Skip to main content
Log in

Different Functions of HIPK2 and CtBP2 in Traumatic Brain Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to neuronal dysfunction and over-reactive astrocytes. In our study, homeodomain interacting protein kinase 2 (HIPK2) can interact with C-terminal binding protein 2 (CtBP2) in rat brain, which is a component of Wnt-regulated transcription. Up to now, the functions of HIPK2 and CtBP2 in CNS are still with limited acquaintance. In our study, we found that the interaction between HIPK2 and CtBP2 was involved in central nervous system (CNS) injury and repair. We performed an acute TBI model in adult rats. Western blot and immunohistochemistry analysis revealed that both HIPK2 and CtBP2 significantly increased in the peritrauma brain cortex in comparison to contralateral cerebral cortex. And immunofluorescence double-labeling revealed that HIPK2 was mainly co-expressed with NeuN but less GFAP. Meanwhile, we also examined that the expression profiles of active-caspase-3 was correlated with the expression of HIPK2 and the expression profiles of the proliferating cell nuclear antigen (PCNA) was correlated with the expression of CtBP2. HIPK2 participated in apoptosis of neurons, but CtBP2 was associated with the activation and proliferation of astrocytes. Immunoprecipitation further showed that they enhanced the interaction with each other in the pathophysiology process. In conclusion, this was the first description that HIPK2 interacted with CtBP2 in traumatic brains. Our data suggest that HIPK2 and CtBP2 might play important roles in CNS pathophysiology after TBI, and might provide a basis for the further study on their roles in regulating the prognosis after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TBI:

Traumatic brain injury

HIPK2:

Homeodomain interacting protein kinase 2

CtBP2:

C-terminal binding protein 2

Mdm2:

Murine double minute 2

PCNA:

Proliferating cell nuclear antigen

JNK:

c-Jun NH2-terminal kinase

PVDF:

Polyvinylidine difluoride filter

CNS:

Central nervous system

SDS:

Sodium dodecyl sulfate

BSA:

Bovine serum albumin

DAB:

Diaminobenzidine

PBS:

Phosphate buffer solution

NeuN:

Neuronal nuclei

GFAP:

Glial fibrillary acidic protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

PAGE:

Polyacrylamide gel electrophoresis

References

  • Al-Beiti MA, Lu X (2008) Expression of HIPK2 in cervical cancer: correlation with clinicopathology and prognosis. Aust N Z J Obstet Gynaecol 48:329–336

    Article  PubMed  Google Scholar 

  • Birts CN, Bergman LM, Blaydes JP (2011) CtBPs promote mitotic fidelity through their activities in the cell nucleus. Oncogene 30:1272–1280

    Article  PubMed  CAS  Google Scholar 

  • Bitomsky N, Hofmann TG (2009) Apoptosis and autophagy: regulation of apoptosis by DNA damage signalling — roles of p53, p73 and HIPK2. FEBS J 276:6074–6083

    Article  PubMed  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12:469–478

    PubMed  CAS  Google Scholar 

  • Bredesen DE (1995) Neural apoptosis. Ann Neurol 38:839–851

    Article  PubMed  CAS  Google Scholar 

  • Calzado MA, Renner F, Roscic A, Schmitz ML (2007) HIPK2: a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 6:139–143

    Article  PubMed  CAS  Google Scholar 

  • Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9:213–224

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai G (2009) The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69:731–734

    Article  PubMed  CAS  Google Scholar 

  • Clark RS, Kochanek PM, Watkins SC, Chen M, Dixon CE, Seidberg NA, Melick J, Loeffert JE, Nathaniel PD, Jin KL, Graham SH (2000) Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem 74:740–753

    Article  PubMed  CAS  Google Scholar 

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4:11–19

    Article  PubMed  CAS  Google Scholar 

  • Di Stefano V, Blandino G, Sacchi A, Soddu S, D'Orazi G (2004) HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function. Oncogene 23:5185–5192

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt OG, Boutell C, Orr A, Ullrich E, Haller O, Everett RD (2003) The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Exp Cell Res 283:36–50

    Article  PubMed  CAS  Google Scholar 

  • Erhardt L (1996) Biochemical markers in acute myocardial infarction—the beginning of a new era? Eur Heart J 17:1781–1782

    Article  PubMed  CAS  Google Scholar 

  • Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115:4–18

    Article  PubMed  CAS  Google Scholar 

  • Hamada F, Bienz M (2004) The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 7:677–685

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG, Stollberg N, Schmitz ML, Will H (2003) HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 63:8271–8277

    PubMed  CAS  Google Scholar 

  • Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H (2001) The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97:2815–2822

    Article  PubMed  CAS  Google Scholar 

  • Katz DI, Alexander MP, Klein RB (1998) Recovery of arm function in patients with paresis after traumatic brain injury. Arch Phys Med Rehabil 79:488–493

    Article  PubMed  CAS  Google Scholar 

  • Kernie SG, Erwin TM, Parada LF (2001) Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 66:317–326

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y (1998) Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 273:25875–25879

    Article  PubMed  CAS  Google Scholar 

  • Kondo S, Lu Y, Debbas M, Lin AW, Sarosi I, Itie A, Wakeham A, Tuan J, Saris C, Elliott G, Ma W, Benchimol S, Lowe SW, Mak TW, Thukral SK (2003) Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1). Proc Natl Acad Sci U S A 100:5431–5436

    Article  PubMed  CAS  Google Scholar 

  • Königsmark BW, Murphy EA (1970) Neuronal populations in the human brain. Nature 228:1335–1336

    Google Scholar 

  • Kovi RC, Paliwal S, Pande S, Grossman SR (2010) An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 17:513–521

    Article  PubMed  CAS  Google Scholar 

  • Lavra L, Rinaldo C, Ulivieri A, Luciani E, Fidanza P, Giacomelli L, Bellotti C, Ricci A, Trovato M, Soddu S, Bartolazzi A, Sciacchitano S (2011) The loss of the p53 activator HIPK2 is responsible for galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS One 6:e20665

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Swarup S, Chen J, Ishitani T, Verheyen EM (2009) Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta-catenin/Arm and stimulation of target gene expression. Development 136:241–251

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhang R, Luo D, Park SJ, Wang Q, Kim Y, Min W (2005) Tumor necrosis factor alpha-induced desumoylation and cytoplasmic translocation of homeodomain-interacting protein kinase 1 are critical for apoptosis signal-regulating kinase 1-JNK/p38 activation. J Biol Chem 280:15061–15070

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Liang YY, Sun B, Liang M, Shi Y, Brunicardi FC, Feng XH (2003) Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol 23:9081–9093

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2010) A relationship between p27(kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma 27:361–371

    Article  PubMed  Google Scholar 

  • Logan A, Frautschy SA, Gonzalez AM, Baird A (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J Neurosci 12:3828–3837

    PubMed  CAS  Google Scholar 

  • McDonald BC, Flashman LA, Saykin AJ (2002) Executive dysfunction following traumatic brain injury: neural substrates and treatment strategies. NeuroRehabilitation 17:333–344

    PubMed  Google Scholar 

  • Meloni AR, Smith EJ, Nevins JR (1999) A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci U S A 96:9574–9579

    Article  PubMed  CAS  Google Scholar 

  • Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW, Blaydes JP (2003) Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol 13:1234–1239

    Article  PubMed  CAS  Google Scholar 

  • Moller A, Sirma H, Hofmann TG, Rueffer S, Klimczak E, Droge W, Will H, Schmitz ML (2003) PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 63:4310–4314

    PubMed  Google Scholar 

  • Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8:101–105

    Article  PubMed  Google Scholar 

  • Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264:13856–13864

    PubMed  CAS  Google Scholar 

  • Paliwal S, Pande S, Kovi RC, Sharpless NE, Bardeesy N, Grossman SR (2006) Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis. Mol Cell Biol 26:2360–2372

    Article  PubMed  CAS  Google Scholar 

  • Perel P, Arango M, Clayton T, Edwards P, Komolafe E, Poccock S, Roberts I, Shakur H, Steyerberg E, Yutthakasemsunt S (2008) Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 336:425–429

    Article  PubMed  Google Scholar 

  • Piek J, Chesnut RM, Marshall LF, van Berkum-Clark M, Klauber MR, Blunt BA, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA (1992) Extracranial complications of severe head injury. J Neurosurg 77:901–907

    Article  PubMed  CAS  Google Scholar 

  • Puca R, Nardinocchi L, Sacchi A, Rechavi G, Givol D, D'Orazi G (2009) HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer 8:85

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Soddu S (2007) HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 85:411–418

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 92:10467–10471

    Article  PubMed  CAS  Google Scholar 

  • Schirmer-Mikalsen K, Vik A, Gisvold SE, Skandsen T, Hynne H, Klepstad P (2007) Severe head injury: control of physiological variables, organ failure and complications in the intensive care unit. Acta Anaesthesiol Scand 51:1194–1201

    PubMed  CAS  Google Scholar 

  • Subramanian T, La Regina M, Chinnadurai G (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 4:415–420

    PubMed  CAS  Google Scholar 

  • Sung KS, Go YY, Ahn JH, Kim YH, Kim Y, Choi CY (2005) Differential interactions of the homeodomain-interacting protein kinase 2 (HIPK2) by phosphorylation-dependent sumoylation. FEBS Lett 579:3001–3008

    Article  PubMed  CAS  Google Scholar 

  • Teasdale GM, Graham DI (1998) Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery 43:723–737, discussion 737–728

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Crossley M (2001) The CtBP family: enigmatic and enzymatic transcriptional co-repressors. Bioessays 23:683–690

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Iordanov M, Zhang Q (2006) c-Jun NH2-terminal kinase promotes apoptosis by down-regulating the transcriptional co-repressor CtBP. J Biol Chem 281:34810–34815

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Debatin KM, Hug H (2001) HIPK2 overexpression leads to stabilization of p53 protein and increased p53 transcriptional activity by decreasing Mdm2 protein levels. BMC Mol Biol 2:8

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Marion Schneider E, Li X, Duttenhofer I, Debatin K, Hug H (2002) HIPK2 associates with RanBPM. Biochem Biophys Res Commun 297:148–153

    Article  PubMed  CAS  Google Scholar 

  • Yu TS, Zhang G, Liebl DJ, Kernie SG (2008) Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors. J Neurosci 28:12901–12912

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Li J, Wang C, Ma Y, Huo K (2005a) A new human gene hNTKL-BP1 interacts with hPirh2. Biochem Biophys Res Commun 330:293–297

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Nottke A, Goodman RH (2005b) Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci U S A 102:2802–2807

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH (2003) Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 115:177–186

    Article  PubMed  CAS  Google Scholar 

  • Zhao LJ, Subramanian T, Zhou Y, Chinnadurai G (2006) Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J Biol Chem 281:4183–4189

    Article  PubMed  CAS  Google Scholar 

  • Zygun DA, Kortbeek JB, Fick GH, Laupland KB, Doig CJ (2005) Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med 33:654–660

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Shi or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, F., Xu, J., Fu, H. et al. Different Functions of HIPK2 and CtBP2 in Traumatic Brain Injury. J Mol Neurosci 49, 395–408 (2013). https://doi.org/10.1007/s12031-012-9906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9906-2

Keywords

Navigation