Skip to main content
Log in

Distal femoral torsional osteotomy increases the contact pressure of the medial patellofemoral joint in biomechanical analysis

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Torsional osteotomy of the distal femur allows anatomic treatment of patellofemoral instability and patellofemoral pain syndrome in cases of increased femoral antetorsion. The purpose of this study was to investigate the effects of distal femoral torsional osteotomy on pressure distribution of the medial and lateral patellar facet.

Methods

Nine fresh frozen human knee specimens were embedded in custom-made 3D-printed casts and tested with a robotic arm. Torsional osteotomy could be simulated ranging from increased femoral antetorsion of 25° with a corresponding lateralization of the patella to an overcorrected value of 5° of femoral antetorsion. The peak and mean lateral and medial compartment pressure was measured in 0°, 15°, 30°, 45°, 60° and 90° flexion beginning with neutral anatomic muscle rotation.

Results

The medial aspect of the patella showed a significant influence of femoral torsion with an increase of mean and peak pressure in all flexion angles with progressive derotation from 15° external rotation to 5° internal rotation (p = 0.004). The overall pressure difference was highest in near extension and stayed on a constant level with further flexion. On the lateral facet, the derotation resulted in decrease of pressure in near extension; however, it had no significant influence on the mean and peak pressure through the different torsion angles (n.s.). Unlike on the medial facet, a significant consistent increase of peak pressure from 0° to 90° flexion could be shown (p = 0.022) on the lateral patella aspect.

Conclusion

Distal femoral torsional osteotomy to correct pathological femoral antetorsion leads to a redistribution of retropatellar pressure. External derotation leads to an increased peak pressure on the medial patellar facet and can impair simultaneous cartilage repair. However, as the lateral patellofemoral load decreases, it has a potential in preventing patellofemoral osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aglietti P, Buzzi R, Insall J (2001) Disorders of the patellofemoral joint. In: Insall JN, Scott WN (eds) Surgery of the knee, 3. edn. Churchill Livingstone, Philadelphia, pp 913–1043

    Google Scholar 

  2. Bauer S, Khan RJ, Ebert JR et al (2012) Knee joint preservation with combined neutralising high tibial osteotomy (HTO) and matrix-induced autologous chondrocyte implantation (MACI) in younger patients with medial knee osteoarthritis: a case series with prospective clinical and MRI follow-up over 5 years. Knee 19:431–443

    Article  CAS  PubMed  Google Scholar 

  3. Brimacombe JM, Wilson DR, Hodgson AJ, Ho KC, Anglin C (2009) Effect of calibration method on Tekscan sensor accuracy. J Biomech Eng 131:034503 1–4

    Article  Google Scholar 

  4. Brinkman JM, Freiling D, Lobenhoffer P, Staubli AE, van Heerwaarden RJ (2014) Supracondylar femur osteotomies around the knee: patient selection, planning, operative techniques, stability of fixation, and bone healing. Orthopade 43(Suppl;1):1–10

    Article  Google Scholar 

  5. Bruce WD, Stevens PM (2004) Surgical correction of miserable malalignment syndrome. J Pediatr Orthop 24:392–396

    Article  PubMed  Google Scholar 

  6. Dickschas J, Harrer J, Pfefferkorn R, Strecker W (2012) Operative treatment of patellofemoral maltracking with torsional osteotomy. Arch Orthop Trauma Surg 132:289–298

    Article  PubMed  Google Scholar 

  7. Dye SF (2005) The pathophysiology of patellofemoral pain: a tissue homeostasis perspektive. Clin Orthop Relat Res 436:100–110

    Article  Google Scholar 

  8. Drewniak EI, Crisco JJ, Spenciner DB, Fleming BC (2007) Accuracy of circular contact area measurements with thin-film pressure sensors. J Biomech 40:2569–2572

    Article  PubMed  Google Scholar 

  9. Eckhoff DG, Montgomery WK, Kilcoyne RF, Stamm ER (1994) Femoral morphometry and anterior knee pain. Clin Orthop Relat Res 302:64–68

    Google Scholar 

  10. Farahmand F, Senavongse W, Amis AA (1998) Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint. J Orthop Res 16:136–143

    Article  CAS  PubMed  Google Scholar 

  11. Farahmand F, Tahmasbi MN, Amis AA (1998) Lateral force–displacement behaviour of the human patella and its variation with knee flexion: a biomechanical study in vitro. J Biomech 31:1147–1152

    Article  CAS  PubMed  Google Scholar 

  12. Farr J, Covell DJ, Lattermann C (2012) Cartilage lesions in patellofemoral dislocations: incidents/locations/when to treat. Sports Med Arthrosc Rev 20:181–186

    Article  PubMed  PubMed Central  Google Scholar 

  13. Frosch S, Balcarek P, Walde TA et al (2011) The treatment of patellar dislocation: a systematic review. Z Orthop Unfall 149:630–645

    Article  CAS  PubMed  Google Scholar 

  14. Fu FH, Zurakowski D, Browne JE et al (2005) Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: An observational cohort study with 3-year follow-up. Am J Sport Med 33:1658–1666

    Article  Google Scholar 

  15. Guettler JH, Demetropoulos CK, Yang KH, Jurist KA (2004) Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 32:1451–1458

    Article  PubMed  Google Scholar 

  16. Heegaard J, Leyvraz PF, Curnier A, Rakotomanan L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279

    Article  CAS  PubMed  Google Scholar 

  17. Hinterwimmer S, Minzlaff P, Saier T, Niemeyer P, Imhoff AB, Feucht MJ (2014) Biplanar supracondylar femoral derotation osteotomy for patellofemoral malalignment: the anterior closed-wedge technique. Knee Surg Sports Traumatol Arthrosc 22:2518–2521

    Article  PubMed  Google Scholar 

  18. Kuroda R, Kambic H, Valdevit A et al (2001) Articular cartilage contact pressure after tibial tuberosity transfer. A cadaveric study. Am J Sports Med 29:403–409

    Article  CAS  PubMed  Google Scholar 

  19. Lee TQ, Anzel SH, Bennett KA et al (1994) The influence of fixed rotational deformities of the femur on the patellofemoral contact pressures in human cadaver knees. Clin Orthop Relat Res 302:69–74

    Google Scholar 

  20. Liska F, Voss A, Imhoff FB, Willinger L, Imhoff AB (2018) Nonunion and delayed union in lateral open wedge distal femoral osteotomies-a legitimate concern? Int Orthop 42(1):9–15

    Article  PubMed  Google Scholar 

  21. Liu JN, Steinhaus ME, Kalbian IL, Post WR, Green DW, Strickland SM, Shubin Stein BE (2017) Patellar instability management: a survey of the international patellofemoral study group. Am J Sports Med. https://doi.org/10.1177/0363546517732045

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mäenpää H, Lehto MUK (1997) Patellofemoral osteoarthritis after patellar dislocation. Clin Orthop Relat Res 339:156–162

    Article  Google Scholar 

  23. Mashoof AA, Scholl MD, Lahav A, Greis PE, Burks RT (2005) Osteochondral injury to the mid-lateral weight-bearing portion of the lateral femoral condyle associated with patella dislocation. Arthroscopy 21:228–232

    Article  PubMed  Google Scholar 

  24. Mehta VM, Inoue M, Nomura E, Fithian DC (2007) An algorithm guiding the evaluation and treatment of acute primary patellar dislocations. Sports Med Arthrosc Rev 15:78–81

    Article  PubMed  Google Scholar 

  25. Merican AM, Amis AA (2009) Iliotibial band tension affects patellofemoral and tibiofemoral kinematics. J Biomech 42:1539–1546

    Article  PubMed  Google Scholar 

  26. Mueller O, Lo JH, Wuenschel M, Obloh C, Wuelker N (2009) Simulation of force loaded knee movement in a newly developed in vitro knee simulator. Biomed Eng 54(3):142–149

    Article  Google Scholar 

  27. Nelitz M, Dreyhaupt J, Williams SR, Dornacher D (2015) Combined supracondylar femoral derotation osteotomy and patellofemoral ligament reconstruction for recurrent patellar dislocation and severe femoral anteversion syndrome: surgical technique and clinical outcome. Int Orthop 39:2355–2362

    Article  PubMed  Google Scholar 

  28. Nomura E, Inoue M, Kurimura M (2003) Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy 19:717–721

    Article  PubMed  Google Scholar 

  29. Nomura E, Inoue M (2005) Second-look arthroscopy of cartilage changes of the patellofemoral joint, especially the patella, following acute and recurrent patellar dislocation. Osteoarthr Cartil 13:1029–1036

    Article  CAS  PubMed  Google Scholar 

  30. Panagiotopoulos E, Strzelczyk P, Herrmann M, Scuderi G (2006) Cadaveric study on static medial patellar stabilizers: the dynamizing role of the vastus medialis obliquus on medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc 14(1):7–12

    Article  PubMed  Google Scholar 

  31. Sheehan FT, Derasari A, Fine KM, Brindle TJ, Alter K (2010) Q-angle and J-sign: Indicative of Maltracking Subgroups in Patellofemoral Pain. Clin Orthop Relat Res 468(1):266–275

    Article  PubMed  Google Scholar 

  32. Staheli LT (1989) Torsion–treatment indications. Clin Orthop Relat Res 247:61–66

    Google Scholar 

  33. Stanitski CL, Paletta GA Jr (1998) Articular cartilage injury with acute patellar dislocation in adolescents. Arthroscopic and radiographic correlation. Am J Sports Med 26:52–55

    Article  CAS  PubMed  Google Scholar 

  34. Stephen JM, Lumpaopong P, Dodds AL, Williams A, Amis AA (2015) The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med 43(1):186–194

    Article  PubMed  Google Scholar 

  35. Strecker W, Dickschas J (2015) Torsional osteotomy: Operative treatment of patellofemoral maltracking. Oper Orthop Traumatol 27:505–524

    Article  CAS  PubMed  Google Scholar 

  36. Tang WC, Henderson IJ (2005) High tibial osteotomy: long term survival analysis and patients’ perspective. Knee 12:410–413

    Article  PubMed  Google Scholar 

Download references

Funding

The Technical University of Munich has received direct funding from the German Arthritis Foundation and the German speaking Society for Arthroscopy and Joint Surgery (AGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas B. Imhoff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liska, F., von Deimling, C., Otto, A. et al. Distal femoral torsional osteotomy increases the contact pressure of the medial patellofemoral joint in biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 27, 2328–2333 (2019). https://doi.org/10.1007/s00167-018-5165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5165-2

Keywords

Navigation