Skip to main content

Nano-Based Probes for the Brain Extracellular Environment

  • Chapter
  • First Online:
Engineering Biomaterials for Neural Applications

Abstract

The brain is our most complex organ and governs all physiological function, from cognition and emotion to movement and stress response. Much of the brain’s function is determined by complex interactions of cells within the brain parenchyma, the functional unit of brain tissue critical for supporting and protecting cells. In fact, trauma or disease to the brain parenchyma can result in a loss of cognitive function and, in severe cases, death (Bonkhoff et al., Brain Commun 3(2):fcab110, 2021; Szarka et al., Int J Mol Sci 20(13), 2019; Thal et al., J Cell Mol Med 12(5B):1848–62, 2008;Smith et al., eLife 6, 2017). Several studies have shown microstructural changes to the brain parenchyma resulting from a variety of injury and disease states, such as traumatic brain injury (TBI), Alzheimer’s and Parkinson’s diseases, depression, and aging (Ayad et al., Philos Trans R Soc Lond Ser B Biol Sci 374(1779):20180215, 2019). As a result, brain microstructure has garnered significant attention in recent years from scientists and engineers as a neurological and micromechanical sink – an unexplored frontier for disease progression and a critical barrier to therapeutic delivery in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayad, N. M. E., Kaushik, S., & Weaver, V. M. (2019). Tissue mechanics, an important regulator of development and disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 374(1779), 20180215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baden, V., & Winklhofer, K. F. (2019). Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell and Developmental Biology, 99, 163–171.

    Google Scholar 

  • Bang, S., Jeong, S., Choi, N., & Kim, H. N. (2019). Brain-on-a-chip: A history of development and future perspective. Biomicrofluidics, 13(5), 051301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes, J. M., Przybyla, L., & Weaver, V. M. (2017). Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 130(1), 71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder, D. K., Papadopoulos, M. C., Haggie, P. M., & Verkman, A. S. (2004). In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching. Journal of Neuroscience, 24, 8049–8056.

    Article  CAS  PubMed  Google Scholar 

  • Bonkhoff, A. K., Lim, J. S., Bae, H. J., Weaver, N. A., Kuijf, H. J., Biesbroek, J. M., et al. (2021). Generative lesion pattern decomposition of cognitive impairment after stroke. Brain Communications, 3(2), fcab110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 584, 535–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z. J., Broaddus, W. C., Viswanathan, R. R., Raghavan, R., & Gillies, G. T. (2002). Intraparenchymal drug delivery via positive-pressure infusion: Experimental and modeling studies of poroelasticity in brain phantom gels. IEEE Transactions on Biomedical Engineering, 49, 85–96.

    Article  PubMed  Google Scholar 

  • Chenouard, N., Smal, I., De Chaumont, F., Maška, M., Sbalzarini, I. F., Gong, Y., et al. (2014). Objective comparison of particle tracking methods. Nature Methods, 11, 281–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman, L. G., Jr., Liu, W., Oguz, I., Styner, M., & Crews, F. T. (2014). Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility. Pharmacology, Biochemistry, and Behavior, 116, 142–151.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, L. G. J., Liu, W., Oguz, I., Styner, M., & Crews, F. T. (2014). Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility. Pharmacology, Biochemistry, and Behavior, 116, 142–151.

    Article  CAS  PubMed  Google Scholar 

  • Croft, C. L., Futch, H. S., Moore, B. D., & Golde, T. E. (2019). Organotypic brain slice cultures to model neurodegenerative proteinopathies. Molecular Degeneration, 14.

    Google Scholar 

  • Curtis, C., Toghani, D., Wong, B., & Nance, E. (2018). Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids and Surfaces. B, Biointerfaces, 170, 673–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis, C., McKenna, M., Pontes, H., Toghani, D., Choe, A., & Nance, E. (2019). Predicting: In situ nanoparticle behavior using multiple particle tracking and artificial neural networks. Nanoscale, 11, 22515–22530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damodarasamy, M., Vernon, R. B., Pathan, J. L., Keene, C. D., Day, A. J., Banks, W. A., et al. (2020). The microvascular extracellular matrix in brains with Alzheimer’s disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA). Fluids Barriers CNS, 17(1), 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delbridge, A. R. D., Huh, D., Brickelmaier, M., Burns, J. C., Roberts, C., Challa, R., et al. (2020). Organotypic brain slice culture microglia exhibit molecular similarity to acutely-isolated adult microglia and provide a platform to study Neuroinflammation. Frontiers in Cellular Neuroscience, 14, 592005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulla, C., Tani, H., Sakiko, O., Frommer, W. B., Reimer, R. J., & Huguenard, J. R. (2008). Imaging of glutamate in brain slices using FRET sensors. Journal of Neuroscience Methods, 168(2), 306–319.

    Article  CAS  PubMed  Google Scholar 

  • Eby, G. A., & Eby, K. L. (2006). Rapid recovery from major depression using magnesium treatment. Medical Hypotheses, 67(2), 362–370.

    Article  CAS  PubMed  Google Scholar 

  • Elkin, B. S., Shaik, M. A., & Morrison, B., 3rd. (2010). Fixed negative charge and the Donnan effect: A description of the driving forces associated with brain tissue swelling and oedema. Philosophical Transactions of the Royal Society A, 368(1912), 585–603.

    Article  Google Scholar 

  • Elosegui-Artola, A. (2021). The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Current Opinon in Cell Biology, 584, 535–546.

    Google Scholar 

  • Fang, Y., Dong, Y., Zheng, T., Du, D., Wen, J., Gao, D., et al. (2017). Altered tracer distribution and clearance in the extracellular space of the Substantia Nigra in a rodent model of Parkinson’s disease. Frontiers in Neuroscience, 11, 409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fields, R. D., & Stevens, B. (2000). ATP: An extracellular signaling molecule between neurons and glia. Trends in Neurosciences, 23(12), 625–633.

    Article  CAS  PubMed  Google Scholar 

  • Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., et al. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology, 2(4), 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godin, A. G., Varela, J. A., Gao, Z., Danne, N., Dupuis, J. P., Lounis, B., et al. (2017). Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nature Nanotechnology, 12(3), 238–243.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Riano, C., Tapia-Gonzalez, S., Perea, G., Gonzalez-Arias, C., DeFelipe, J., & Barbas, C. (2021). Metabolic changes in brain slices over time: A multiplatform metabolomics approach. Molecular Neurobiology, 58(7), 3224–3237.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, D. R., Jenkins, T. M., Addington, C. P., Stabenfeldt, S. E., & Lifshitz, J. (2020). Extracellular matrix proteins are time-dependent and regional-specific markers in experimental diffuse brain injury. Brain and Behavior: A Cognitive Neuroscience Perspective, 10(9), e01767.

    Article  Google Scholar 

  • Gutierrez, R., & Heinemann, U. (1999). Synaptic reorganization in explanted cultures of rat hippocampus. Brain Research, 815(2), 304–316.

    Article  CAS  PubMed  Google Scholar 

  • Hablitz, L. M., Vinitsky, H. S., Sun, Q., Staeger, F. F., Sigurdsson, B., Mortensen, K. N., et al. (2019). Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Science Advances, 5(2), eaav5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holley, J. E., Gveric, D., Whatmore, J. L., & Gutowski, N. J. (2005). Tenascin C induces a quiescent phenotype in cultured adult human astrocytes. Glia, 52(1), 53–58.

    Article  PubMed  Google Scholar 

  • Holthoff, K., & Witte, O. W. (1998). Intrinsic optical signals in vitro: A tool to measure alterations in extracellular space with two-dimensional resolution. Brain Research Bulletin, 47, 649–655.

    Article  CAS  PubMed  Google Scholar 

  • Hrabetova, S., Cognet, L., Rusakov, D. A., & Nagerl, U. V. (2018). Unveiling the extracellular space of the brain: From super-resolved microstructure to in vivo function. The Journal of Neuroscience, 38(44), 9355–9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Li, L., Liu, T., Hao, N., Liu, H., Chen, D., et al. (2011). The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 5(7), 5390–5399.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Williams, J. C., & Johnson, S. M. (2012). Brain slice on a chip: Opportunities and challenges of applying microfluidic technology to intact tissues. Lab on a Chip, 12(12), 2103–2117.

    Article  CAS  PubMed  Google Scholar 

  • Iliff, J. J. W. M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., Benveniste, H., Vates, E. G., Deane, R., Goldman, S. A., Nagelhus, A. E., & Nedergaard, M. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Science Translational Medicine, 4, 147.

    Article  Google Scholar 

  • Ishikawa-Ankerhold, H. C., Ankerhold, R., & Drummen, G. P. (2012). Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules, 17(4), 4047–4132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwashita, M., Ohta, H., Fujisawa, T., Cho, M., Ikeya, M., Kidoaki, S., et al. (2019). Brain-stiffness-mimicking tilapia collagen gel promotes the induction of dorsal cortical neurons from human pluripotent stem cells. Scientific Reports, 9, 1–17.

    Article  CAS  Google Scholar 

  • Izumikawa, T., Sato, B., & Kitagawa, H. (2014). Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Scientific Reports, 4, 3701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorio, A., & Saito, R. (2021). Raman spectroscopy for carbon nanotube applications. Journal of Applied Physics, 129, 021102.

    Article  CAS  Google Scholar 

  • Joseph, A., Wood, T., Chen, C.-C., Corry, K., Snyder, J. M., Juul, S. E., Parikh, P., et al. (2018). Curcumin-loaded polymeric nanoparticles for neuroprotection in neonatal rats with hypoxic-ischemic encephalopathy. Nano Research, 11, 5670–5688.

    Article  CAS  Google Scholar 

  • Joseph, A., Liao, R., Zhang, M., Helmbrecht, H., McKenna, M., Filteau, J. R., et al. (2020). Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioengineering & Translational Medicine, 5(3), e10175.

    Article  CAS  Google Scholar 

  • Joyner, K., Yang, S., & Duncan, G. A. (2020). Microrheology for biomaterial design. APL Bioengineering, 4, 041508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamali-Zare, P., & Nicholson, C. (2013). Brain extracellular space: Geometry, matrix and physiological importance. Basic and Clinical Neuroscience, 4(4), 282–286.

    PubMed  PubMed Central  Google Scholar 

  • Kannan, S., Dai, H., Navath, R. S., Balakrishnan, B., Jyoti, A., Janisse, J., et al. (2012). Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Science Translational Medicine, 4(130), 130ra46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korogod, N., Petersen, C. C., & Knott, G. W. (2015). Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife, 4.

    Google Scholar 

  • Kowalek, P., Loch-Olszewska, H., & Szwabiński, J. (2019). Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach. Physical Review E, 100, 1–13.

    Article  Google Scholar 

  • Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S., & Yong, V. W. (2013). Pathophysiology of the brain extracellular matrix: A new target for remyelination. Nature Reviews. Neuroscience, 14(10), 722–729.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. L., Hubbard, L. C., Hern, S., Yildiz, I., Gratzl, M., & Steinmetz, N. F. (2013). Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomaterials Science, 1(6).

    Google Scholar 

  • Lehmenkuhler, A., Sykova, E., Svoboda, J., Zilles, K., & Nicholson, C. (1993). Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience, 55(2), 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Lesniak, W. G., Mishra, M. K., Jyoti, A., Balakrishnan, B., Zhang, F., Nance, E., et al. (2013). Biodistribution of fluorescently labeled PAMAM dendrimers in neonatal rabbits: Effect of neuroinflammation. Molecular Pharmaceutics, 10(12), 4560–4571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Liu, F., Jiang, H., Lee, T. S., & Tang, S. (2017). Long-term two-photon imaging in awake macaque monkey. Neuron, 93(5), 1049–1057. e3.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Li, J., & Gu, M. (2007). The correlation between myocardial function and cerebral hemodynamics in term infants with hypoxic-ischemic encephalopathy. Journal of Tropical Pediatrics, 53(1), 44–48.

    Article  PubMed  Google Scholar 

  • Manrique-Castano, D., Dzyubenko, E., Borbor, M., Vasileiadou, P., Kleinschnitz, C., Roll, L., et al. (2021). Tenascin-C preserves microglia surveillance and restricts leukocyte and, more specifically, T cell infiltration of the ischemic brain. Brain, Behavior, and Immunity, 91, 639–648.

    Article  CAS  PubMed  Google Scholar 

  • Mattana, S., Caponi, S., Tamagnini, F., Fioretto, D., & Palombo, F. (2017). Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. Journal of Innovative Optical Health Sciences, 10(6).

    Google Scholar 

  • McKenna, M., Shackelford, D., Ferreira Pontes, H., Ball, B., & Nance, E. (2021). Multiple particle tracking detects changes in brain extracellular matrix and predicts neurodevelopmental age. ACS Nano, 15(5), 8559–8573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin, G. A., Langdon, E. M., Crutchley, J. M., Holt, L. J., Forest, M. G., Newby, J. M., et al. (2020). Spatial heterogeneity of the cytosol revealed by machine learning-based 3D particle tracking. Molecular Biology of the Cell, 31(14).

    Google Scholar 

  • Michael, A. C., & Borland, L. M. (Eds.). (2007). Electrochemical methods for neuroscience. CRC Press/Taylor & Francis.

    Google Scholar 

  • Nance, E. (2017). Brain-penetrating nanoparticles for analysis of the brain microenvironment. Methods in Molecular Biology, 1570, 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Nance, E. A., Woodworth, G. F., Sailor, K. A., Shih, T. Y., Xu, Q., Swaminathan, G., et al. (2012). A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Science Translational Medicine, 4(149), 149ra19.

    Article  Google Scholar 

  • Nance, E., Timbie, K., Miller, G. W., Song, J., Louttit, C., Klibanov, A. L., et al. (2014a). Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound. Journal of Controlled Release, 189, 123–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nance, E., Zhang, C., Shih, T. Y., Xu, Q., Schuster, B. S., & Hanes, J. (2014b). Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano, 8, 10655–10664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nance, E., Zhang, F., Mishra, M. K., Zhang, Z., Kambhampati, S. P., Kannan, R. M., et al. (2016). Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials, 101, 96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naudi, A., Cabre, R., Jove, M., Ayala, V., Gonzalo, H., Portero-Otin, M., et al. (2015). Lipidomics of human brain aging and Alzheimer’s disease pathology. International Review of Neurobiology, 122, 133–189.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, M. M., Carlini, A. S., Chien, M.-P., Sonnenberg, S., Luo, C., Braden, R. L., et al. (2015). Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Advanced Materials, 27(37), 5547–5552.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, C., & Hrabetova, S. (2017). Brain extracellular space: The final frontier of neuroscience. Biophysical Journal, 113(10), 2133–2142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson, C., & Sykova, E. (1998). Extracellular space structure revealed by diffusion analysis. Trends in Neurosciences, 21(5), 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, C., & Tao, L. (1993). Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophysical Journal, 65, 2277–2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odackal, J., Colbourn, R., Odackal, N. J., Tao, L., Nicholson, C., & Hravetova, S. (2017). Real-time iontophoresis with tetramethylammonium to quantify volume fraction and tortuosity of brain extracellular space. JOVE, 125, 55755.

    Google Scholar 

  • Ogawa, B., Wang, L., Ohishi, T., Taniai, E., Akane, H., Suzuki, K., et al. (2012). Reversible aberration of neurogenesis targeting late-stage progenitor cells in the hippocampal dentate gyrus of rat offspring after maternal exposure to acrylamide. Archives of Toxicology, 86(5), 779–790.

    Article  CAS  PubMed  Google Scholar 

  • Paviolo, C., Soria, F. N., Ferreira, J. S., Lee, A., Groc, L., Bezard, E., et al. (2020). Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods, 174, 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Qian, X., Song, H., & Ming, G. L. (2019). Brain organoids: Advances, applications and challenges. Development (Cambridge), 146.

    Google Scholar 

  • Radbruch, H., Bremer, D., Mothes, R., Gunther, R., Leo Rinnenthal, J., Pohlan, J., et al. (2015). Intravital FRET: Probing cellular and tissue function in vivo. International Journal of Molecular Sciences, 16(5), 11713–11727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridolfo, R., Tavakoli, S., Junnuthula, V., Williams, D. S., Urtti, A., & van Hest, J. C. M. (2021). Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium. Biomacromolecules, 22(1), 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Rosendale, R., Flores, J., Paviolo, C., Pagano, P., Daniel, J., Ferreira, J., et al. (2021). A bottom-up approach to red-emitting molecular-based nanoparticles with natural stealth properties and their use for single-particle tracking deep in brain tissue. Advanced Materials, 33(22).

    Google Scholar 

  • Sack, I., Beierbach, B., Wuerfel, J., Klatt, D., Hamhaber, U., Papazoglou, S., et al. (2008). The impact of aging and gender on brain viscoelasticit. NeuroImage, 46(3), 652–657.

    Article  Google Scholar 

  • Sadakane, O., Masamizu, Y., Watakabe, A., Terada, S., Ohtsuka, M., Takaji, M., et al. (2015). Long-term two-photon calcium imaging of neuronal populations with subcellular resolution in adult non-human primates. Cell Reports, 13(9), 1989–1999.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaggi, L., Salemme, M., Vaccaro, C., Pesce, G., Rusciano, G., Sasso, A., et al. (2010). Multiple-particle-tracking to investigate viscoelastic properties in living cells. Methods, 51, 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Sethi, M. K., & Zaia, J. (2017). Extracellular matrix proteomics in schizophrenia and Alzheimer’s disease. Analytical and Bioanalytical Chemistry, 409(2), 379–394.

    Article  CAS  PubMed  Google Scholar 

  • Sillay, K. A., McClatchy, S. G., Shepherd, B. A., Venable, G. T., & Fuehrer, T. S. (2014). Image-guided convection-enhanced delivery into agarose gel models of the brain. Journal of Visualized Experiments, 87, 51466.

    Google Scholar 

  • Silva, I., Silva, J., Ferreira, R., & Trigo, D. (2021). Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurological Research and Practice, 3.

    Google Scholar 

  • SIlvia, N., & Dai, G. (2020). Cerebral organoids as a model for glioblastoma multiforme. Current Opinion in Biomedical Engineering, 13, 152–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, A. J., Yao, X., Dix, J. A., Jin, B.-J., & Verkman, A. S. (2017). Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife, 6.

    Google Scholar 

  • Soria, F. N., Paviolo, C., Doudnikoff, E., Arotcarena, M.-L., Lee, A., Danne, N., et al. (2020). Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nature Communications, 11, 3440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streitberger, K. J., Sack, I., Krefting, D., Pfuller, C., Braun, J., Paul, F., et al. (2012). Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS One, 7(1), e29888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stylianopoulos, T., Poh, M. Z., Insin, N., Bawendi, M. G., Fukumura, D., Munn, L. L., et al. (2010). Diffusion of particles in the extracellular matrix: The effect of repulsive electrostatic interactions. Biophysical Journal, 99(5), 1342–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syková, E. (1997). The extracellular space in the CNS: Its regulation, volume and geometry in Normal and pathological neuronal function. The Neuroscientist, 3(1), 28–41.

    Article  Google Scholar 

  • Sykova, E. (2004). Diffusion properties of the brain in health and disease. Neurochemistry International, 45(4), 453–466.

    Article  CAS  PubMed  Google Scholar 

  • Sykova, E., Mazel, T., Hasenohrl, R. U., Harvey, A. R., Simonova, Z., Mulders, W. H., et al. (2002). Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus, 12(2), 269–279.

    Article  CAS  PubMed  Google Scholar 

  • Szarka, N., Toth, L., Czigler, A., Kellermayer, Z., Ungvari, Z., Amrein, K., et al. (2019). Single mild traumatic brain injury induces persistent disruption of the blood-brain barrier, neuroinflammation and cognitive decline in hypertensive rats. International Journal of Molecular Sciences, 20(13).

    Google Scholar 

  • Thal, D. R., Griffin, W. S., & Braak, H. (2008). Parenchymal and vascular Abeta-deposition and its effects on the degeneration of neurons and cognition in Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 12(5B), 1848–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne, R. G., & Nicholson, C. (2006). In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proceedings of the National Academy of Sciences of the United States of America, 103, 5567–5572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne, R. G., Lakkaraju, A., Rodriguez-Boulan, E., & Nicholson, C. (2008). In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. PNAS, 105(24), 8416–8412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timbie, K. F., Afzal, U., Date, A., Zhang, C., Song, J., Wilson Miller, G., et al. (2017). MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. Journal of Controlled Release, 263, 120–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting, J. T., Kalmbach, B., Chong, P., de Frates, R., Keene, C. D., Gwinn, R. P., et al. (2018). A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Scientific Reports, 8, 8407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonnesen, J., & Nagerl, U. V. (2013). Superresolution imaging for neuroscience. Experimental Neurology, 242, 33–40.

    Article  PubMed  Google Scholar 

  • Toole, B. P. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews. Cancer, 4(7), 528–539.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, M. T., Perlman, Z. E., Gardel, M. L., Shin, J. H., Matsudaira, P., Mitchison, T. J., et al. (2004). Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials. Biophysical Journal, 86, 4004–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Toorn, A., Sykova, E., Dijkhuizen, R. M., Vorisek, I., Vargova, L., Skobisova, E., et al. (1996). Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magnetic Resonance in Medicine, 36(1), 52–60.

    Article  PubMed  Google Scholar 

  • Verkman, A. S. (2013). Diffusion in the extracellular space in brain and tumors. Physical Biology, 10(4), 045003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorisek, I., & Sykova, E. (1997). Evolution of anisotropic diffusion in the developing rat corpus callosum. Journal of Neurophysiology, 78(2), 912–919.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, T., Kroll, A., Haramagatti, C. R., Lipinski, H. G., & Wiemann, M. (2017). Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLoS One, 12(1), e0170165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wight, T. N. (2017). Provisional matrix: A role for versican and hyaluronan. Matrix Biology, 60, 38–56.

    Article  PubMed  Google Scholar 

  • Wong, C., Stylianopoulos, T., Cui, J., Martin, J., Chauhan, V. P., Jiang, W., et al. (2011). Multistage nanoparticle delivery system for deep penetration into tumor tissue. PNAS, 108(6), 2426–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, F., Nicholson, C., Hrabe, J., & Hrabětová, S. (2008). Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging. Biophysical Journal, 95, 1382–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342(6156), 373–377.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y. (2000). Lecticans: Organizers of the brain extracellular matrix. Cellular and Molecular Life Sciences, 57(2), 276–289.

    Article  CAS  PubMed  Google Scholar 

  • Yu, M., Xu, L., Tian, F., Su, Q., Zheng, N., Yang, Y., et al. (2018). Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nature Communications, 9(1), 2607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Nance, E., Zhang, Z., Jasty, V., Kambhampati, S. P., Mishra, M. K., et al. (2016). Surface functionality affects the biodistribution and microglia-targeting of intra-amniotically delivered dendrimers. Journal of Controlled Release, 237, 61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Trent Magruder, J., Lin, Y. A., Crawford, T. C., Grimm, J. C., Sciortino, C. M., et al. (2017a). Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. Journal of Controlled Release, 249, 173–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Nance, E. A., Mastorakos, P., Chisholm, J., Berry, S., Eberhart, C., et al. (2017b). Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. Journal of Controlled Release, 263, 112–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Bishop, B. P., Thompson, N. L., Hildahl, K., Dang, B., Mironchuk, O., et al. (2019). Quantum dot cellular uptake and toxicity in the developing brain: Implications for use as imaging probes. Nanoscale Advances, 1(9), 3424–3442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, Y., & Wang, G. (2020). Three-dimensional single particle tracking and its applications in confined environments. Annual Review of Analytical Chemistry, 13(1), 381–403.

    Article  PubMed  Google Scholar 

  • Zhou, J., Patel, T. R., Sirianni, R. W., Strohbehn, G., Zheng, M. Q., Duong, N., et al. (2013). Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 11751–11756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, F., Xu, J., Fu, H., Cao, J., Mao, H., Gong, M., et al. (2013). Different functions of HIPK2 and CtBP2 in traumatic brain injury. Journal of Molecular Neuroscience, 49(2), 395–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of General Medical Sciences (Grant #R35GM124677).

Declaration of Interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Nance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filteau, J.R., Butler, B.P., Schimek, N., Nance, E. (2022). Nano-Based Probes for the Brain Extracellular Environment. In: Nance, E. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-11409-0_2

Download citation

Publish with us

Policies and ethics