Skip to main content

Patellofemoral Arthritis

  • Chapter
  • First Online:
Anterior Knee Pain and Patellar Instability

Abstract

Patellofemoral arthritis (PF OA) is a common degenerative disease of the joint surface between the patella and trochlea that may exist in isolation or as part of a larger multi-compartmental disease-state. It is a common pathology with annual incidence between 0.6% to 3.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira D, Peleteiro B, Araújo J, Branco J, Santos RA, Ramos E. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthritis Cartilage. 2011;19(11):1270–85.

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi S, Pappas E, Fransen M, Refshauge K, Simic M. The prevalence of patellofemoral osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2016;24(10):1697–707.

    Article  CAS  PubMed  Google Scholar 

  3. Walker T, Perkinson B, Mihalko WM. Patellofemoral arthroplasty: the other unicompartmental knee replacement. J Bone Joint Surg Am. 2012;94(18):1712–20.

    Article  PubMed  Google Scholar 

  4. Coburn SL, Barton CJ, Filbay SR, Hart HF, Rathleff MS, Crossley KM. Quality of life in individuals with patellofemoral pain: a systematic review including meta-analysis. Phys Ther Sport. 2018;33:96–108.

    Article  PubMed  Google Scholar 

  5. Chawla H, Nwachukwu BU, van der List JP, Eggman AA, Pearle AD, Ghomrawi HM. Cost effectiveness of patellofemoral versus total knee arthroplasty in younger patients. Bone Joint J. 2017;99-B(8):1028–1036.

    Google Scholar 

  6. Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical expenditures and earnings losses among US adults with arthritis in 2013. Arthritis Care Res. 2018;70(6):869–76.

    Article  Google Scholar 

  7. Bieleman HJ, Oosterveld FGJ, Oostveen JCM, Reneman MF, Groothoff JW. Work participation and health status in early osteoarthritis of the hip and/or knee: a comparison between the Cohort Hip and Cohort Knee and the Osteoarthritis Initiative. Arthritis Care Res. 2010;62(5):683–9.

    Article  CAS  Google Scholar 

  8. Sharif B, Garner R, Sanmartin C, Flanagan WM, Hennessy D, Marshall DA. Risk of work loss due to illness or disability in patients with osteoarthritis: a population-based cohort study. Rheumatology. 2016;55(5):861–8.

    Article  PubMed  Google Scholar 

  9. Hubertsson J, Petersson IF, Thorstensson CA, Englund M. Risk of sick leave and disability pension in working-age women and men with knee osteoarthritis. Ann Rheum Dis. 2013;72(3):401–5.

    Article  PubMed  Google Scholar 

  10. Grelsamer RP, Proctor CS, Bazos AN. Evaluation of patellar shape in the sagittal plane. A clinical analysis. Am J Sports Med. 1994;22(1):61–66.

    Google Scholar 

  11. Sherman SL, Plackis AC, Nuelle CW. Patellofemoral anatomy and biomechanics. Clin Sports Med. 2014;33(3):389–401.

    Article  PubMed  Google Scholar 

  12. Huberti HH, Hayes WC. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am. 1984;66(5):715–724.

    Google Scholar 

  13. Loudon JK. Biomechanics and pathomechanics of the patellofemoral joint. Int J Sports Phys Ther. 2016;11(6):820–30.

    PubMed  PubMed Central  Google Scholar 

  14. Tanaka MJ, Chahla J, Farr J 2nd, et al. Recognition of evolving medial patellofemoral anatomy provides insight for reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2537–50.

    Article  PubMed  Google Scholar 

  15. Aglietti P, Insall JN, Cerulli G. Patellar pain and incongruence. I: Measurements of incongruence. Clin Orthop Relat Res. 1983;(176):217–224.

    Google Scholar 

  16. Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop Relat Res. 1979;144:9–15.

    Google Scholar 

  17. White BJ, Sherman OH. Patellofemoral instability. Bull NYU Hosp Jt Dis. 2009;67(1):22–9.

    PubMed  Google Scholar 

  18. Grelsamer RP, Dejour D, Gould J. The pathophysiology of patellofemoral arthritis. Orthop Clin North Am. 2008;39(3):269–274, v.

    Google Scholar 

  19. Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy. 2003;19(7):717–21.

    Article  PubMed  Google Scholar 

  20. Vollnberg B, Koehlitz T, Jung T, et al. Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol. 2012;22(11):2347–56.

    Article  PubMed  Google Scholar 

  21. Anderson DD, Marsh JL, Brown TD. The pathomechanical etiology of post-traumatic osteoarthritis following intraarticular fractures. Iowa Orthop J. 2011;31:1–20.

    PubMed  PubMed Central  Google Scholar 

  22. Honkonen SE. Degenerative arthritis after tibial plateau fractures. J Orthop Trauma. 1995;9(4):273–7.

    Article  CAS  PubMed  Google Scholar 

  23. Milentijevic D, Rubel IF, Liew AS, Helfet DL, Torzilli PA. An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage. J Orthop Trauma. 2005;19(7):466–73.

    Article  PubMed  Google Scholar 

  24. Huang W, Ong TY, Fu SC, Yung SH. Prevalence of patellofemoral joint osteoarthritis after anterior cruciate ligament injury and associated risk factors: a systematic review. J Orthop Translat. 2020;22:14–25.

    Article  PubMed  Google Scholar 

  25. Culvenor AG, Cook JL, Collins NJ, Crossley KM. Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med. 2013;47(2):66–70.

    Article  PubMed  Google Scholar 

  26. Peters TA, McLean ID. Osteochondritis dissecans of the patellofemoral joint. Am J Sports Med. 2000;28(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hevesi M, Sanders TL, Pareek A, et al. Osteochondritis Dissecans in the knee of skeletally immature patients: rates of persistent pain, osteoarthritis, and arthroplasty at mean 14-years’ follow-up. Cartilage. 2020;11(3):291–9.

    Article  PubMed  Google Scholar 

  28. Spector TD, MacGregor AJ. Risk factors for osteoarthritis: genetics. Osteoarthritis Cartilage. 2004;12 Suppl A:S39–S44.

    Google Scholar 

  29. Bongers EMHF, van Kampen A, van Bokhoven H, Knoers NVAM. Human syndromes with congenital patellar anomalies and the underlying gene defects. Clin Genet. 2005;68(4):302–19.

    Article  CAS  PubMed  Google Scholar 

  30. Karuppal R. Current concepts in the articular cartilage repair and regeneration. J Orthop. 2017;14(2):A1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pihl K, Turkiewicz A, Englund M, et al. Association of specific meniscal pathologies and other structural pathologies with self-reported mechanical symptoms: a cross-sectional study of 566 patients undergoing meniscal surgery. J Sci Med Sport. 2019;22(2):151–7.

    Article  PubMed  Google Scholar 

  32. Crossley KM, Schache AG, Ozturk H, Lentzos J, Munanto M, Pandy MG. Pelvic and hip kinematics during walking in people with patellofemoral joint osteoarthritis compared to healthy age-matched controls. Arthritis Care Res. 2018;70(2):309–14.

    Article  Google Scholar 

  33. Trasolini NA, Serino J, Dandu N, Yanke AB. Treatment of proximal trochlear dysplasia in the setting of patellar instability: an arthroscopic technique. Arthrosc Tech. 2021;10(10):e2253–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leslie IJ, Bentley G. Arthroscopy in the diagnosis of chondromalacia patellae. Ann Rheum Dis. 1978;37(6):540–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hart HF, Ackland DC, Pandy MG, Crossley KM. Quadriceps volumes are reduced in people with patellofemoral joint osteoarthritis. Osteoarthritis Cartilage. 2012;20(8):863–8.

    Article  CAS  PubMed  Google Scholar 

  36. Haim A, Yaniv M, Dekel S, Amir H. Patellofemoral pain syndrome: validity of clinical and radiological features. Clin Orthop Relat Res. 2006;451:223–8.

    Article  PubMed  Google Scholar 

  37. Merchant AC, Fraiser R, Dragoo J, Fredericson M. A reliable Q angle measurement using a standardized protocol. Knee. 2020;27(3):934–9.

    Article  PubMed  Google Scholar 

  38. Iwano T, Kurosawa H, Tokuyama H, Hoshikawa Y. Roentgenographic and clinical findings of patellofemoral osteoarthrosis. With special reference to its relationship to femorotibial osteoarthrosis and etiologic factors. Clin Orthop Relat Res. 1990;(252):190–197.

    Google Scholar 

  39. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  40. Merchant AC, Mercer RL, Jacobsen RH, Cool CR. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am. 1974;56(7):1391–6.

    Article  CAS  PubMed  Google Scholar 

  41. Laurin CA, Lévesque HP, Dussault R, Labelle H, Peides JP. The abnormal lateral patellofemoral angle: a diagnostic roentgenographic sign of recurrent patellar subluxation. J Bone Joint Surg Am. 1978;60(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  42. Damgacı L, Özer H, Duran S. Patella-patellar tendon angle and lateral patella-tilt angle decrease patients with chondromalacia patella. Knee Surg Sports Traumatol Arthrosc. 2020;28(8):2715–21.

    Article  PubMed  Google Scholar 

  43. Rueckl K, Boettner F, Maza N, Runer A, Bechler U, Sculco P. The posterior-anterior flexed view is better than the anterior-posterior view for assessing osteoarthritis of the knee. Skeletal Radiol. 2018;47(4):511–7.

    Article  PubMed  Google Scholar 

  44. Heng HYC, Bin Abd Razak HR, Mitra AK. Radiographic grading of the patellofemoral joint is more accurate in skyline compared to lateral views. Ann Transl Med. 2015;3(18):263.

    Google Scholar 

  45. Stefanik JJ, Zhu Y, Zumwalt AC, et al. Association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: the multicenter osteoarthritis study. Arthritis Care Res. 2010;62(9):1258–65.

    Article  CAS  Google Scholar 

  46. Ward SR, Terk MR, Powers CM. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am. 2007;89(8):1749–55.

    PubMed  Google Scholar 

  47. Magnussen RA, De Simone V, Lustig S, Neyret P, Flanigan DC. Treatment of patella alta in patients with episodic patellar dislocation: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2545–50.

    Article  PubMed  Google Scholar 

  48. Perelli S, Ibañez M, Morales-Marin C, et al. Patellar tendon lengthening: rescue procedure for patella baja. Arthrosc Tech. 2020;9(1):e1–8.

    Article  PubMed  Google Scholar 

  49. Verhulst FV, van Sambeeck JDP, Olthuis GS, van der Ree J, Koëter S. Patellar height measurements: Insall-Salvati ratio is most reliable method. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):869–75.

    Article  PubMed  Google Scholar 

  50. Anagnostakos K, Lorbach O, Reiter S, Kohn D. Comparison of five patellar height measurement methods in 90° knee flexion. Int Orthop. 2011;35(12):1791–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pennock AT, Alam M, Bastrom T. Variation in tibial tubercle-trochlear groove measurement as a function of age, sex, size, and patellar instability. Am J Sports Med. 2014;42(2):389–93.

    Article  PubMed  Google Scholar 

  52. Gomoll AH, Madry H, Knutsen G, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vallotton JA, Meuli RA, Leyvraz PF, Landry M. Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc. 1995;3(3):157–62.

    Article  CAS  PubMed  Google Scholar 

  54. Schaefer FKW, Kurz B, Schaefer PJ, et al. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta radiol. 2007;48(10):1131–1137.

    Google Scholar 

  55. Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta radiol. 2008;49(7):771–86.

    Article  CAS  PubMed  Google Scholar 

  56. Azer NM, Winalski CS, Minas T. MR imaging for surgical planning and postoperative assessment in early osteoarthritis. Radiol Clin North Am. 2004;42(1):43–60.

    Article  PubMed  Google Scholar 

  57. Merkely G, Hinckel BB, Shah N, Small KM, Lattermann C. Magnetic resonance imaging of the patellofemoral articular cartilage. In: Dejour D, Zaffagnini S, Arendt EA, Sillanpää P, Dirisamer F, editors. Patellofemoral Pain, Instability, and Arthritis: Clinical Presentation, Imaging, and Treatment. Springer: Berlin Heidelberg; 2020. p. 47–61.

    Chapter  Google Scholar 

  58. Camp CL, Stuart MJ, Krych AJ, et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med. 2013;41(8):1835–40.

    Article  PubMed  Google Scholar 

  59. Arden NK, Perry TA, Bannuru RR, et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines. Nat Rev Rheumatol. 2021;17(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  60. American Academy of Orthopaedic Surgeons Management of Osteoarthritis of the Knee (Non-Arthroplasty) Evidence-Based Clinical Practice Guideline; 2021. https://www.aaos.org/oak3cpg.

  61. Chevidikunnan MF, Al Saif A, Gaowgzeh RA, Mamdouh KA. Effectiveness of core muscle strengthening for improving pain and dynamic balance among female patients with patellofemoral pain syndrome. J Phys Therapy Sci. 2016;28(5):1518–23.

    Article  Google Scholar 

  62. Ferber R, Bolgla L, Earl-Boehm JE, Emery C, Hamstra-Wright K. Strengthening of the hip and core versus knee muscles for the treatment of patellofemoral pain: a multicenter randomized controlled trial. J Athl Train. 2015;50(4):366–77.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Crossley KM, Marino GP, Macilquham MD, Schache AG, Hinman RS. Can patellar tape reduce the patellar malalignment and pain associated with patellofemoral osteoarthritis? Arthritis Rheum. 2009;61(12):1719–25.

    Article  PubMed  Google Scholar 

  64. Cushnaghan J, McCarthy C, Dieppe P. Taping the patella medially: a new treatment for osteoarthritis of the knee joint? BMJ. 1994;308(6931):753–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Callaghan MJ, Parkes MJ, Hutchinson CE, et al. A randomised trial of a brace for patellofemoral osteoarthritis targeting knee pain and bone marrow lesions. Ann Rheum Dis. 2015;74(6):1164–70.

    Article  CAS  PubMed  Google Scholar 

  66. Powers CM, Ward SR, Chen YJ, der Chan L, Terk MR. The effect of bracing on patellofemoral joint stress during free and fast walking. Am J Sports Med. 2004;32(1):224–31.

    Article  PubMed  Google Scholar 

  67. Powers CM, Ward SR, Chen YJ, Chan LD, Terk MR. Effect of bracing on patellofemoral joint stress while ascending and descending stairs. Clin J Sport Med. 2004;14(4):206–14.

    Article  PubMed  Google Scholar 

  68. Hunter DJ, Harvey W, Gross KD, et al. A randomized trial of patellofemoral bracing for treatment of patellofemoral osteoarthritis. Osteoarthritis Cartilage. 2011;19(7):792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bruyère O, Honvo G, Veronese N, et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Semin Arthritis Rheum. 2019;49(3):337–50.

    Article  PubMed  Google Scholar 

  70. Koh IJ, Kim MS, Sohn S, Song KY, Choi NY, In Y. Duloxetine reduces pain and improves quality of recovery following total knee arthroplasty in centrally sensitized patients: a prospective, randomized controlled study. J Bone Joint Surg Am. 2019;101(1):64–73.

    Article  PubMed  Google Scholar 

  71. Skljarevski V, Zhang S, Iyengar S, et al. Efficacy of duloxetine in patients with chronic pain conditions. Curr Drug ther. 2011;6(4):296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nuelle CW, Cook CR, Stoker AM, Cook JL, Sherman SL. In Vivo Toxicity of local anesthetics and corticosteroids on supraspinatus tenocyte cell viability and metabolism. Iowa Orthop J. 2018;38:107–12.

    PubMed  PubMed Central  Google Scholar 

  73. Sherman SL, Khazai RS, James CH, Stoker AM, Flood DL, Cook JL. In vitro toxicity of local anesthetics and corticosteroids on chondrocyte and synoviocyte viability and metabolism. Cartilage. 2015;6(4):233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord. 2015;16:321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Clarke S, Lock V, Duddy J, Sharif M, Newman JH, Kirwan JR. Intra-articular hylan G-F 20 (Synvisc) in the management of patellofemoral osteoarthritis of the knee (POAK). Knee. 2005;12(1):57–62.

    Article  PubMed  Google Scholar 

  76. Jayaram P, Liu C, Dawson B, et al. Leukocyte-dependent effects of platelet-rich plasma on cartilage loss and thermal hyperalgesia in a mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2020;28(10):1385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Riboh JC, Saltzman BM, Yanke AB, Fortier L, Cole BJ. Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016;44(3):792–800.

    Article  PubMed  Google Scholar 

  78. Raeissadat SA, Ghorbani E, Sanei Taheri M, et al. MRI changes after platelet rich plasma injection in knee osteoarthritis (Randomized Clinical Trial). J Pain Res. 2020;13:65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tetteh ES, Bajaj S, Ghodadra NS. Basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther. 2012;42(3):243–53.

    Article  PubMed  Google Scholar 

  80. Paulos LE, O’Connor DL, Karistinos A. Partial lateral patellar facetectomy for treatment of arthritis due to lateral patellar compression syndrome. Arthroscopy. 2008;24(5):547–53.

    Article  PubMed  Google Scholar 

  81. Aderinto J, Cobb AG. Lateral release for patellofemoral arthritis. Arthroscopy. 2002;18(4):399–403.

    Article  PubMed  Google Scholar 

  82. Christensen F, Søballe K, Snerum L. Treatment of chondromalacia patellae by lateral retinacular release of the patella. Clin Orthop Relat Res. 1988;234:145–7.

    Article  Google Scholar 

  83. Unal B, Hinckel BB, Sherman SL, Lattermann C. Comparison of lateral retinaculum release and lengthening in the treatment of patellofemoral disorders. Am J Orthop. 2017;46(5):224–8.

    PubMed  Google Scholar 

  84. Wetzels T, Bellemans J. Patellofemoral osteoarthritis treated by partial lateral facetectomy: results at long-term follow up. Knee. 2012;19(4):411–5.

    Article  CAS  PubMed  Google Scholar 

  85. Tan SHS, Lim BY, Chng KSJ, et al. The difference between computed tomography and magnetic resonance imaging measurements of Tibial tubercle-trochlear groove distance for patients with or without patellofemoral instability: a systematic review and meta-analysis. J Knee Surg. 2020;33(8):768–76.

    Article  PubMed  Google Scholar 

  86. Lin KM, James EW, Aitchison AH, Schlichte LM, Wang G, Green DW. Increased tibiofemoral rotation on MRI with increasing clinical severity of patellar instability. Knee Surg Sports Traumatol Arthrosc. 2021;29(11):3735–42.

    Article  PubMed  Google Scholar 

  87. Fulkerson JP. Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med. 2002;30(3):447–56.

    Article  PubMed  Google Scholar 

  88. Rosso F, Rossi R, Governale G, et al. Tibial Tuberosity Anteromedialization for patellofemoral chondral disease: prognostic factors. Am J Sports Med. 2017;45(7):1589–98.

    Article  PubMed  Google Scholar 

  89. Carofino BC, Fulkerson JP. Anteromedialization of the tibial tubercle for patellofemoral arthritis in patients >50 years. J Knee Surg. 2008;21(2):101–5.

    Article  PubMed  Google Scholar 

  90. Gardner EC, Molho DA, Fulkerson JP. Coronal Malalignment-when and how to perform a Tibial tubercle osteotomy. Clin Sports Med. 2022;41(1):15–26.

    Article  PubMed  Google Scholar 

  91. Kuroda R, Kambic H, Valdevit A, Andrish JT. Articular cartilage contact pressure after tibial tuberosity transfer. A cadaveric study. Am J Sports Med. 2001;29(4):403–409.

    Google Scholar 

  92. Ferguson AB Jr, Brown TD, Fu FH, Rutkowski R. Relief of patellofemoral contact stress by anterior displacement of the tibial tubercle. J Bone Joint Surg Am. 1979;61(2):159–66.

    Article  PubMed  Google Scholar 

  93. Grimm NL, Lazarides AL, Amendola A. Tibial tubercle osteotomies: a review of a treatment for recurrent patellar instability. Curr Rev Musculoskelet Med. 2018;11(2):266–71.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  95. Hadley CJ, Tucker BS, Lombardi NJ, et al. Combined MPFL reconstruction and tibial tubercle osteotomy for patellar instability: a retrospective review of 23 patients. J Orthop. 2021;28:49–52.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Su P, Liu X, Jian N, Li J, Fu W. Clinical outcomes and predictive factors for failure with MPFL reconstruction combined with tibial tubercle osteotomy and lateral retinacular release for recurrent patellar instability. BMC Musculoskelet Disord. 2021;22(1):632.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Liska F, von Deimling C, Otto A, et al. Distal femoral torsional osteotomy increases the contact pressure of the medial patellofemoral joint in biomechanical analysis. Knee Surg Sports Traumatol Arthrosc. 2019;27(7):2328–33.

    Article  PubMed  Google Scholar 

  98. Fouilleron N, Marchetti E, Autissier G, Gougeon F, Migaud H, Girard J. Proximal tibial derotation osteotomy for torsional tibial deformities generating patello-femoral disorders. Orthop Traumatol Surg Res. 2010;96(7):785–92.

    Article  CAS  PubMed  Google Scholar 

  99. Sherman SL, Thompson SF, Clohisy JCF. Distal femoral varus osteotomy for the management of valgus deformity of the knee. J Am Acad Orthop Surg. 2018;26(9):313–24.

    Article  PubMed  Google Scholar 

  100. Barnavon T, Odri GA, Vendeuvre T, et al. Medial closing-wedge distal femoral varus osteotomy: symptoms and functional impact in cases of associated patellofemoral osteoarthritis. A two-year follow-up prospective pilot study. Knee. 2020;27(3):615–623.

    Google Scholar 

  101. Riff AJ, Huddleston HP, Cole BJ, Yanke AB. Autologous chondrocyte implantation and osteochondral allograft transplantation render comparable outcomes in the setting of failed marrow stimulation. Am J Sports Med. 2020;48(4):861–70.

    Article  PubMed  Google Scholar 

  102. Chahla J, Hinckel BB, Yanke AB, et al. An expert consensus statement on the management of large chondral and osteochondral defects in the patellofemoral joint. Orthop J Sports Med. 2020;8(3):2325967120907343.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chahla J, Sweet MC, Okoroha KR, et al. Osteochondral allograft transplantation in the patellofemoral joint: a systematic review. Am J Sports Med. 2019;47(12):3009–18.

    Article  PubMed  Google Scholar 

  104. Meric G, Gracitelli GC, Görtz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for bipolar reciprocal osteochondral lesions of the knee. Am J Sports Med. 2015;43(3):709–14.

    Article  PubMed  Google Scholar 

  105. Spak RT, Teitge RA. Fresh osteochondral allografts for patellofemoral arthritis: long-term followup. Clin Orthop Relat Res. 2006;444:193.

    Article  Google Scholar 

  106. Du PZ, Markolf KL, Levine BD, McAllister DR, Jones KJ. Differences in the radius of curvature between femoral condyles: implications for osteochondral allograft matching. J Bone Joint Surg Am. 2018;100(15):1326–31.

    Article  PubMed  Google Scholar 

  107. Jomha NM, Lavoie G, Muldrew K, Schachar NS, McGann LE. Cryopreservation of intact human articular cartilage. J Orthop Res. 2002;20(6):1253–5.

    Article  CAS  PubMed  Google Scholar 

  108. Williams SK, Amiel D, Ball ST, et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am. 2003;85(11):2111–20.

    Article  PubMed  Google Scholar 

  109. Walczak BE, Nies MS, Trask DJ, et al. Osteochondral graft size is significantly associated with increased force and decreased chondrocyte viability. Am J Sports Med. 2018;46(3):623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Farr J 2nd, Barrett D. Optimizing patellofemoral arthroplasty. Knee. 2008;15(5):339–47.

    Article  PubMed  Google Scholar 

  111. Tishelman JC, Pyne A, Kahlenberg CA, Gruskay JA, Strickland SM. Obesity does not affect patient-reported outcomes following patellofemoral arthroplasty. J Knee Surg. 2022;35(3):312–6.

    Article  PubMed  Google Scholar 

  112. Peng G, Liu M, Guan Z, et al. Patellofemoral arthroplasty versus total knee arthroplasty for isolated patellofemoral osteoarthritis: a systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1):264.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Vandenneucker H, Labey L, Vander Sloten J, Desloovere K, Bellemans J. Isolated patellofemoral arthroplasty reproduces natural patellofemoral joint kinematics when the patella is resurfaced. Knee Surg Sports Traumatol Arthrosc. 2016;24(11):3668–77.

    Article  PubMed  Google Scholar 

  114. Blazina ME, Fox JM, Del Pizzo W, Broukhim B, Ivey FM. Patellofemoral replacement. Clin Orthop Relat Res. 1979;144:98–102.

    Google Scholar 

  115. Strickland SM, Bird ML, Christ AB. Advances in patellofemoral arthroplasty. Curr Rev Musculoskelet Med. 2018;11(2):221–30.

    Article  PubMed  PubMed Central  Google Scholar 

  116. van der List JP, Chawla H, Zuiderbaan HA, Pearle AD. Survivorship and functional outcomes of patellofemoral arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2622–31.

    Article  PubMed  Google Scholar 

  117. Joseph MN, Achten J, Parsons NR, Costa ML, PAT Trial Collaborators. The PAT randomized clinical trial. Bone Joint J. 2020;102-B(3):310–318.

    Google Scholar 

  118. Dahm DL, Al-Rayashi W, Dajani K, Shah JP, Levy BA, Stuart MJ. Patellofemoral arthroplasty versus total knee arthroplasty in patients with isolated patellofemoral osteoarthritis. Am J Orthop. 2010;39(10):487–91.

    PubMed  Google Scholar 

  119. Mofidi A, Veravalli K, Jinnah RH, Poehling GG. Association and impact of patellofemoral dysplasia on patellofemoral arthropathy and arthroplasty. Knee. 2014;21(2):509–13.

    Article  PubMed  Google Scholar 

  120. King AH, Engasser WM, Sousa PL, Arendt EA, Dahm DL. Patellar fracture following patellofemoral arthroplasty. J Arthroplasty. 2015;30(7):1203–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth L. Sherman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, C.S., Kang, A.W., Lin, K., Bartels, D.W., Farr, J., Sherman, S.L. (2023). Patellofemoral Arthritis. In: Sanchis-Alfonso, V. (eds) Anterior Knee Pain and Patellar Instability. Springer, Cham. https://doi.org/10.1007/978-3-031-09767-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09767-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09766-9

  • Online ISBN: 978-3-031-09767-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics