017). The use of clamping grips and friction pads by tree frogs for climbing curved surfaces. Proceedings of the Royal Society B, 284, 20162867.

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo, H., Hama, N., Niizawa, N., Kimura, J., Itou, T., Koie, H., & Sakai, T. (2007). Three-dimensional analysis of the manipulation system in the lesser panda. Mammal Study, 32, 99–103.

    Article  Google Scholar 

  • Erickson, C. J. (1991). Percussive foraging in the aye-aye, Daubentonia madagascariensis. Animal Behaviour, 41(5), 793–801.

    Article  Google Scholar 

  • Erickson, C. J., Nowicki, S., Dollar, L., et al. (1998). Percussive foraging: Stimuli for prey location by aye-ayes (Daubentonia madagascariensis). International Journal of Primatology, 19, 111–122.

    Article  Google Scholar 

  • Essner, R. L., Suffian, D. J., Bishop, P. J., & Reilly, S. M. (2010). Landing in basal frogs: Evidence of saltational patterns in the evolution of anuran locomotion. Naturwissenschaften, 97, 935–939.

    Article  CAS  PubMed  Google Scholar 

  • Estes, R. D. (1991). The behavior guide to African mammals. University of California Press.

    Google Scholar 

  • Ewer, R. F. (1973). The carnivores. Cornell Univ. Press.

    Google Scholar 

  • Fabre, A. C., Cornette, R., Slater, G., Argot, C., Peigné, S., Goswami, A., & Pouydebat, E. (2013). Getting a grip on the evolution of grasping in carnivores: A three-dimensional analysis of forelimb shape. Journal of Evolutionary Biology, 26(7), 1521–1535.

    Article  PubMed  Google Scholar 

  • Fabrezi, M., Manzano, A. S., Abdala, V., & Lobo, F. (2014). Anuran locomotion: Ontogeny and morphological variation of a distinctive set of muscles. Evolutionary Biology, 41, 308–326.

    Article  Google Scholar 

  • Fagard, J. (2013). The nature and nurture of human infant hand preference. Annals of the New York Academy of Sciences, 1288, 114–123.

    Article  PubMed  Google Scholar 

  • Fagard, J., & Marks, A. (2000). Unimanual and bimanual tasks and the assessment of handedness in toddlers. Developmental Science, 3, 137–147.

    Article  Google Scholar 

  • Feduccia, A. (1993). Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science, 259(5096), 790–793. https://doi.org/10.1126/science.259.5096.790

    Article  CAS  PubMed  Google Scholar 

  • Feduccia, A. (1999). The origin and evolution of birds (2nd ed.). Yale University Press.

    Google Scholar 

  • Feduccia, A., Martin, L., & Tarsitano, S. (2007). Archaeopteryx 2007: Quo vadis? Auk, 124, 373–380.

    Article  Google Scholar 

  • Feiner, N., Jackson, I. S. C., Munch, L. K., Radersma, R., & Uller, T. (2020). Plasticity and evolutionary convergence in the locomotor skeleton of Greater Antillean Anolis lizards. eLife, 9, e57468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feix, T., Kivell, T. L., Pouydebat, E., & Dollar, A. M. (2015). Estimating thumb-index finger precision grip and manipulation potential in extant and fossil primates. Journal of Royal Society Interface, 12(106).

    Google Scholar 

  • Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., & Kragic, D. (2016). The grasp taxonomy of human grasp types. IEEE Transactions of Human-Machine Systems, 46, 66–77.

    Article  Google Scholar 

  • Feng, Y. J., Blackburn, D. C., Liang, D., Hillis, D. M., Wake, D. B., Cannatella, D. C., & Zhang, P. (2017). Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proceedings of the national Academy of Sciences USA, 114, E5864–E5870.

    Article  CAS  Google Scholar 

  • Fischer, M. S., Krause, C., & Lilje, K. E. (2010). Evolution of chameleon locomotion, or how to become arboreal as a reptile. Zoology, 113, 67–74.

    Article  PubMed  Google Scholar 

  • Fontanarrosa, G., & Abdala, V. (2014). Anatomical analysis of the lizard carpal bones in the terms of skilled manual abilities. Acta Zoologica, 95, 249–263.

    Article  Google Scholar 

  • Fontanarrosa, G., & Abdala, V. (2016). Bone indicators of grasping hands in lizards. PeerJ, 4, e1978. https://doi.org/10.7717/peerj.1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford, S. (1986). Systematics of the New World monkeys. In D. R. Swindler & J. Erwin (Eds.), Comparative primate biology (Vol. 1, pp. 73–135). Liss.

    Google Scholar 

  • Forrester, G. S., Leavens, D. A., Quaresmini, C., & Vallortigara, G. (2011). Target animacy influences gorilla handedness. Animal Cognition, 14, 903–907.

    Article  PubMed  Google Scholar 

  • Forrester, G. S., Quaresmini, C., Leavens, D. A., Spiezio, C., & Vallortigara, G. (2012). Target animacy influences chimpanzee handedness. Animal Cognition, 15, 1121–1127.

    Article  PubMed  Google Scholar 

  • Forrester, G. S., Davis, R., Mareschal, D., Malatesta, G., & Todd, B. K. (2019). The left cradling bias: An evolutionary facilitator of social cognition? Cortex, 118, 116–131.

    Article  PubMed  Google Scholar 

  • Förstner, H., & Schaefer, H. E. (1998). Schnellendes Handgelenk--Trigger Wrist. Eine Fallbeschreibung [Trigger wrist. A case report]. Handchir Mikrochir Plast Chir, 20(1), 33–35.

    Google Scholar 

  • Fowler, D. W., Freedman, E. A., & Scannella, J. B. (2009). Predatory functional morphology in raptors: Interdigital variation in talon size is related to prey restraint and immobilisation technique. PLoS One, 4(11), e7999.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fowler, D. W., Freedman, E. A., Scannella, J. B., & Kambic, R. E. (2011). The predatory ecology of Deinonychus and the origin of flapping in birds. PLoS One, 6(12), e28964. https://doi.org/10.1371/journal.pone.0028964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fragaszy, D. M., Schwarz, S., & Shimosaka, D. (1982). Longitudinal observations of care and development of infant titi monkeys (Callicebus moloch). American Journal of Primatology, 2, 191–200. https://doi.org/10.1002/ajp.1350020207

    Article  CAS  PubMed  Google Scholar 

  • Frýdlová, P., Sedláčková, K., Žampachová, B., Kurali, A., Hýbl, J., Škoda, D., Kutılek, P., Landová, E., Cerný, R., & Frynta, D. (2019). A gyroscopic advantage: Phylogenetic patterns of compensatory movements in frogs. Journal of Experimental Biology, 222, jeb186544.

    PubMed  Google Scholar 

  • Fujii, J. A., Ralls, K., & Tinker, M. T. (2015). Ecological drivers of variation in tool-use frequency across sea otter populations. Behavioral Ecology, 26, 519–526.

    Article  Google Scholar 

  • Fujii, J. A., McLeish, D., Brooks, A. J., Gaskell, J., & Van Houtan, K. S. (2018). Limb-use by foraging marine turtles, an evolutionary perspective. PeerJ, 6, e4565. https://doi.org/10.7717/peerj.4565

    Article  PubMed  PubMed Central  Google Scholar 

  • Gainotti, G. (2019). Emotions and the right hemisphere: Can new data clarify old models? The Neuroscientist, 25, 258–270.

    Article  PubMed  Google Scholar 

  • Galton, P. M., & Shepherd, J. D. (2012). Experimental analysis of perching in the European starling (Sturnus vulgaris: Passeriformes; Passeres), and the automatic perching mechanism of birds. Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 317(4), 205–215. https://doi.org/10.1002/jez.1714

    Article  PubMed  Google Scholar 

  • Gans, C., & Parsons, T. S. (1966). On the origin of the jumping mechanism in frogs. Evolution, 20, 92–99.

    Article  PubMed  Google Scholar 

  • Gasc, J.-P. (1963). Adaptation à la marche arboricole chez le cameleon. Archive d’Anatomie, d’Histologie et d’Embryologie Normales et Expérimentales, 46, 81–115.

    Google Scholar 

  • Gatesy, S. M., & Dial, K. P. (1996). Locomotor modules and the evolution of avian flight. Evolution, 50(1), 331–340.

    Article  PubMed  Google Scholar 

  • Gebo, D. L. (1985). The nature of the primate grasping foot. American Journal of Physical Anthropology, 67, 269–277.

    Article  Google Scholar 

  • Gebo, D. L. (1993). Functional morphology of the foot in primates. In D. L. Gebo (Ed.), Postcranial adaptation in nonhuman primates (pp. 175–196). Northern Illinois University Press.

    Google Scholar 

  • Giljov, A., Karina, K., Ingram, J., & Malashichev, Y. (2015). Parallel emergence of true handedness in the evolution of marsupials and placentals. Current Biology, 25(14), 1878–1884.

    Article  CAS  PubMed  Google Scholar 

  • Glen, C. L., & Bennett, M. B. (2007). Foraging modes of Mesozoic birds and non-avian theropods. Current Biology, 17(21), R911–R912. https://doi.org/10.1016/j.cub.2007.09.026

    Article  CAS  PubMed  Google Scholar 

  • Godinot, M. (1991). Approches fonctionnelles des mains de primates paléogènes. Geobios, M.S., 13, 161–173.

    Article  Google Scholar 

  • Gomes, F. R., Rezende, E. L., Grizante, M. B., & Navas, C. A. (2009). The evolution of jumping performance in anurans: morphological correlates and ecological implications. Journal of Evolutionary Biology, 22, 1088–1097.

    Article  CAS  PubMed  Google Scholar 

  • Gona, A. G., & Uray, N. J. (1980). Ultrastructural studies on Purkinje cells of the frog tadpole cerebellum. Brain, Behavior and Evolution, 17(3), 241–254.

    Article  CAS  PubMed  Google Scholar 

  • Goslow, G. E., Jr. (1972). Adaptive mechanisms of the raptor pelvic limb. Auk, 89, 47–64.

    Article  Google Scholar 

  • Gray, L. A., O’Reilly, J. C., & Nishikawa, K. C. (1997). Evolution of forelimb movement patterns for prey manipulation in anurans. The Journal of Experimental Zoology, 277, 417–424.

    Article  CAS  PubMed  Google Scholar 

  • Grelle, C. (2003). Forest structure and vertical stratification of small mammals in a secondary Atlantic forest, southeastern Brazil. Studies on Neotropical Fauna and Environment, 32(2), 81–85.

    Article  Google Scholar 

  • Grillner, S., & Wallen, P. (1985). Central pattern generators for locomotion, with special reference to vertebrates. Annual Review of Neuroscience, 8, 233–261.

    Article  CAS  PubMed  Google Scholar 

  • Grzimek, B. (Ed.). (1990). Grzimek’s encyclopedia of mammals. McGraw-Hill.

    Google Scholar 

  • Haffner, M. (1996). A tendon-locking mechanism in two climbing rodents, Muscardinus avellanarius and Micromys minutus (Mammalia, Rodentia). Journal of Morphology, 229, 219–227.

    Article  CAS  PubMed  Google Scholar 

  • Haines, R. W. (1950). The flexor muscles of the forearm and hand in lizards and mammals. Journal of Anatomy, 84, 13–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, K. R. L., & Schaller, G. B. (1964). Tool-using behavior of the California Sea Otter. Journal of Mammalogy, 45, 287–298.

    Article  Google Scholar 

  • Hammond, G. (2002). Correlates of human handedness in primary motor cortex: A review and hypothesis. Neuroscience and Biobehavioral Reviews, 26, 285–292.

    Article  PubMed  Google Scholar 

  • Hamrick, M. W. (1998). Functional and adaptive significance of primate pads and claws: Evidence from New World anthropoids. American Journal of Physical Anthropology, 106, 113–127.

    Article  CAS  PubMed  Google Scholar 

  • Hamrick, M. W., Rosenman, B. A., & Brush, J. A. (1999). Phalangeal morphology of the Paromomyidae (Primates, Plesiadapiformes): The evidence for gliding behavior reconsidered. American Journal of Physical Anthropology, 109(3), 397–413.

    Article  CAS  PubMed  Google Scholar 

  • Hamrick, M. W. (2001a). Primate origins: Evolutionary change in digital ray patterning and segmentation. Journal of Human Evolution, 40(4), 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Hamrick, M. W. (2001b). Morphological diversity in digital skin microstructure of didelphid marsupials. Journal of Anatomy, 198, 683–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamrick, M. W. (2001c). Development and evolution of the mammalian limb: Adaptive diversification of nails, hooves, and claws. Evolution & Development, 3(5), 355–363.

    Article  CAS  Google Scholar 

  • Hamrick, M. W. (2003). Evolution and development of mammalian limb integumentary structures. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 298(1), 152–163.

    Article  PubMed  Google Scholar 

  • Handrigan, G. R., & Wassersug, R. J. (2007). The anuran Bauplan: A review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biological Reviews, 82, 1–25.

    Article  PubMed  Google Scholar 

  • Hanna, G., & Barnes, W. J. P. (1991). Adhesion and detachment of the toe pads of tree frogs. Journal of Experimental Biology, 155, 103–125.

    Article  Google Scholar 

  • Harris, L. J. (1989). Footedness in parrots: Three centuries of research, theory, and mere surmise. Canadian Journal of Psychology, 43(3), 369–396.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, S. (2016). Evolution of the hallux in non-avian theropod dinosaurs. Journal of Vertebrate Paleontology, 36(4), e1116995. https://doi.org/10.1080/02724634.02722016.01116995

    Article  Google Scholar 

  • Hedrick, B. P., Cordero, S. A., & Zanno, L. E. (2019). Quantifying shape and ecology in avian pedal claws: The relationship between the bony core and keratinous sheath. Ecology and Evolution, 9, 11545–11556. https://doi.org/10.1002/ece3.5507

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrel, A., Schaerlaeken, V., Ross, C., Meyers, J., Nishikawa, K., Abdala, V., Manzano, A., & Aerts, P. (2008a). Electromyography and the evolution of motor control: Limitations and insights. Integrative and Comparative Biology, 48, 261–271.

    Article  PubMed  Google Scholar 

  • Herrel, A., Vanhooydonck, B., Porck, J., & Irschick, D. J. (2008b). Anatomical basis of differences in locomotor behavior in Anolis lizards: A comparison between two ecomorphs. Bulletin of the Museum of Comparative Zoology, 159, 213–238.

    Article  Google Scholar 

  • Herrel, A., Measey, G. J., Vanhooydonck, B., & Tolley, K. A. (2011). Functional consequences of morphological differentiation between populations of the Cape Dwarf Chameleon (Bradypodion pumilum). Biological Journal of the Linnean Society, 104, 692–700.

    Article  Google Scholar 

  • Herrel, A., Perrenoud, M., Decamps, T., Abdala, V., Manzano, A., & Pouydebat, E. (2013a). The effect of substrate diameter and incline on locomotion in an arboreal frog. Journal of Experimental Biology, 216, 3599–3605.

    Article  PubMed  Google Scholar 

  • Herrel, A., Tolley, K. A., Measey, G. J., da Silva, J. M., Potgieter, D. F., Boller, E., Boistel, R., & Vanhooydonck, B. (2013b). Slow but tenacious: An analysis of running and gripping performance in chameleons. The Journal of Experimental Biology, 216, 1025–1030.

    PubMed  Google Scholar 

  • Hershkovitz, P. (1977). Living new world monkeys (Platyrrhini), Volume 1: With an introduction to primates. University of Chicago Press.

    Google Scholar 

  • Higham, T. E., & Jayne, B. C. (2004). Locomotion of lizards on inclines and perches: Hindlimb kinematics of an arboreal specialist and a terrestrial generalist. Journal of Experimental Biology, 207, 233–248.

    Article  PubMed  Google Scholar 

  • Hildebrand, M. (1995). Analysis of vertebrate structure. Wiley.

    Google Scholar 

  • Hill, I. D., Benzheng, D., Barnes, J. P., Aihong, J., & Endlein, T. (2018). The biomechanics of tree frogs climbing curved surfaces: A gripping problem. Journal of Experimental Biology, 221, jeb168179. https://doi.org/10.1242/jeb.168179

    Article  PubMed  Google Scholar 

  • Hoffstetter, R. (1977). Phylogénie des primates. Confrontation des résultats obtenus par les diverses voies d’approche du problème. Bulletins et Memoires de la Societe d'Anthropologie de Paris, 4, 327–346.

    Google Scholar 

  • Höfling, E., & Abourachid, A. (2020). The skin of birds’ feet: Morphological adaptations of the plantar surface. Journal of Morphology. https://doi.org/10.1002/jmor.21284

  • Hook-Costigan, M. A., & Rogers, L. J. (1997). Hand preferences in New World primates. International Journal of Comparative Psychology, 9, 173–207.

    Google Scholar 

  • Hopkins, W. D. (1996). Chimpanzee handedness revisited: 54 years since Finch (1941). Psychonomic Bulletein and Review, 3, 449–457.

    Article  CAS  Google Scholar 

  • Hopkins, B., & Ronnqvist, L. (1998). Human handedness: Developmental and evolutionary perspectives. In F. Simon & G. Butterworth (Eds.), The development of sensory, motor and cognitive capacities of early infancy: From perception to cognition (pp. 191–236). Psychology Press.

    Google Scholar 

  • Hopkins, W. D. (2004). Laterality in maternal cradling and infant positional biases: Implications for the development and evolution of hand preferences in nonhuman primates. International Journal of Primatology, 25, 1243–1265.

    Article  PubMed  Google Scholar 

  • Hopkins, W. D., & Cantalupo, C. (2004). Handedness in chimpanzees (Pan troglodytes) is associated with asymmetries of the primary motor cortex but not with homologous language areas. Behavioral Neuroscience, 118(6), 1176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopson, J. A. (2001). Ecomorphology of avian and nonavian theropod phalangeal proportions: Implications for the arboreal versus terrestrial origin of bird flight. In J. Gauthier & L. F. Gall (Eds.), New perspectives on the origin and early evolution of birds: Proceedings of the international symposium in honor of John H. Ostrom (pp. 211–235). Yale University.

    Google Scholar 

  • Horn, H.-G., & Visser, G. J. (1997). Review of reproduction of monitor lizards Varanus spp. in captivity 2. International Zoo Yearbook, 35, 227–246.

    Article  Google Scholar 

  • Hudson, C. M., Gregory, P. B., & Shine, R. (2016). Athletic anurans: The impact of morphology, ecology and evolution on climbing ability in invasive cane toads. Biological Journal of the Linnean Society, 119(4), 992–999.

    Article  Google Scholar 

  • Hutchinson, J. R. (2002). The evolution of hindlimb tendons and muscles on the line to crown-group birds. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology, 133(4), 1051–1086.

    Article  Google Scholar 

  • Hutchinson, J. R., Felkler, D., Houston, K., et al. (2019). Divergent evolution of terrestrial locomotor abilities in extant Crocodylia. Scientific Reports, 9, 19302. https://doi.org/10.1038/s41598-019-55768-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutson, J. D., & Hutson, K. N. (2014). A repeated-measures analysis of the effects of soft tissues on wrist range of motion in the extant phylogenetic bracket of dinosaurs: Implications for the functional origins of an automatic wrist folding mechanism in Crocodilia. The Anatomical Record, 297, 1228–1249. https://doi.org/10.1002/ar.22903

    Article  PubMed  Google Scholar 

  • Irschick, D. J., Austin, C. C., Petren, K., Fisher, R. N., Losos, J. B., & Ellers, O. (1996). A comparative analysis of clinging ability among pad–bearing lizards. Biological Journal of the Linnean Society, 59, 21–35.

    Article  Google Scholar 

  • Irschick, D. J., & Garland, T. J. (2001). Integrating function and ecology in studies of adaptation: Investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics, 32, 367–396.

    Article  Google Scholar 

  • Ivanco, T. L., Pellis, S. M., & Whishaw, I. Q. (1996). Skilled forelimb movements in prey catching and in reaching by rats (Rattus norvegicus) and opossums (Monodelphis domestica): Relations to anatomical differences in motor systems. Behavioural Brain Research, 79, 163–181.

    Article  CAS  PubMed  Google Scholar 

  • Iwaniuk, A. N., Nelson, J. E., Ivanco, T. L., Pellis, S. M., & Whishaw, I. Q. (1998). Reaching, grasping and manipulation of food objects by two tree kangaroo species, Dendrolagus lumholtzi and Dendrolagus matschiei. Australian Journal of Zoology, 46, 235–248.

    Article  Google Scholar 

  • Iwaniuk, A. N., & Whishaw, I. Q. (1999a). Brain size is not correlated with forelimb dexterity in fissiped carnivores (Carnivora): A comparative test of the principle of proper mass. Brain, Behavior and Evolution, 54, 167–180.

    Article  CAS  PubMed  Google Scholar 

  • Iwaniuk, A. N., & Whishaw, I. Q. (1999b). How skilled are the skilled limb movements of the raccoon (Procyon lotor)? Behavioural Brain Research, 99(1), 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Iwaniuk, A. N., Nelson, J. E., & Whishaw, I. Q. (1999). The relationships between brain regions and forelimb dexterity in marsupials (Marsupialia): A comparative test of the principle of proper mass. Australian Journal of Zoology, 48, 99–110.

    Article  Google Scholar 

  • Iwaniuk, A. N., & Whishaw, I. Q. (2000). On the origins of skilled forelimb movements. Trends in Neurosciences, 23, 372–376.

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod, M. (1988). The neural and behavioural organization of goal-directed movements. Clarendon Press.

    Google Scholar 

  • Jetz, W., & Pyron, R. A. (2018). The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature Ecology & Evolution, 2, 850–858. https://doi.org/10.1038/s41559-018-0515-5

    Article  Google Scholar 

  • Ji, Q., Luo, Z. X., Yuan, C. X., Wible, J. R., Zhang, J. P., & Georgi, J. A. (2002). The earliest known eutherian mammal. Nature, 416(6883), 816–822. https://doi.org/10.1038/416816a

    Article  CAS  PubMed  Google Scholar 

  • Jones-Engel, L., & Bard, K. (1996). Precision grips in young chimpanzees. American Journal of Primatology, 39, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Jouffroy, F. K., & Lessertisseur, J. (1979). Relationships between limb morphology and locomotor adaptations among prosimians: an osteometric study. In M. E. Morbeck, H. Preuschoft, & N. Gomberg (Eds.), Environment, behavior, and morphology: Dynamic interactions in primates (pp. 143–181). Gustav Fischer.

    Google Scholar 

  • Jouffroy, F. K., Godinot, M., & Nakano, Y. (1991). Biometrical characteristics of primate hands. Human Evolution, 6, 269–306.

    Article  Google Scholar 

  • Kamper, D. G., Hornby, T. G., & Rymer, W. Z. (2002). Extrinsic flexor muscles generate concurrent flexion of all three finger joints. Journal of Biomechanics, 35, 1581–1589.

    Article  PubMed  Google Scholar 

  • Kardong, K. V. (2011). Vertebrates: Comparative anatomy, function, evolution (6th ed.). McGraw-Hill.

    Google Scholar 

  • Karenina, K., Giljov, A., Ingram, J., et al. (2017). Lateralization of mother–infant interactions in a diverse range of mammal species. Nature Ecology and Evolution, 1, 0030.

    Article  Google Scholar 

  • Katzner, T. (2016). Hanging out at the Airport: Unusual upside-down perching behavior by Eurasian Jackdaws (Corvus monedula) in a human-dominated environment. The Wilson Journal of Ornithology, 128(4), 926–930.

    Article  Google Scholar 

  • Kavanagh, K. D., Shoval, O., Winslow, B. B., Alon, U., Leary, B. P., Kan, A., & Tabin, C. J. (2013). Developmental bias in the evolution of phalanges. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18190–18195. https://doi.org/10.1073/pnas.1315213110

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenny, J. S. (1966). Nest building in Phyllomedusa trinitatis Mertens. Caribbean Journal of Science, 6, 15–22.

    Google Scholar 

  • Kingston, A. K., Boyer, D. M., Patel, B. A., Larson, S. G., & Stern, J. T., Jr. (2010). Hallucal grasping in Nycticebus coucang: further implications for the functional significance of a large peroneal process. Journal of Human Evolution, 58, 33–42.

    Article  PubMed  Google Scholar 

  • Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P., & Berger, L. R. (2011). Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science, 333, 1411–1417.

    Article  CAS  PubMed  Google Scholar 

  • Kohlsdorf, T., Garland, T., Jr., & Navas, C. A. (2001). Limb morphology in relation to substrate usage in Tropidurus lizards. Journal of Morphology, 248, 151–164.

    Article  CAS  PubMed  Google Scholar 

  • Ksepka, D. T., & Clarke, J. A. (2012). A new stem parrot from the green river formation and the complex evolution of the grasping foot in Pan-Psittaciformes. Journal of Vertebrate Paleontology, 32(2), 395–406. https://doi.org/10.1080/02724634.2012.641704

    Article  Google Scholar 

  • Laland, K. N., Kumm, J., Van Horn, J. D., & Feldman, M. W. (1995). A gene-culture model of human handedness. Behavior Genetics, 25, 433–445.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, F., & Straka, H. (2012). The frog vestibular system as a model for lesion-induced plasticity: Basic neural principles and implications for posture control. Frontiers in Neurology, 3, 42. https://doi.org/10.3389/fneur.2012.00042

    Article  PubMed  PubMed Central  Google Scholar 

  • Lammers, A. R., & Zurcher, U. (2011). Stability during arboreal locomotion. In K. Vaclav (Ed.), Theoretical biomechanics (pp. 319–334). InTechOpen Limited.

    Google Scholar 

  • Landsmeer, J. M. (1962). Power grip and precision handling. Annals of the Rheumatic Diseases, 21, 164–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landy, M. (1997). An analysis of skilled forelimb movements during feeding in possums and gliders. Unpublished Honours Thesis. Monash University.

    Google Scholar 

  • Lassek, A. M. (1954). Motor deficits produced by posterior rhizotomy versus section of the dorsal funiculus. Neurology, 4, 120–123.

    Article  CAS  PubMed  Google Scholar 

  • Lefeuvre, M., Gouat, P., Mulot, B., Cornette, R., & Pouydebat, E. (2020). Behavioural variability among captive African elephants in the use of the trunk while feeding. PeerJ, 8, e9678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Gros Clark, W. E. (1936). The problem of the claw in the Primates. Proceedings of the Zoological Society of London, 1–24.

    Google Scholar 

  • Le Gros Clark, W. E. (1959). The antecedents of man. Edinburgh University Press.

    Google Scholar 

  • Lehman, R. A. W. (1993). Manual preference in prosimians, monkeys, and apes. In J. P. Ward & W. D. Hopkins (Eds.), Primate laterality: Current behavioral evidence of primate asymmetries (pp. 107–124). Springer.

    Google Scholar 

  • Lemelin, P. (1996). Relationships between hand morphology and feeding strategies in small-bodied prosimians. American Journal of Physical Anthropology, 22(Suppl), 148.

    Google Scholar 

  • Lemelin, P., & Schmitt, D. (1998). The relation between hand morphology and quadrupedalism in primates. American Journal of Physical Anthropology, 105, 185–197.

    Article  CAS  PubMed  Google Scholar 

  • Lemelin, P. (1999). Morphological correlates of substrate use in didelphid marsupials: implications for primate origins. Journal of Zoology, 247, 165–175.

    Article  Google Scholar 

  • Lemelin, P. (2000). Micro-anatomy of the volar skin and interordinal relationships of primates. Journal of Human Evolution, 38, 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Lemelin, P., Schmitt, D., & Cartmill, M. (2003). Footfall patterns and interlimb co-ordination in opossums (Family Didelphidae): Evidence for the evolution of diagonal-sequence walking gaits in primates. Journal of Zoology (London), 260, 423–429.

    Article  Google Scholar 

  • Lennerstedt, I. (1974). Pads and papillae on the feet of nine passerine species. Ornis Scandinavica, 5(2), 103–111.

    Article  Google Scholar 

  • Lennerstedt, I. (1975a). A functional study of papillae and pads in the foot of passerines, parrots and owls. Zoologica Scripta, 4(2–3), 111–123.

    Article  Google Scholar 

  • Lennerstedt, I. (1975b). Pattern of pads and folds in the foot of European Oscines (Aves, Passeriformes). Zoologica Scripta, 4, 101–109.

    Article  Google Scholar 

  • Lewis, O. J. (1989). Functional morphology of the evolving hand and foot. Clarendon Press.

    Google Scholar 

  • Liao, W. B., Lou, S. L., Zeng, Y., & Merilä, J. (2015). Evolution of anuran brains: Disentangling ecological and phylogenetic sources of variation. Journal of Evolutionary Biology, 28, 1986–1996.

    Article  CAS  PubMed  Google Scholar 

  • Lillywhite, H. B., Mittal, A. K., Garg, T. K., & Agrawal, N. (1997). Integumentary structure and its relationship to wiping behaviour in the common Indian tree frog, Polypedates maculatus. Journal of Zoology, 243, 675–687.

    Article  Google Scholar 

  • Llinàs, R., Precht, W., & Kitai, S. T. (1967). Cerebellar purkinje cell projection to the peripheral vestibular organ in the frog. Science, New Series, 158(3806), 1328–1330.

    Google Scholar 

  • Losos, J. B. (1990). The evolution of form and function: morphology and locomotion performance in West Indian Anolis lizards. Evolution, 44, 1189–1203.

    Article  PubMed  Google Scholar 

  • Lovette, I., & Fitzpatrick, J. (2016). Cornell Lab of Ornithology’s handbook of bird biology (3rd ed.). Wiley.

    Google Scholar 

  • Luger, A., Vermeylen, V., Herrel, A., & Adriaens, D. (2020). Do substrate type and gap distance impact gap-bridging strategies in arboreal chameleons? bioRxiv. https://doi.org/10.1101/2020.08.21.260596

  • Lutz, G. J., & Rome, L. C. (1994). Built for jumping – The design of the frog muscular system. Science, 263, 370–372.

    Article  CAS  PubMed  Google Scholar 

  • Lyne, A. G. (1964). Observations on the breeding and growth of the marsupial Perameles nasuta Geoffroy, with notes on other bandicoots. Australian Journal of Zoology, 12, 322–339.

    Article  Google Scholar 

  • Macdonald, D. (1984). The encyclopedia of mammals. Facts on File Publications.

    Google Scholar 

  • Mackenzie, C. L., & Iberall, T. (1994). The grasping hand: Advances in psychology (Vol. 104). North-Holland.

    Google Scholar 

  • Mac Neilage, P. F., Studdert-Kennedy, M. G., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral and Brain Sciences, 10, 247–303.

    Article  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version, 3, 61.

    Google Scholar 

  • Maiolino, S. A., Kingston, A. K., & Lemelin, P. (2016). Comparative and functional morphology of the primate hand integument. In T. Kivell, P. Lemelin, B. Richmond, & D. Schmitt (Eds.), The evolution of the primate hand. Developments in primatology: Progress and prospects. Springer.

    Google Scholar 

  • Malatesta, G., Marzoli, D., Rapino, M., & Tommasi, L. (2019). The left-cradling bias and its relationship with empathy and depression. Scientific Reports, 9, 6141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malek, R. (1981). The grip and its modalities. In R. Tubiana (Ed.), The hand (Vol. 1, pp. 469–476). W. B. Saunders and Company.

    Google Scholar 

  • Manning, J. T., & Chamberlain, A. T. (1991). Left-side cradling and brain lateralization. Ethology and Sociobiology, 12, 237–244.

    Article  Google Scholar 

  • Manning, J. T., Heaton, R., & Chamberlain, A. T. (1994). Left-side cradling: Similarities and differences between apes and humans. Journal of Human Evolution, 26, 77–83.

    Article  Google Scholar 

  • Manrod, J. D., Hartdegen, R., & Burghardt, G. M. (2008). Rapid solving of a problem apparatus by juvenile black-throated monitor lizards (Varanus albigularis albigularis). Animal Cognition, 11, 267–273.

    Article  PubMed  Google Scholar 

  • Manzano, A. S., & Barg, M. (2005). The iliosacral articulation in Pseudinae (Anura: Hylidae). Herpetologica, 61, 259–267.

    Article  Google Scholar 

  • Manzano, A. S., & Lavilla, E. O. (1995). Notas sobre la miología apendicular de Phyllomedusa hypocondrialis (Anura, Hylidae). Alytes, 12, 169–174.

    Google Scholar 

  • Manzano, A. S., Fabrezi, M., & Vences, M. (2007). Intercalary elements, treefrogs, and the early differentiation of a complex system in the Neobatrachia. Anatomical Record, 290, 1551–1567.

    Article  Google Scholar 

  • Manzano, A. S., Abdala, V., & Herrel, A. (2008). Morphology and function of the forelimb in arboreal frogs: Specializations for grasping ability? Journal of Anatomy, 213, 296–307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzano, A., Abdala, V., Ponssa, M. L., & Soliz, M. (2013). Ontogeny and tissue differentiation of the pelvic girdle and hind limbs of anurans. Acta Zoologica (Stockholm), 94, 420–436.

    Google Scholar 

  • Manzano, A., Fontanarrosa, G., Prieto, Y., & Abdala, V. (2015) La prensilidad en anfibios y reptiles: Perspectivas evolutivas basadas en la anatomia y la función. En Morfología de Vertebrados (pp. 59–82). EUDEM.

    Google Scholar 

  • Manzano, A. S., Herrel, A., Fabre, A. C., & Abdala, V. (2017). Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology. Journal of Anatomy, 231, 38–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzano, A. S., Fontanarrosa, G., & Abdala, V. (2018). Manual and pedal grasping among anurans: a review of relevant concepts with empirical approaches. Biological Journal of the Linnean Society, 127(3), 598–610.

    Article  Google Scholar 

  • Margiotoudi, K., Marie, D., Claidière, N., Coulon, O., Roth, M., Nazarian, B., Lacoste, R., Hopkins, W. D., Molesti, S., Fresnais, P., Anton, J.-L., & Meguerditchian, A. (2019). Handedness in monkeys reflects hemispheric specialization within the central sulcus. An in vivo MRI study in right- and left-handed olive baboons. Cortex, 118, 203–211.

    Article  PubMed  Google Scholar 

  • Martin, R. D. (1972). Adaptive radiation and behaviour of the Malagasy lemurs. Philosophical Transactions of the Royal Society London B, 264, 295–352.

    Article  CAS  Google Scholar 

  • Martin, R. D. (1990). Primate origins and evolution. Princeton University Press.

    Google Scholar 

  • Marzke, M. W., Wullstein, K. L., & Viegas, S. F. (1992). Evolution of the power (‘squeeze’) grip and its morphological correlates in hominids. American Journal of Physical Anthropology, 89, 283–298.

    Article  CAS  PubMed  Google Scholar 

  • Marzke, M. W., & Wullstein, K. W. (1996). Chimpanzee and human grips: A new classification with a focus on evolutionary morphology. International Journal of Primatology, 17, 117–139.

    Article  Google Scholar 

  • Marzke, M. W. (1997). Precision grips, hand morphology, and tools. American Journal of Physical Anthropology, 102, 91–110.

    Article  CAS  PubMed  Google Scholar 

  • Marzke, M. W., Marzke, R. F., Linscheid, R. L., Smutz, P., Steinberg, B., Reece, S., & An, K. N. (1999). Chimpanzee thumb muscle cross sections, moment arms and potential torques, and comparisons with humans. American Journal of Physical Anthropology, 110, 163–178.

    Article  CAS  PubMed  Google Scholar 

  • Marzke, M. W., & Marzke, R. F. (2000). Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. Journal of Anatomy, 197, 121–140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcallister, W., & Channing, A. (1983). Comparison of toe pads of some southern African climbing frogs. South African Journal of Zoology/Suid Afrikaanse Tydskrif vir Dierkunde, 18, 110–114.

    Google Scholar 

  • McClearn, D. (1992). Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. Journal of Mammalogy, 73(2), 245–261.

    Article  Google Scholar 

  • McGrew, W. C., & Marchant, L. F. (1992). Are gorillas right- handed or not? Human Evolution, 1, 17–23.

    Google Scholar 

  • McManus, I. C., & Bryden, M. P. (1992). The genetics of handedness, cerebral dominance and lateralization. In I. Rapin & S. J. Segalowitz (Eds.), Handbook of neuropsychology (Developmental neuropsychology, Part 1) (Vol. 6, pp. 115–144). Elsevier.

    Google Scholar 

  • Meguerditchian, A., Phillips, K. A., Chapelain, A., Mahovetz, L. M., Milne, S., Stoinski, T., Bania, A., Lonsdorf, E., Schaeffer, J., Russell, J., & Hopkins, W. D. (2015). Handedness for unimanual grasping in 564 great apes: The effect on grip morphology and a comparison with hand use for a bimanual coordinated task. Frontiers in Psychology, 6, 1794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melletti, M., & Mirabile, M. (2010). Hanging behavior of the hooded crow (Corvus cornix). The Wilson Journal of Ornithology, 122(1), 183–185. https://doi.org/10.1676/09-041.1

    Article  Google Scholar 

  • Mendel, F. C. (1981). The hand of two-toed sloths (Choloepus): Its anatomy and potential uses relative to size of support. Journal of Morphology, 169, 1–19.

    Article  PubMed  Google Scholar 

  • Mendyk, R. W., & Horn, H.-G. (2011). Skilled forelimb movements and extractive foraging in the arboreal monitor lizard Varanus beccarii (Doria, 1874). Herpetological Review, 42, 343–349.

    Google Scholar 

  • Mendoza, S. P., & Mason, W. A. (1986). Parental division of labour and differentiation of attachments in a monogamous primate (Callicebus moloch). Animal Behaviour, 34(5), 1336–1347.

    Article  Google Scholar 

  • Meunier, H., Blois-Heulin, C., & Vauclair, J. (2011). A new tool for measuring hand preference in non-human primates: Adaptation of Bishop’s Quantifying Hand Preference task for olive baboons. Behavioural Brain Research, 218, 1–7.

    Article  PubMed  Google Scholar 

  • Middleton, K. M. (2001). The morphological basis of hallucal orientation in extant birds. Journal of Morphology, 250(1), 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, K. M. (2003). Morphology, evolution, and function of the avian hallux. Brown University.

    Google Scholar 

  • Milliken, G. W., Ward, J. P., & Erickson, C. J. (1991). Independent digit control in foraging by the aye-aye (Daubentonia madagascariensis). Folia Primatol (Basel), 56(4), 219–224.

    Article  CAS  PubMed  Google Scholar 

  • Mivart St., G. (1870). On the myology of Chamaeleon parsonii. Proceedings of the Zoological Society (Calcutta), London, 850–890.

    Google Scholar 

  • Molesti, S., Vauclair, J., & Meguerditchian, A. (2016). Hand preferences for unimanual and bimanual coordinated actions in olive baboons (Papio anubis): Consistency over time and across populations. Journal of Comparative Psychology, 130(4), 341–350.

    Article  PubMed  Google Scholar 

  • Molnar, J., Diaz Jr, R. E., Skorka, T., Dagliyan, D., & Diogo, R. (2017). Comparative musculoskeletal anatomy of chameleon limbs, with implications for the evolution of arboreal locomotion in lizards and for teratology. Journal of Morphology., 2017, 1–21.

    Google Scholar 

  • Moreno, E., & Carrascal, L. M. (1993). Ecomorphological patterns of aerial feeding in oscines (Passeriformes: Passeri). Biological Journal of the Linnean Society, 50, 147–165.

    Article  Google Scholar 

  • Moro, S., & Abdala, V. (2004). Analisis descriptivo de la miología flexora y extensora del miembro anterior de Polychrus acutirostris (Squamata, Polychrotidae). Papeis Avulsos de Zoologia (Sao Paulo), 44, 81–89.

    Article  Google Scholar 

  • Morrison, M. L. (2018). Ornithology: Foundation, analysis, and application. Johns Hopkins University Press.

    Book  Google Scholar 

  • Mosto, C. M., & Tambussi, P. C. (2014). Qualitative and quantitative analysis of talons of diurnal bird of prey. Anatomia, Histologia, Embryologia, 43(1), 6–15. https://doi.org/10.1111/ahe.12041

    Article  Google Scholar 

  • Nakatsukasa, M., Kunimatsu, Y., Nakano, Y., & Ishida, H. (2002). Morphology of the hallucial phalanges in extant anthropoids and fossil hominoids. Zeitschrift für Morphologie und Anthropologie, 83, 361–372.

    Article  PubMed  Google Scholar 

  • Napier, J. R. (1956). The prehensile movements of the human hand. Journal of Bone and Joint Surgery. British Volume (London), 38B, 902–913.

    Article  Google Scholar 

  • Napier, J. R., & Napier, P. H. (1985). The natural history of the primates. The MIT Press.

    Google Scholar 

  • Napier, J. R. (1993). In Hands (Rev. by R. H. Tuttle), p. 180. Princeton University Press.

    Google Scholar 

  • Nash, L. T. (1978). The development of the mother-infant relationship in wild baboons (Papio anubis). Animal Behaviour, 26(3), 746–759.

    Article  Google Scholar 

  • Nekaris, K. A. I. (2005). Foraging behaviour of the slender loris (Loris lydekkerianus lydekkerianus): Implications for theories of primate origins. Journal of Human Evolution, 49, 289–300.

    Article  CAS  PubMed  Google Scholar 

  • Nauwelaerts, S., & Aerts, P. (2006). Take-off and landing forces in jumping frogs. Journal of Experimental Biology, 209, 66–77.

    Article  PubMed  Google Scholar 

  • Nimbarte, A. D., Kaz, R., & Li, Z. M. (2008). Finger joint motion generated by individual extrinsic muscles: A cadaveric study. Journal of Orthopaedic Surgery and Research, 3, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble, G. K. (1931). The biology of the amphibians. McGraw-Hill.

    Book  Google Scholar 

  • Norberg, U. M. (1979). Morphology of the wings, legs and tail of 3 coniferous forest tits, the goldcrest, and the treecreeper in relation to locomotor pattern and feeding station selection. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 287(1019), 131–165. https://doi.org/10.1098/rstb.1979.0054

    Article  Google Scholar 

  • Norberg, R. Å. (1986). Treecreeper climbing; mechanics, energetics, and structural adaptations. Ornis Scandinavica, 17, 191–209.

    Article  Google Scholar 

  • Norberg, U. M. (1994). Wing design, flight performance and habit use in bats. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology: Integrative organismal biology (pp. 205–239). University of Chicago Press.

    Google Scholar 

  • Oates, J. F. (1984). The niche of the potto, Perodicticus potto. International Journal of Primatology, 5, 51–61.

    Article  Google Scholar 

  • Orkin, J. D., & Pontzer, H. (2011). The Narrow Niche hypothesis: Gray squirrels shed new light on primate origins. American Journal of Physical Anthropology, 144(4), 617–624.

    Article  PubMed  Google Scholar 

  • Papadatou-Pastou, M., Ntolka, E., Schmitz, J., Martin, M., Munafò, M. R., Ocklenburg, S., & Paracchini, S. (2020). Human handedness: A meta-analysis. Psychological Bulletin, 146(6), 481–524.

    Article  PubMed  Google Scholar 

  • Patel, B. A., Wallace, I. J., Boyer, D. M., Granatosky, M. C., Larson, S. G., & Stern, J. T., Jr. (2015). Distinct functional roles of primate grasping hands and feet during arboreal quadrupedal locomotion. Journal of Human Evolution, 88, 79–84.

    Article  PubMed  Google Scholar 

  • Patiño, S., Pérez Zerpa, J., & Fariña, R. A. (2021). Finite element and morphological analysis in extant mammals’ claws and quaternary sloths’ ungual phalanges. Historical Biology, 33(6), 857–867.

    Article  Google Scholar 

  • Paukstis, G. L., & Brown, L. E. (1987). Evolution of the intercalary cartilage in chorus frogs, genus Pseudacris (Salientia: Hylidae). Brimleyana, 13, 55–61.

    Google Scholar 

  • Paukstis, G. L., & Brown, L. E. (1991). Evolutionary trends in the morphology of the intercalary phalanx of anuran amphibians. Canadian Journal of Zoology, 69, 1297–1301.

    Article  Google Scholar 

  • Payne, R. S. (1962). How the Barn Owl locates prey by hearing. Living Bird, 1, 151–159.

    Google Scholar 

  • Peckre, L., Fabre, A. C., Wall, C. E., Brewer, D., Ehmke, E., Haring, D., Shaw, E., Welser, K., & Pouydebat, E. (2016). Holding-on: Co-evolution between infant carrying and grasping behaviour in strepsirrhines. Scientific Reports, 6, 37729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrenoud, M., Herrel, A., Borel, A., & Pouydebat, E. (2015). Strategies of food detection in a captive cathemeral lemur, Eulemur rubriventer. Belgium J. Zool., 145(1), 69–75.

    Google Scholar 

  • Petter, J. J. (1962). Recherches dur l’ecologie et l’ethologie des lemuriens malagashes. Mémoires Museum National Histoire Naturelle, Paris, 27, 1–146.

    Google Scholar 

  • Piep, M., Radespiel, U., Zimmermann, E., Schmid, S., & Siemers, B. M. (2008). The sensory basis of prey detection in captive-born grey mouse lemurs, Microcebus murinus. Animal Behaviour, 75, 871–878.

    Article  Google Scholar 

  • Pike, A. V. L., & Maitland, D. P. (2004). Scaling of bird claws. Journal of Zoology, 262, 73–81.

    Article  Google Scholar 

  • Pocock, R. I. (1917). The classification of existing Felidæ. Annals and Magazine of Natural History, 20, 329–350.

    Article  Google Scholar 

  • Ponssa, M. L., Goldberg, J., & Abdala, V. (2010). Sesamoids in anurans: New data, old issues. The Anatomical Record, 293, 1646–1668.

    Article  PubMed  Google Scholar 

  • Pouydebat, E., Laurin, M., Gorce, P., & Bels, V. (2008). Evolution of grasping among anthropoids. Journal of Evolutionary Biology, 21, 1732–1743.

    Article  CAS  PubMed  Google Scholar 

  • Pouydebat, E., Gorce, P., & Bels, V. (2009). Biomechanical study of grasping according to the volume of the object: Human versus non-human primates. Journal of Biomechanics, 42(3–9), 266–272.

    Article  PubMed  Google Scholar 

  • Pouydebat, E., Reghem, E., Borel, A., & Gorce, P. (2011). Diversity of grip in adults and young humans and chimpanzees (Pan troglodytes). Behavioural Brain Research, 218(1–17), 21–28.

    Article  PubMed  Google Scholar 

  • Pouydebat, E., Fragaszy, D., & Kivell, T. (2014). Grasping in primates: To feed, to move and human specificities. Bulletins et Mémoires de la Société d’Anthropologie de Paris, 26, 129–133.

    Google Scholar 

  • Pouydebat, E., & Bardo, A. (2019). An interdisciplinary approach of the evolution of grasping and manipulation? Biological Journal of the Linnean Society. https://doi.org/10.1093/biolinnean/blz058

  • Prĭkryl, T., Aerts, P., Havelková, P., Herrel, A., & Rocěk, Z. (2009). Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion. Journal of Anatomy, 214, 100–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Provini, P., Tobalske, B. W., Crandell, K. E., & Abourachid, A. (2014). Transition from wing to leg forces during landing in birds. The Journal of Experimental Biology, 217(Pt 15), 2659–2666. https://doi.org/10.1242/jeb.104588

    Article  PubMed  Google Scholar 

  • Pugener, L. A., & Maglia, A. M. (2009). Developmental evolution of the anuran sacro-urostylic complex. South American Journal of Herpetology, 4, 193–209.

    Article  Google Scholar 

  • Quinn, T. H., & Baumel, J. J. (1990). The digital tendon locking mechanism of the avian foot. Zoomorphology, 109, 281–293.

    Article  Google Scholar 

  • Quinn, T. H., & Baumel, J. J. (1993). Chiropteran tendon locking mechanism. Journal of Morphology, 216(2), 197–208. https://doi.org/10.1002/jmor.1052160207

    Article  CAS  PubMed  Google Scholar 

  • Raikow, R. J. (1985). The locomotor system. In A. S. King & J. McLelland (Eds.), Form and function in birds (Vol. 3, pp. 57–147). Academic Press.

    Google Scholar 

  • Rasmussen, D. T. (1990). Primate origins: Lessons from a Neotropical marsupial. American Journal of Primatology, 22, 263–277.

    Article  PubMed  Google Scholar 

  • Rasmussen, D. T., & Sussman, R. W. (2007). Parallelisms among possums and primates. In M. Ravosa & M. Dagosta (Eds.), Primate origins: Adaptation and evolution (pp. 39–380). Springer.

    Google Scholar 

  • Reghem, E., Tia, B., Bels, V., & Pouydebat, E. (2011). Food prehension and manipulation in Microcebus murinus (Prosimii, Cheirogaleidae). Folia Primatologica, 82, 177–188.

    Article  CAS  Google Scholar 

  • Reghem, E., Byron, C., Bels, V., & Pouydebat, E. (2012). Hand posture in the grey mouse lemur during arboreal locomotion on narrow branches. Journal of Zoology, 288, 76–81.

    Article  Google Scholar 

  • Regnault, S., Hutchinson, J. R., & Jones, M. E. (2016). Sesamoid bones in tuatara (Sphenodon punctatus) investigated with X-ray microtomography, and implications for sesamoid evolution in Lepidosauria. Journal of Morphology, 278, 62–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reilly, S. M., & Delancey, M. J. (1997). Sprawling locomotion in the lizard Sceloporus clarkii: The effects of speed on gait, hindlimb kinematics, and axial bending during walking. Journal of Zoology, 243, 417–433.

    Article  Google Scholar 

  • Renous-Lécuru, S. (1973). Morphologie comparée du carpe chez les Lepidosauriens actuels (Rhynchocéphales, Lacertiliens, Amphisbéniens). Gegenbaurs Morphologisches Jahrbuch Leipzig, 119, 727–766.

    Google Scholar 

  • Rensch, B., & Dücker, G. (1969). Manipulierfähigkeit eines Wickelbären bei längeren Handlungsketten. Zeitschrift für Tierpsychologie, 26, 104–112.

    Google Scholar 

  • Ribbing, L. (1913). Kleinere Muskelstudien V. Die distale Extremitätenmuskulatur von Chamaeleon vulgaris. Lunds Universitets Årsskrift N. F. Afd., 2(8), 3–15.

    Google Scholar 

  • Richmond, B. G., Roach, N. T., & Ostrofsky, K. R. (2016). Evolution of the early hominin hand. In T. Kivell, P. Lemelin, B. Richmond, & D. Schmitt (Eds.), The evolution of the primate hand. Developments in primatology: Progress and prospects. Springer.

    Google Scholar 

  • Riskin, D. K., Bahlman, J. W., Hubel, T. Y., Ratcliffe, J. M., Kunz, T. H., & Swartz, S. M. (2009). Bats go head-under-heels: The biomechanics of landing on a ceiling. The Journal of Experimental Biology, 212(Pt 7), 945–953. https://doi.org/10.1242/jeb.026161

    Article  PubMed  Google Scholar 

  • Robinson, P. L. (1975). The functions of the fifth metatarsal in lepidosaurian reptiles. Colloques Internationaux du Centre National de la Recherche Scientifique, 218, 461–483.

    Google Scholar 

  • Robovska-Havelkova, P., Aerts, P., Rocek, Z., Prikryl, T., Fabre, A. C., & Herrel, A. (2014). Do all frogs swim alike? The effect of ecological specialization on swimming kinematics in frogs. The Journal of Experimental Biology, 217, 3637–3644.

    PubMed  Google Scholar 

  • Rocŏková, H., & Rocěk, Z. (2005). Development of the pelvis and posterior part of the vertebral column in the Anura. Journal of Anatomy, 206, 17–35.

    Article  Google Scholar 

  • Roderick, W. R., Chin, D. D., Cutkosky, M. R., & Lentink, D. (2019). Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife, 8. https://doi.org/10.7554/eLife.46415

  • Rolian, C., Lieberman, D. E., & Zermeno, J. P. (2011). Hand biomechanics during simulated stone tool use. Journal of Human Evolution, 61, 26–41.

    Article  PubMed  Google Scholar 

  • Rosenberg, H. I., & Rose, R. (1999). Volar adhesive pads of the feathertail glider, Acrobates pygmaeus (Marsupialia; Acrobatidae). Canadian Journal of Zoology, 77(2), 233–248.

    Article  Google Scholar 

  • Rothier, P. S., Brandt, R., & Kohlsdorf, T. (2017). Ecological associations of autopodial osteology in Neotropical geckos. Journal of Morphology, 278, 290–299.

    Article  PubMed  Google Scholar 

  • Russell, A. P. (1993). The aponeuroses of the lacertilian ankle. Journal of Morphology, 218, 65–84.

    Article  PubMed  Google Scholar 

  • Russell, A. P., & Bauer, A. M. (2008). The appendicular locomotor apparatus of Sphenodon and normal-limbed squamates. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of Reptilia, Volume 21: The skull and appendicular locomotor apparatus of Lepidosauria, contributions to herpetology 24 (pp. 1–465). Society for the Study of Reptiles & Amphibians.

    Google Scholar 

  • Sacrey, L. A., Alaverdashvili, M., & Whishaw, I. Q. (2009). Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behavioural Brain Research, 204(1), 153–161.

    Article  PubMed  Google Scholar 

  • Samaras, A., & Youlatos, D. (2010). Use of forest canopy by European red squirrels Sciurus vulgaris in Northern Greece: Claws and the small branch niche. Acta Theriologica, 55, 351–360.

    Google Scholar 

  • Sargis, E. J. (2001). The grasping behavior, locomotion, and substrate use of tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). Journal of Zoology, 253, 485–490.

    Article  Google Scholar 

  • Sargis, E. J. (2007). The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae) and its implications for primate supraordinal relationships. In M. J. Ravosa & M. Dagosto (Eds.), Primate Origins: Adaptations and evolution. Springer.

    Google Scholar 

  • Sargis, E. J., Boyer, D. M., Bloch, J. I., & Silcox, M. T. (2007). Evolution of pedal grasping in Primates. Journal of Human Evolution, 53, 103–107.

    Article  PubMed  Google Scholar 

  • Schick, K., Toth, N., Garufi, G., Rumbaugh, E., Rumbaugh, D., & Sevcik, R. (1993). Pan the tool-maker: Investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). Journal of Archaeological Science, 20, 821–832. https://doi.org/10.1006/jasc.1998.0350

    Article  Google Scholar 

  • Schneider, N. Y., & Gurovich, Y. (2017). Morphology and evolution of the oral shield in marsupial neonates including the newborn monito del monte (Dromiciops gliroides, Marsupialia Microbiotheria) pouch young. Journal of Anatomy, 231(1), 59–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz, A. H. (1972). Les primates. In La Grande Encyclopédie de la Nature (Volume, 17 ed. Bordas), p. 383. Editions Rencontre, Lausanne.

    Google Scholar 

  • Schwensen, K. (1994). The importance of the somatosensory system in skilled limb-use by the northernquoll, Dasyurus hallucatus. B.Sc. (Honours) Thesis, Monash University, Melbourne.

    Google Scholar 

  • Scooter, C. A. (1944). Methods of grasping and carrying prey. Condor, 46(2), 88.

    Google Scholar 

  • Sereno, P. C., & Chenggang, R. (1992). Early evolution of avian flight and perching: New evidence from the lower cretaceous of china. Science, 255(5046), 845–848. https://doi.org/10.1126/science.255.5046.845

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L. J., Young, J. W., & VandeBerg, J. L. (2014). Body size and the small branch niche: Using marsupial ontogeny to model primate locomotor evolution. Journal of Human Evolution, 68, 14–31.

    Article  PubMed  Google Scholar 

  • Sheil, C. A., & Alamillo, H. (2005). Osteology and skeletal development of Phyllomedusa vaillanti (Anura: Hylidae: Phyllomedusinae) and a comparison of this arboreal species with a terrestrial member of the genus. Journal of Morphology, 265, 343–368.

    Article  PubMed  Google Scholar 

  • Shim, J. K., Karol, S., Kim, Y. S., Seo, N. J., Kim, Y. H., Kim, Y., & Yoon, B. C. (2012). Tactile feedback plays a critical role in maximum finger force production. Journal of Biomechanics, 45(3), 415–420. https://doi.org/10.1016/j.jbiomech.2011.12.001

    Article  PubMed  Google Scholar 

  • Shubin, N. H., & Jenkins, F. A. (1995). An early jurassic jumping frog. Nature, 377, 49–52.

    Article  CAS  Google Scholar 

  • Simmons, N., & Quinn, T. (1994). Evolution of the digital tendon locking mechanism in bats and dermopterans: A phylogenetic perspective. Journal of Mammalian Evolution, 2, 231–251.

    Article  Google Scholar 

  • Siemers, B. M., Goerlitz, H. R., Robsomanitrandrasana, E., Piep, M., Ramanamanjato, J. B., Rakotondravony, D. R., Ramilijaona, O., & Ganzhorn, J. U. (2007). Sensory basis of food detection in wild Microcebus murinus. International Journal of Primatology, 28, 291–304.

    Article  Google Scholar 

  • Smith, G. A. (1971). The use of the foot in feeding, with especial reference to parrots. Avicultural Magazine, vol 77.

    Google Scholar 

  • Sparling, J. W., Van Tol, J., & Chescheir, N. C. (1999). Fetal and neonatal hand movement. Physical Therapy, 79, 24–39.

    Article  CAS  PubMed  Google Scholar 

  • Spinozzi, G., Truppa, V., & Lagana, T. (2004). Grasping behavior in tufted capuchin monkeys (Cebus apella): Grip types and manual laterality for picking up a small food item. American Journal of Physical Anthropology, 125, 30–41.

    Article  PubMed  Google Scholar 

  • Stettenheim, P. R. (2000). The integumentary morphology of modern birds - An overview. American Zoologist, 40, 461–477.

    Google Scholar 

  • Ströckens, F., Güntürkün, O., & Ocklenburg, S. (2013). Limb preferences in non-human vertebrates. Laterality, 18, 536–575.

    Article  PubMed  Google Scholar 

  • Sussman, R. W., & Kinzey, W. G. (1984). The ecological role of the Callitrichidae: A review. American Journal of Physical Anthropology, 64, 419–449.

    Article  CAS  PubMed  Google Scholar 

  • Susman, R. L. (1994). Fossil evidence for early hominid tool use. Science, 265, 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  • Susman, R. L. (1998). Hand function and tool behavior in early hominids. Journal of Human Evolution, 35, 23–46.

    Article  CAS  PubMed  Google Scholar 

  • Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. American Journal of Primatology, 23, 209–223.

    Article  PubMed  Google Scholar 

  • Sustaita, D. (2008). Musculoskeletal underpinnings to differences in killing behavior between North American accipiters (Falconiformes: Accipitridae) and falcons (Falconidae). Journal of Morphology, 269, 283–301.

    Article  PubMed  Google Scholar 

  • Sustaita, D., & Hertel, F. (2010). In vivo bite and grip forces, morphology and prey-killing behavior of North American accipiters (Accipitridae) and falcons (Falconidae). Journal of Experimental Biology, 213(15), 2617–2628.

    Article  PubMed  Google Scholar 

  • Sustaita, D., Pouydebat, E., Manzano, A., Abdala, V., Hertel, F., & Herrel, A. (2013). Getting a grip on tetrapod grasping: Form, function, and evolution. Biological Reviews of the Cambridge Philosophical Society, 88(2), 380–405. https://doi.org/10.1111/brv.12010

    Article  PubMed  Google Scholar 

  • Sustaita, D., Gloumakov, Y., Tsang, L. R., & Dollar, A. M. (2019). Behavioral correlates of semi-zygodactyly in Ospreys (Pandion haliaetus) based on analysis of internet images. PeerJ, 7, e6243. https://doi.org/10.7717/peerj.6243

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweet, S. S., & Pianka, E. R. (2007). Monitors, mammals and Wallace’s Line. Third multidisciplinary world conference on monitor lizards. Mertensiella, 16, 79–99.

    Google Scholar 

  • Szalay, F. S. (1994). Evolutionary history of the marsupials and an analysis of osteological characters. Cambridge University Press.

    Google Scholar 

  • Szalay, F. S., & Dagosto, M. (1988). Evolution of hallucial grasping in the primates. Journal of Human Evolution, 17, 1–33.

    Article  Google Scholar 

  • Taylor, B. K. (1985). Functional anatomy of the forelimb in vermilinguas (anteaters). In G. G. Montgomery (Ed.), The evolution and ecology of armadillos, sloths, and vermilinguas (pp. 151–171). Smithsonian Institution Press.

    Google Scholar 

  • Taylor, G. M., Nol, E., & Boire, D. (1995). Brain regions and encephalization in anurans: Adaptation or stability? Brain, Behavior and Evolution, 45, 96–109.

    Article  CAS  PubMed  Google Scholar 

  • Takeshita, H., Myowa-Yamakoshi, M., & Hirata, S. (2006). A new comparative perspective on prenatal motor behaviors: Preliminary research with four-dimensional ultrasonography. In T. Matsuzawa, M. Tomonaga, & M. Tanaka (Eds.), Cognitive development in chimpanzees. Springer.

    Google Scholar 

  • Ten Donkelaar, H. J. (1998). Anurans. In R. Nieuwenhuys, H. J. Ten Donkelaar, & C. Nicholson (Eds.), The central nervous system of vertebrates (pp. 1151–1314). Springer.

    Chapter  Google Scholar 

  • Thewissen, J. G. M., & Etnier, S. A. (1995). Adhesive devices on the thumb of vespertilionoid bats (Chiroptera). Journal of Mammalogy, 76(3), 925–936.

    Article  Google Scholar 

  • Thomas, P., Pouydebat, E., Le Brazidec, M., Aujard, F., & Herrel, A. (2016). Determinants of pull strength in captive grey mouse lemurs (Microcebus murinus). Journal of Zoology, 298, 77–81.

    Article  Google Scholar 

  • Tinius, A., & Patrick Russell, A. (2017). Points on the curve: An analysis of methods for assessing the shape of vertebrate claws. Journal of Morphology, 278(2), 150–169. https://doi.org/10.1002/jmor.20625

    Article  PubMed  Google Scholar 

  • Tocheri, M. W., Orr, C. M., Jacofsky, M. C., & Marzke, M. W. (2008). The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo. Journal of Anatomy, 212, 544–562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth, N., Schick, K., Savage-Rumbaugh, E. S., Sevcik, R. A., & Rumbaugh, D. M. (1993). Pan the tool-maker: Investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). Journal of Archaeological Science, 20, 81–91.

    Article  Google Scholar 

  • Toussaint, S., Reghem, E., Chotard, H., Herrel, A., Ross, C. F., & Pouydebat, E. (2013). Food acquisition on arboreal substrates by the grey mouse lemur: implication for primate grasping evolution. Journal of Zoology, 291, 235–242.

    Article  Google Scholar 

  • Toussaint, S., Herrel, A., Ross, C. F., Aujard, F., & Pouydebat, E. (2015). Substrate diameter and orientation in the context of food type in the gray mouse lemur, Microcebus murinus: Implications for the origins of grasping in primates. International Journal of Primatology, 36(3), 583–604.

    Article  Google Scholar 

  • Toussaint, S., Llamosi, A., Morino, L., & Youlatos, D. (2020). The central role of small vertical substrates for the origin of grasping in early primates. Current Biology, 30, 1600–1613.

    Article  CAS  PubMed  Google Scholar 

  • Tozer, D. C., & Allen, M. L. (2004). Adult gray jay captures an adult black-capped chickadee. Wilson Bulletin, 116(4), 357–359.

    Article  Google Scholar 

  • Tsang, L. R. (2012). Facultative zygodactyly in the black-shouldered kite Elanus axillaris. Australian Field Ornithology, 29, 89–92.

    Google Scholar 

  • Tsang, L. R., & McDonald, P. G. (2018). A comparative study of avian pes morphotypes, and the functional implications of Australian raptor pedal flexibility. Emu - Austral Ornithology. https://doi.org/10.1080/01584197.2018.1483203

  • Tsang, L. R., Wilson, L. A. B., & McDonald, P. G. (2019a). Comparing the toepads of Australian diurnal and nocturnal raptors with nonpredatory taxa: Insights into functional morphology. Journal of Morphology, 280(11), 1682–1692. https://doi.org/10.1002/jmor.21057

    Article  PubMed  Google Scholar 

  • Tsang, L. R., Wilson, L. A. B., Ledogar, J., Wroe, S., Attard, M., & Sansalone, G. (2019b). Raptor talon shape and biomechanical performance are controlled by relative prey size but not by allometry. Scientific Reports, 9(1), 7076. https://doi.org/10.1038/s41598-019-43654-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulli, M. J., Cruz, F. B., Herrel, A., Vanhooydonck, B., & Abdala, V. (2009). The interplay between claw morphology and microhabitat use in Neotropical iguanian lizards. Zoology, 112, 379–392.

    Article  CAS  PubMed  Google Scholar 

  • Tulli, M. J., Abdala, V., & Cruz, F. B. (2011). Relationships among morphology, clinging performance and habitat use in Liolaemini lizards. Journal of Evolutionary Biology, 24, 843–855.

    Article  CAS  PubMed  Google Scholar 

  • Urbani, B., & Youlatos, D. (2013). Positional behavior and substrate use of Micromys minutus (Rodentia: Muridae): Insights for understanding primate origins. Journal of Human Evolution, 64, 130–136.

    Article  PubMed  Google Scholar 

  • Vaira, M. (2001). Breeding biology of the leaf frog, Phyllomedusa boliviana (Anura, Hylidae). Amphibia-Reptilia, 22, 421–429.

    Article  Google Scholar 

  • Van Valkenburgh, B. (1987). Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology, 7(2), 162–182.

    Article  Google Scholar 

  • Vassallo, A. I., Manzano, A. S., Abdala, V., & Muzio, R. (2021). Can Anyone Climb? The skills of a non-specialized toad and its bearing on the evolution of new niches. Evolutionary Biology. https://doi.org/10.1007/s11692-021-09539-9

  • Vauclair, J., Meguerditchian, A., & Hopkins, W. D. (2005). Hand preferences for unimanual and coordinated bimanual tasks in baboons (Papio anubis). Cognitive Brain Research, 25, 210–216.

    Article  PubMed  Google Scholar 

  • Vaughan, T., Ryan, J., & Czaplewski, N. (2011). Mammalogy (5th ed.). Jones and Bartlett Publishers, Greater Sudbury.

    Google Scholar 

  • Versace, E., & Vallortigara, G. (2015). Forelimb preferences in human beings and other species: Multiple models for testing hypotheses on lateralization. Frontiers in Psychology, 6, 233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vigouroux, L., Bardo, A., Kivell, T. L., & Pouydebat, E. (2018). Biomechanical analyses of the consequences of different hand proportion on tool grasp abilities using musculo-skeletal simulation: A preliminary study. Journal of Human Evolution, 125, 106–121.

    Article  PubMed  Google Scholar 

  • Völter, C. J., Rossano, F., & Call, J. (2015). From exploitation to cooperation: Social tool use in Orang-Utan mother– offspring dyads. Animal Behaviour, 100, 126–134.

    Article  Google Scholar 

  • Warburton, N. M., Harvey, K. J., Prideaux, G. J., & O'Shea, J. E. (2011). Functional morphology of the forelimb of living and extinct tree-kangaroos (Marsupialia: Macropodidae). Journal of Morphology, 272(10), 1230–1244.

    Article  PubMed  Google Scholar 

  • Ward, A. B., Weigl, P. D., & Conroy, R. M. (2002). Functional morphology of raptor hindlimbs: Implications for resource partitioning. Auk, 119(4), 1052–1063.

    Article  Google Scholar 

  • Whipple, I. L. (1904). The ventral surface of the mammalian cheiridium, with special reference to conditions found in man. Zeitschrift für Morphologie und Anthropologie, 7, 261–368.

    Google Scholar 

  • Whishaw, I. Q., Pellis, S. M., & Gorny, B. P. (1992). Skilled reaching in rats and humans: Evidence for parallel development or homology. Behavioural Brain Research, 47(1), 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Whishaw, I. Q. (1996). An endpoint, descriptive, and kinematic comparison of skilled reaching in mice (Mus musculus) with rats (Rattus novergicus). Behavioural Brain Research, 78, 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Whishaw, I. Q., Sarna, J. R., & Pellis, S. M. (1998). Rodent-typical and species-specific limb use in eating: Evidence for specialized paw use from a comparative analysis of ten species. Behavioural Brain Research, 96, 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Williams, E. M., Gordon, A. D., & Richmond, B. G. (2012). Hand pressure distribution during Oldowan stone tool production. Journal of Human Evolution, 62, 520–532.

    Article  PubMed  Google Scholar 

  • Wimsatt, W. A., & Villa, B. (1970). Locomotor adaptations of the disc-winged bat Thyroptera tricolor. I. Functional organization of the adhesive discs. The American Journal of Anatomy, 129, 89–120.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, H., & Bock, W. (1976). Analyse der Kräfteverhaltnisse bei Klettervögeln. Journal für Ornithologie, 117, 397–418.

    Article  Google Scholar 

  • Yeo, R., & Gangestad, S. W. (1993). Developmental origins of variation in human hand preference. Genetica, 89, 281–296.

    Article  Google Scholar 

  • Youlatos, D. (2008). Hallucal grasping behavior in Caluromys (Didelphimorphia: Didelphidae): Implications for primate pedal grasping. Journal of Human Evolution, 55, 1096e1101.

    Article  Google Scholar 

  • Youlatos, D., Moussa, D., Karantanis, N.-E., & Rychlik, L. (2018). Locomotion, postures, substrate use, and foot grasping in the marsupial feathertail glider Acrobates pygmaeus (Diprotodontia: Acrobatidae): insights into early euprimate evolution. Journal of Human Evolution, 123, 148–159.

    Article  PubMed  Google Scholar 

  • Young, J. W., & Chadwell, B. A. (2020). Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports. Journal of Human Evolution, 142, 102767.

    Article  PubMed  Google Scholar 

  • Zaaf, A., & Van Damme, R. (2001). Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): A phylogenetically informed analysis. Zoomorphology, 121, 45–53.

    Article  Google Scholar 

  • Zani, P. A. (2000). The comparative evolution of lizard claw and toe morphology and clinging performance. Journal of Evolutionary Biology, 13, 316–325.

    Article  Google Scholar 

  • Zeffer, A., & Norberg, U. M. L. (2003). Leg morphology and locomotion in birds: Requirements for force and speed during ankle flexion. Journal of Experimental Biology, 206, 1085–1097.

    Article  CAS  PubMed  Google Scholar 

  • Zellmer, N. T., Timm-Davis, L. L., & Davis, R. W. (2021). Sea otter behavior: Morphologic, physiologic, and sensory adaptations. In R. W. Davis & A. M. Pagano (Eds.), Ethology and behavioral ecology of sea otters and polar bears. Ethology and behavioral ecology of marine mammals. Springer.

    Google Scholar 

Download references

Acknowledgments

We warmly thank Vincent Bels for inviting us to participate in this book project. We appreciate the generosity of Hartmut Förstner for providing us with the schematics shown in Fig. 12.7, and of Gilles Berillon for providing the 3D models shown in Fig. 12.14. Part of this work was funded by PICT 2016-2772, 2018-0832 and PIP 0389, and supported by a SU emergence funding “HUMDEXT”. Finally, we would like to warmly thank those experts who helped us to improve this article, in particular Christine Böhmer and Anthony Russell.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pouydebat, E., Boulinguez-Ambroise, G., Manzano, A., Abdala, V., Sustaita, D. (2023). Convergent Evolution of Manual and Pedal Grasping Capabilities in Tetrapods. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_12

Download citation

Publish with us

Policies and ethics